新城疫病毒通过激活真核翻译起始因子4F促进病毒增殖
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新城疫病毒(Newcastle disease virus,NDV)是一种与养禽业经济息息相关的重要禽类病毒,由其引起的新城疫(Newcastle disease,ND)具有高度的传染性和致死性,严重威胁了世界养禽业的正常发展。新城疫病毒属于副黏病毒科(Paramyxoviridae)、禽腮腺炎病毒属(Avulavirus),基因组为不分节段的单股负链RNA,其基因组按照3′-Leader-NP-P-M-F-HN-L-Trailer5′的顺序编码6种结构蛋白。NDV病毒蛋白的翻译依赖于宿主的翻译系统,其mRNA与大多数真核生物一样都具有5'帽子结构,一般认为L蛋白具有加帽酶的活性能够在病毒mRNA的5'端形成缺少2’-O甲基化的“cap0”型帽子结构。新城疫病毒在细胞内具有很强的增殖能力,感染后能够迅速、大量地合成病毒自身RNA和蛋白,完成装配。新城疫病毒RNA的合成是依赖其自身合成的病毒RNA聚合酶,启动病毒的转录机制,但是转录后的翻译机制尚未可知。
     大多数真核生物的mRNA都具有3’ poly A尾和5’甲基化的帽子结构,并利用帽子结构依赖性的真核翻译系统进行mRNA的翻译。翻译的起始过程是真核蛋白翻译过程中重要的限速步骤,该过程的核心元件是翻译起始复合体eIF4F(translation initiaton factor4F)。这一复合体由eIF4E、eIF4G和eIF4A三个组分构成,其活性是由一系列的磷酸化级联反应所调节的,包括PI3K/Akt/mTOR和MAPK两个重要的信号通路。病毒作为一种严格的胞内寄生物,完全依赖于宿主的翻译系统合成病毒蛋白质从而实现病毒的复制,因此eIF4F也是病毒感染过程中重要的调控靶标。许多病毒都能够通过影响eIF4F复合体及其调控通路来促进病毒蛋白的合成。为了探究新城疫病毒感染细胞后如何激活和利用宿主的真核翻译系统,我们开展了以下几方面的研究:
     1本研究通过构建pET-32a-NP重组表达载体,原核表达NDV NP重组蛋白并免疫小鼠,经过四次亚克隆后,成功制备得到两株针对NP蛋白的单克隆抗体。经过实验验证,这两株抗体均具有ELISA、IFA和Western Blot效价。该单抗的成功研制将为进一步研究NP蛋白功能以及其与宿主细胞的相互作用提供研究工具,并为实现新城疫的临床快速诊断提供理论基础。
     2新城疫病毒感染细胞后能够引起eIF4F复合体的磷酸化并促进其装配。为了研究NDV感染能否诱导宿主翻译系统的活化,我们用Herts/33毒株感染人宫颈癌HeLa细胞系,以Western-Blot、和m7GTP pull down的方法鉴定eIF4F复合体的磷酸化水平及装配能力。结果显示,5MOI的Herts/33毒株感染HeLa细胞后6-12h伴随着病毒蛋白的大量合成eIF4E及eIF4G的磷酸化水平明显上升,而紫外灭活的NDV并不能诱导该现象的产生;NDV感染8h后进行m7GTP pull down实验发现,NDV感染后能够引起eIF4F复合体的大量装配。这些结果说明NDV感染细胞后能够通过诱导eIF4F的磷酸化并促进其装配的方式来激活宿主的真核翻译系统。此外,我们还通过间接免疫荧光和RNA干扰实验发现,eIF4E在NDV感染8h后从弥散的散在分布变为点状成簇分布并与NP蛋白存在共定位;当eIF4E或/和eIF4G被RNA干扰时,病毒蛋白的合成和子代病毒的产生均会受到明显抑制,证实了NDV病毒蛋白的合成依赖于帽子结构依赖性的翻译起始过程。
     3本研究进一步分析了PI3K/Akt通路在介导NDV感染引起eIF4F活化过程中所起的具体作用。我们利用Herts/33感染HeLa细胞,检测PI3K/Akt通路下游信号分子的磷酸化水平并结合使用抑制剂来确证PI3K/Akt通路是否参与NDV诱导的eIF4F的激活。同时我们还研究了PI3K/Akt通路对病毒诱导的eIF4F的形成以及对病毒复制的影响。结果表明,NDV在感染后6-12h能够激活Akt及下游mTOR,p70S6K和4E-BP1,并且这些下游分子的磷酸化均是由于NDV感染激活PI3K所介导的。研究结果还表明,NDV感染所诱导的eIF4G的磷酸化也是通过激活PI3K/Akt通路下游mTOR激酶实现的。而当使用PI3K的特异性抑制剂LY294002处理细胞时,会导致eIF4F复合体的形成受到抑制从而影响病毒蛋白的合成。此外,我们还发现NDV引起的4E-BP1的过磷酸化能够拮抗Rapamycin的抑制作用,所以Rapamycin既不能抑制抑制NDV诱导的eIF4F复合体的形成,也不能对病毒的复制产生任何影响。以上结果说明,NDV感染后通过激活PI3K/Akt通路诱导eIF4G和4E-BP1发生磷酸化,从而促进eIF4F复合体的形成并保证病毒mRNA的顺利翻译。
     4本研究同样也对MAKP通路在NDV激活eIF4F的过程中所起的调控作用进行了分析。我们首先用Western-Blot检测了NDV感染后MAPK及下游Mnk1的磷酸化状态,发现p38、Erk及Mnk1都在病毒感染后6-12h出现磷酸化。但是通过使用特异性的抑制剂将其分别阻断时,只有p38的抑制剂SB203580既能抑制Mnk1的活化又能影响eIF4E的磷酸化水平,而Erk被阻断时只对病毒诱导的Mnk1的磷酸化有影响。此外我们还通过使用抑制剂结合m7GTP pull down实验,分析了病毒诱导的eIF4E磷酸化对eIF4F复合体装配的影响。当使用p38及Mnk1的抑制剂阻断病毒诱导的eIF4E的磷酸化时,eIF4F复合体的形成并不受影响,因此病毒蛋白的合成及子代病毒的产生也未受到明显的影响。这些结果说明,MAPK信号通路,主要是p38MAPK/Mnk1通路,在新城疫病毒感染后可以通过诱导eIF4E磷酸化来促进eIF4F的翻译起始活性,但是调控作用有限,可能只是影响了翻译起始的效率。
     5最后,本研究还发现了NDV的NP蛋白能够与eIF4F复合体相互作用。为了进一步阐明NDV对真核翻译系统的直接调控作用,我们利用m7GTP pull down实验和免疫共沉淀(Co-IP)实验对NDV的病毒蛋白和eIF4F复合体进行互作研究。结果显示NDV的NP蛋白能够与eIF4F复合体相互作用,且该互作不依赖于其他病毒蛋白的介导。我们还对NP蛋白与eIF4F互作的区域进行了分析,发现NP蛋白N端的391个氨基酸对于其与eIF4F的互作是必需的,而C端氨基酸的长度可能起到调节NP蛋白与eIF4F亲和力的作用。
     综上所述,本研究主要阐明了新城疫病毒感染后调控宿主真核翻译系统的具体机制,并分析了PI3K/Akt/mTOR和p38MAPK/Mnk1信号通路在该调控过程中发挥的具体作用,此外我们还第一次发现NDV的NP蛋白可以通过与eIF4F的相互作用来促进病毒mRNA的选择性翻译。本研究结果对深入解析NDV与宿主之间的相互作用以及翻译相关信号通路参与调控病毒复制的机制具有重要意义,也为新型抗病毒药物的研发提供了理论基础。
Newcastle disease virus (NDV), the member of the Paramyxoviridae family, is a single-stranded,nonsegmented, negative-sense RNA virus that infects most species of birds, resulting in substantial lossto the poultry industry. The genome contains six major genes that encode the structural proteins in theorder3’-NP-P-M-F-HN-L-5’, as well as two non-structural proteins, W and V via mRNA editing. NDVis dependent on the cellular translational machinery to synthesize viral proteins, and the viral mRNAsare capped and polyadenylated by L protein during synthesis. The structure of the NDV mRNA cap ism7G(5’)ppp(5’)GpPyp, which lacks2’-O-methylation and belongs to the cap0type. All viralreplication events occur within the host cell cytoplasm, and the positive-sense RNA intermediates areformed, which act as mRNA using the host cell translation machinery to translate proteins. However, theregulation of translational machinery in NDV-infected cells and the detailed cellular pathways has notbeen studied.
     Translation initiation is considered to be a rate limiting process for overall protein synthesis ineukaryotes. Most eukaryotic mRNAs present a5’7-methyl GTP terminal cap structure as well as apoly(A) tail at3’ end, and translated by cap-dependent translation. Cap-dependent translation beginswith7-methyl-GTP cap recognition by eukaryotic translation initiaton factor4F (eIF4F) whichcomposed of eIF4E, eIF4G and eIF4A. eIF4F functions are regulated by cellular signal pathways ineukaryotic cells by means of phosphorylation cascade reactions. A major pathway that regulates eIF4Fcomplex assembly is the PI3K/Akt/mTOR pathway. Another pathway that regulates the translationinitiation is MAP kinase-interacting serine/threonine-protein kinase1(Mnk1). A number of viruses canalso stimulate various host cell signalling pathways to phosphorylate translational control proteins,enhancing the activity of eIF4F components and inactivating translational repressor proteins. In thepresent work, we tried to illustrate the regulation of host translational machinery by Newcastle diseasevirus in host protein translation initiation.
     To determine whether eIF4F is modified by NDV infection, the phosphorylation of eIF4G and eIF4Ewas analyzed by Western blotting. The results showed that both phosphorylation was significantlyincreased at6–12hpi, correlating with robust synthesis of viral proteins. Treating HeLa cells withUV-inactivated NDV Herts/33did not alter eIF4F phosphorylation or NDV NP protein expression. Thebinding between eIF4G and eIF4E was investigated, significantly increased eIF4G and eIF4E wasdetected in the eIF4F complex from NDV infected cells. In addition, eIF4E is redistributed post NDVinfection and depleting of eIF4E or/and eIF4G reduces viral protein synthesis. These data indicate thatNDV infection stimulated the phosphorylation of eIF4F and also promoted the assembly of eIF4Fcomplexes. Both eIF4E and eIF4G are important host factors for NDV protein synthesis and growth.
     To determine the host intracellular pathways involved in NDV infection, we first examined thePI3K/Akt pathway by determining the level of phosphorylated downstream proteins. We also analysised the effect of PI3K/Akt pathway on the formation of eIF4F complexes and viral protein synthesis inNDV-infected cells. The results showed that Akt and mTOR phosphorylation was enhanced at6to12hpi and phosphorylation of p70S6K and4E-BP1, two downsteam effectors of Akt/mTOR signaling,were also elevated. In addition, the role of PI3K in Akt and downstream proteins phosphorylation afterNDV infection was confirmed by LY294002. We also found that NDV-induced eIF4G phosphorylationrequires mTOR activity. Inhibition of upstream PI3K signaling with LY294002resulted in a reduction inthe assembly of eIF4F. In addition,4E-BP1phosphorylation induced by NDV infection is resistant torapamycin treatment. In that case, rapamycin treatment did not affect the assembly of eIF4F andsynthesis of viral proteins. These data suggest that NDV infection induced phosphorylation of eIF4Gand4E-BP1as well as enhaced assembly of eIF4F through PI3K/Akt pathway.
     We also examined the MAPK pathway involved in NDV infection and eIF4F activation. We show herethat Mnk1is strongly phosphorylated for NDV infection, correlating with the phosphorylation of eIF4Eat Ser209. Both Erk and p38are activated in NDV-infected cells, however, only p38activation isdirectly and correlates with eIF4E activation. The role of eIF4E phosphorylation in eIF4F assembly inNDV-infected cells, was examined using specific inhibitors. Phosphorylation of eIF4E contributedneither to NDV mediated eIF4F complex assembly, nor to NDV infection. While p38MAPK/Mnk1pathway is not essential for translation, they might impart a level of control that governs the efficiencywith which translation initiates on viral mRNAs.
     To further identify the direct interaction between NDV and host protein translation machinery, weperformed m7GTP pull down and co-immunoprecipitation to confirm the direct interaction betweenNDV NP protein and eIF4F complex. Mapping of the eIF4F-binding domain on the NP protein usingNDV NP truncation mutants showed that the N-terminal391amino acids are necessary for NP tointeract with eIF4F, and the length of C-terminal portion of NP may play a role in regulating thecontaction capacity of NP protein and eIF4F complex.
     Overall, our study provides insight into how NDV manipulates host signaling pathways to regulateprotein translation initiation. NDV infection activates PI3K/Akt/mTOR and p38MAPK/Mnk1pathwaysto upregulate phosphorylation of eIF4E and eIF4G, as well as assembly of eIF4F complex to stimulatecap-dependent translation. To favor viral gene translation and replication, the translation initiationmachinery is redistributed and interacts with NP. Further understanding of the mechanisms employed byNDV to recruit and interact with eIF4F complexs will provide additional insight into how NDVinterferes with host translation and optimizes viral gene expression. Our studies also provide insightsinto NDV-host interaction and may provide host cell targets for therapeutic intervention against NDVinfection.
引文
1. Alexander, D.J., Newcastle disease and other avian paramyxoviruses. Rev Sci Tech2000,19:443-462.
    2. Alexander, D.J., Manvell, R.J., Lowings, J.P., et al., Antigenic diversity and similarities detected inavian paramyxovirus type1(Newcastle disease virus) isolates using monoclonal antibodies. Avianpathology: journal of the W.V.P.A1997,26:399-418.
    3. Balachandran, S., Barber, G.N., PKR in innate immunity, cancer, and viral oncolysis. Methods Mol Biol2007,383:277-301.
    4. Bellacosa, A., Testa, J.R., Staal, S.P., et al., A retroviral oncogene, akt, encoding a serine-threoninekinase containing an SH2-like region. Science1991,254:274-277.
    5. Berlanga, J.J., Baass, A., Sonenberg, N., Regulation of poly(A) binding protein function in translation:Characterization of the Paip2homolog, Paip2B. RNA2006,12:1556-1568.
    6. Bonderoff, J.M., Larey, J.L., Lloyd, R.E., Cleavage of poly(A)-binding protein by poliovirus3Cproteinase inhibits viral internal ribosome entry site-mediated translation. Journal of virology2008,82:9389-9399.
    7. Browne, G.J., Proud, C.G., A novel mTOR-regulated phosphorylation site in elongation factor2kinasemodulates the activity of the kinase and its binding to calmodulin. Molecular and cellular biology2004,24:2986-2997.
    8. Buchkovich, N.J., Yu, Y., Zampieri, C.A., et al., The TORrid affairs of viruses: effects of mammalianDNA viruses on the PI3K-Akt-mTOR signalling pathway. Nature reviews. Microbiology2008,6:266-275.
    9. Burgui, I., Aragon, T., Ortin, J., et al., PABP1and eIF4GI associate with influenza virus NS1protein inviral mRNA translation initiation complexes. The Journal of general virology2003,84:3263-3274.
    10. Burgui, I., Yanguez, E., Sonenberg, N., et al., Influenza virus mRNA translation revisited: is the eIF4Ecap-binding factor required for viral mRNA translation? Journal of virology2007,81:12427-12438.
    11. Buxade, M., Morrice, N., Krebs, D.L., et al., The PSF.p54nrb complex is a novel Mnk substrate thatbinds the mRNA for tumor necrosis factor alpha. The Journal of biological chemistry2008,283:57-65.
    12. Castello, A., Quintas, A., Sanchez, E.G., et al., Regulation of host translational machinery by Africanswine fever virus. PLoS pathogens2009,5: e1000562.
    13. Cencic, R., Desforges, M., Hall, D.R., et al., Blocking eIF4E-eIF4G interaction as a strategy to impaircoronavirus replication. Journal of virology2011,85:6381-6389.
    14. Choo, A.Y., Yoon, S.O., Kim, S.G., et al., Rapamycin differentially inhibits S6Ks and4E-BP1tomediate cell-type-specific repression of mRNA translation. Proceedings of the National Academy ofSciences of the United States of America2008,105:17414-17419.
    15. Chuluunbaatar, U., Roller, R., Feldman, M.E., et al., Constitutive mTORC1activation by a herpesvirusAkt surrogate stimulates mRNA translation and viral replication. Genes&development2010,24:2627-2639.
    16. Cohen, A.M., Grinblat, B., Bessler, H., et al., Increased expression of the hPim-2gene in human chroniclymphocytic leukemia and non-Hodgkin lymphoma. Leukemia&lymphoma2004,45:951-955.
    17. Coldwell, M.J., Morley, S.J., Specific isoforms of translation initiation factor4GI show differences intranslational activity. Molecular and cellular biology2006,26:8448-8460.
    18. Connor, J.H., Lyles, D.S., Vesicular stomatitis virus infection alters the eIF4F translation initiationcomplex and causes dephosphorylation of the eIF4E binding protein4E-BP1. Journal of virology2002,76:10177-10187.
    19. Cuesta, R., Xi, Q., Schneider, R.J., Adenovirus-specific translation by displacement of kinase Mnk1from cap-initiation complex eIF4F. The EMBO journal2000,19:3465-3474.
    20. Datta, S.R., Brunet, A., Greenberg, M.E., Cellular survival: a play in three Akts. Genes&development1999,13:2905-2927.
    21. Daughenbaugh, K.F., Fraser, C.S., Hershey, J.W., et al., The genome-linked protein VPg of the Norwalkvirus binds eIF3, suggesting its role in translation initiation complex recruitment. The EMBO journal2003,22:2852-2859.
    22. Dunn, E.F., Connor, J.H., Dominant inhibition of Akt/protein kinase B signaling by the matrix protein ofa negative-strand RNA virus. Journal of virology2011,85:422-431.
    23. Fabian, Z., Csatary, C.M., Szeberenyi, J., et al., p53-independent endoplasmic reticulum stress-mediatedcytotoxicity of a Newcastle disease virus strain in tumor cell lines. Journal of virology2007,81:2817-2830.
    24. Faria, P.A., Chakraborty, P., Levay, A., et al., VSV disrupts the Rae1/mrnp41mRNA nuclear exportpathway. Molecular cell2005,17:93-102.
    25. Fechter, P., Brownlee, G.G., Recognition of mRNA cap structures by viral and cellular proteins. TheJournal of general virology2005,86:1239-1249.
    26. Fontaine-Rodriguez, E.C., Knipe, D.M., Herpes simplex virus ICP27increases translation of a subset ofviral late mRNAs. Journal of virology2008,82:3538-3545.
    27. Furic, L., Rong, L., Larsson, O., et al., eIF4E phosphorylation promotes tumorigenesis and is associatedwith prostate cancer progression. Proceedings of the National Academy of Sciences of the United Statesof America2010,107:14134-14139.
    28. Gaestel, M., MAPKAP kinases-MKs-two's company, three's a crowd. Nature reviews. Molecular cellbiology2006,7:120-130.
    29. Gebauer, F., Hentze, M.W., Molecular mechanisms of translational control. Nature reviews. Molecularcell biology2004,5:827-835.
    30. Gingras, A.C., Raught, B., Gygi, S.P., et al., Hierarchical phosphorylation of the translation inhibitor4E-BP1. Genes&development2001,15:2852-2864.
    31. Gingras, A.C., Raught, B., Sonenberg, N., eIF4initiation factors: effectors of mRNA recruitment toribosomes and regulators of translation. Annual review of biochemistry1999,68:913-963.
    32. Gong, J., Wang, J., Ren, K., et al., Serine/threonine kinase Pim-2promotes liver tumorigenesisinduction through mediating survival and preventing apoptosis of liver cell. The Journal of surgicalresearch2009,153:17-22.
    33. Gould, A.R., Hansson, E., Selleck, K., et al., Newcastle disease virus fusion andhaemagglutinin-neuraminidase gene motifs as markers for viral lineage. Avian pathology: journal of theW.V.P.A2003,32:361-373.
    34. Haghighat, A., Mader, S., Pause, A., et al., Repression of cap-dependent translation by4E-bindingprotein1: competition with p220for binding to eukaryotic initiation factor-4E. The EMBO journal1995,14:5701-5709.
    35. Hamaguchi, M., Yoshida, T., Nishikawa, K., et al., Transcriptive complex of Newcastle disease virus. I.Both L and P proteins are required to constitute an active complex. Virology1983,128:105-117.
    36. Hay, N., Sonenberg, N., Upstream and downstream of mTOR. Genes&development2004,18:1926-1945.
    37. Herdy, B., Jaramillo, M., Svitkin, Y.V., et al., Translational control of the activation of transcriptionfactor NF-kappaB and production of type I interferon by phosphorylation of the translation factor eIF4E.Nature immunology2012,13:543-550.
    38. Hovanessian, A.G., The double stranded RNA-activated protein kinase induced by interferon:dsRNA-PK. Journal of interferon research1989,9:641-647.
    39. Huang, C., Lokugamage, K.G., Rozovics, J.M., et al., SARS coronavirus nsp1protein inducestemplate-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-inducedRNA cleavage. PLoS pathogens2011,7: e1002433.
    40. Imataka, H., Gradi, A., Sonenberg, N., A newly identified N-terminal amino acid sequence of humaneIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. The EMBOjournal1998,17:7480-7489.
    41. Kamoshita, N., Nomoto, A., RajBhandary, U.L., Translation initiation from the ribosomal A site or the Psite, dependent on the conformation of RNA pseudoknot I in dicistrovirus RNAs. Molecular cell2009,35:181-190.
    42. Kandel, E.S., Hay, N., The regulation and activities of the multifunctional serine/threonine kinaseAkt/PKB. Experimental cell research1999,253:210-229.
    43. Katsafanas, G.C., Moss, B., Colocalization of transcription and translation within cytoplasmic poxvirusfactories coordinates viral expression and subjugates host functions. Cell hostµbe2007,2:221-228.
    44. Kho, C.L., Tan, W.S., Tey, B.T., et al., Newcastle disease virus nucleocapsid protein: self-assembly andlength-determination domains. The Journal of general virology2003,84:2163-2168.
    45. Kolupaeva, V.G., Hellen, C.U., Shatsky, I.N., Structural analysis of the interaction of the pyrimidinetract-binding protein with the internal ribosomal entry site of encephalomyocarditis virus andfoot-and-mouth disease virus RNAs. RNA1996,2:1199-1212.
    46. Kudchodkar, S.B., Yu, Y., Maguire, T.G., et al., Human cytomegalovirus infection inducesrapamycin-insensitive phosphorylation of downstream effectors of mTOR kinase. Journal of virology2004,78:11030-11039.
    47. Kung, Y.H., Huang, S.W., Kuo, P.H., et al., Introduction of a strong temperature-sensitive phenotypeinto enterovirus71by altering an amino acid of virus3D polymerase. Virology2010,396:1-9.
    48. Ling, J., Morley, S.J., Traugh, J.A., Inhibition of cap-dependent translation via phosphorylation ofeIF4G by protein kinase Pak2. The EMBO journal2005,24:4094-4105.
    49. Lloyd, R.E., Translational control by viral proteinases. Virus research2006,119:76-88.
    50. MacPartlin, M., Zeng, S., Lee, H., et al., p300regulates p63transcriptional activity. The Journal ofbiological chemistry2005,280:30604-30610.
    51. Mader, S., Lee, H., Pause, A., et al., The translation initiation factor eIF-4E binds to a common motifshared by the translation factor eIF-4gamma and the translational repressors4E-binding proteins.Molecular and cellular biology1995,15:4990-4997.
    52. Mamane, Y., Petroulakis, E., LeBacquer, O., et al., mTOR, translation initiation and cancer. Oncogene2006,25:6416-6422.
    53. Manning, B.D., Cantley, L.C., AKT/PKB signaling: navigating downstream. Cell2007,129:1261-1274.
    54. Mao, C., Qin, W., Chen, D., et al., A monoclonal antibody against human UL16-binding protein3.Hybridoma (Larchmt)2012,31:203-208.
    55. McInerney, G.M., Kedersha, N.L., Kaufman, R.J., et al., Importance of eIF2alpha phosphorylation andstress granule assembly in alphavirus translation regulation. Molecular biology of the cell2005,16:3753-3763.
    56. Meng, C., Qiu, X., Jin, S., et al., Whole genome sequencing and biological characterization ofDuck/JS/10, a new lentogenic class I Newcastle disease virus. Archives of virology2012a,157:869-880.
    57. Meng, C., Zhou, Z., Jiang, K., et al., Newcastle disease virus triggers autophagy in U251glioma cells toenhance virus replication. Archives of virology2012b,157:1011-1018.
    58. Miller, P.J., Decanini, E.L., Afonso, C.L., Newcastle disease: evolution of genotypes and the relateddiagnostic challenges. Infection, genetics and evolution: journal of molecular epidemiology andevolutionary genetics in infectious diseases2010,10:26-35.
    59. Mir, M.A., Panganiban, A.T., The triplet repeats of the Sin Nombre hantavirus5' untranslated region aresufficient in cis for nucleocapsid-mediated translation initiation. Journal of virology2010,84:8937-8944.
    60. Montero, H., Arias, C.F., Lopez, S., Rotavirus Nonstructural Protein NSP3is not required for viralprotein synthesis. Journal of virology2006,80:9031-9038.
    61. Moorman, N.J., Shenk, T., Rapamycin-resistant mTORC1kinase activity is required for herpesvirusreplication. Journal of virology2010,84:5260-5269.
    62. Morley, S.J., The regulation of eIF4F during cell growth and cell death. Progress in molecular andsubcellular biology2001,27:1-37.
    63. Morley, S.J., Naegele, S., Phosphorylation of eukaryotic initiation factor (eIF)4E is not required for denovo protein synthesis following recovery from hypertonic stress in human kidney cells. The Journal ofbiological chemistry2002,277:32855-32859.
    64. Morley, S.J., Pain, V.M., Hormone-induced meiotic maturation in Xenopus oocytes occursindependently of p70s6k activation and is associated with enhanced initiation factor (eIF)-4Fphosphorylation and complex formation. Journal of cell science1995a,108(Pt4):1751-1760.
    65. Morley, S.J., Pain, V.M., Translational regulation during activation of porcine peripheral bloodlymphocytes: association and phosphorylation of the alpha and gamma subunits of the initiation factorcomplex eIF-4F. The Biochemical journal1995b,312(Pt2):627-635.
    66. Nave, B.T., Ouwens, M., Withers, D.J., et al., Mammalian target of rapamycin is a direct target forprotein kinase B: identification of a convergence point for opposing effects of insulin and amino-aciddeficiency on protein translation. The Biochemical journal1999,344Pt2:427-431.
    67. Ogino, T., Kobayashi, M., Iwama, M., et al., Sendai virus RNA-dependent RNA polymerase L proteincatalyzes cap methylation of virus-specific mRNA. The Journal of biological chemistry2005,280:4429-4435.
    68. Parrish, S., Resch, W., Moss, B., Vaccinia virus D10protein has mRNA decapping activity, providing amechanism for control of host and viral gene expression. Proceedings of the National Academy ofSciences of the United States of America2007,104:2139-2144.
    69. Pavitt, G.D., Ron, D., New insights into translational regulation in the endoplasmic reticulum unfoldedprotein response. Cold Spring Harbor perspectives in biology2012,4.
    70. Pestova, T.V., Kolupaeva, V.G., Lomakin, I.B., et al., Molecular mechanisms of translation initiation ineukaryotes. Proceedings of the National Academy of Sciences of the United States of America2001,98:7029-7036.
    71. Peterson, R.T., Schreiber, S.L., Translation control: connecting mitogens and the ribosome. Currentbiology: CB1998,8: R248-250.
    72. Plas, D.R., Thompson, C.B., Akt-dependent transformation: there is more to growth than just surviving.Oncogene2005,24:7435-7442.
    73. Preiss, T., M, W.H., Starting the protein synthesis machine: eukaryotic translation initiation. BioEssays:news and reviews in molecular, cellular and developmental biology2003,25:1201-1211.
    74. Prevot, D., Darlix, J.L., Ohlmann, T., Conducting the initiation of protein synthesis: the role of eIF4G.Biology of the cell/under the auspices of the European Cell Biology Organization2003,95:141-156.
    75. Proud, C.G., eIF2and the control of cell physiology. Seminars in cell&developmental biology2005,16:3-12.
    76. Pyronnet, S., Imataka, H., Gingras, A.C., et al., Human eukaryotic translation initiation factor4G(eIF4G) recruits mnk1to phosphorylate eIF4E. The EMBO journal1999,18:270-279.
    77. Qin, X., Sarnow, P., Preferential translation of internal ribosome entry site-containing mRNAs duringthe mitotic cycle in mammalian cells. The Journal of biological chemistry2004,279:13721-13728.
    78. Rahaus, M., Desloges, N., Wolff, M.H., Varicella-zoster virus requires a functionalPI3K/Akt/GSK-3alpha/beta signaling cascade for efficient replication. Cellular signalling2007,19:312-320.
    79. Raught, B., Gingras, A.C., Gygi, S.P., et al., Serum-stimulated, rapamycin-sensitive phosphorylationsites in the eukaryotic translation initiation factor4GI. The EMBO journal2000,19:434-444.
    80. Reguera, J., Weber, F., Cusack, S., Bunyaviridae RNA polymerases (L-protein) have an N-terminal,influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS pathogens2010,6: e1001101.
    81. Rice, J., Connor, R., Worgall, S., et al., Inhibition of HIV-1replication in alveolar macrophages byadenovirus gene transfer vectors. American journal of respiratory cell and molecular biology2002,27:214-219.
    82. Richter, J.D., Sonenberg, N., Regulation of cap-dependent translation by eIF4E inhibitory proteins.Nature2005,433:477-480.
    83. Roberts, L.O., Jopling, C.L., Jackson, R.J., et al., Viral strategies to subvert the mammalian translationmachinery. Progress in molecular biology and translational science2009,90:313-367.
    84. Romer-Oberdorfer, A., Werner, O., Veits, J., et al., Contribution of the length of the HN protein and thesequence of the F protein cleavage site to Newcastle disease virus pathogenicity. The Journal of generalvirology2003,84:3121-3129.
    85. Sadler, A.J., Williams, B.R., Interferon-inducible antiviral effectors. Nature reviews. Immunology2008,8:559-568.
    86. Samson, A.C., Levesley, I., Russell, P.H., The36K polypeptide synthesized in Newcastle diseasevirus-infected cells possesses properties predicted for the hypothesized 'V' protein. The Journal ofgeneral virology1991,72(Pt7):1709-1713.
    87. Sanz, M.A., Castello, A., Ventoso, I., et al., Dual mechanism for the translation of subgenomic mRNAfrom Sindbis virus in infected and uninfected cells. PloS one2009,4: e4772.
    88. Sato, H., Masuda, M., Kanai, M., et al., Measles virus N protein inhibits host translation by binding toeIF3-p40. Journal of virology2007,81:11569-11576.
    89. Scheper, G.C., Proud, C.G., Does phosphorylation of the cap-binding protein eIF4E play a role intranslation initiation? European journal of biochemistry/FEBS2002,269:5350-5359.
    90. Scheper, G.C., van Kollenburg, B., Hu, J., et al., Phosphorylation of eukaryotic initiation factor4Emarkedly reduces its affinity for capped mRNA. The Journal of biological chemistry2002,277:3303-3309.
    91. Schneider, R.J., Mohr, I., Translation initiation and viral tricks. Trends in biochemical sciences2003,28:130-136.
    92. Schoenberg, D.R., Maquat, L.E., Re-capping the message. Trends in biochemical sciences2009,34:435-442.
    93. Shatsky, I.N., Dmitriev, S.E., Terenin, I.M., et al., Cap-and IRES-independent scanning mechanism oftranslation initiation as an alternative to the concept of cellular IRESs. Molecules and cells2010,30:285-293.
    94. Shengqing, Y., Kishida, N., Ito, H., et al., Generation of velogenic Newcastle disease viruses from anonpathogenic waterfowl isolate by passaging in chickens. Virology2002,301:206-211.
    95. Shin, Y.K., Liu, Q., Tikoo, S.K., et al., Effect of the phosphatidylinositol3-kinase/Akt pathway oninfluenza A virus propagation. The Journal of general virology2007,88:942-950.
    96. Smith, R.W., Gray, N.K., Poly(A)-binding protein (PABP): a common viral target. The Biochemicaljournal2010,426:1-12.
    97. Sonenberg, N., Hinnebusch, A.G., Regulation of translation initiation in eukaryotes: mechanisms andbiological targets. Cell2009,136:731-745.
    98. Sonenberg, N., Rupprecht, K.M., Hecht, S.M., et al., Eukaryotic mRNA cap binding protein:purification by affinity chromatography on sepharose-coupled m7GDP. Proceedings of the NationalAcademy of Sciences of the United States of America1979,76:4345-4349.
    99. Sparks, C.A., Guertin, D.A., Targeting mTOR: prospects for mTOR complex2inhibitors in cancertherapy. Oncogene2010,29:3733-3744.
    100. Steward, M., Vipond, I.B., Millar, N.S., et al., RNA editing in Newcastle disease virus. The Journal ofgeneral virology1993,74(Pt12):2539-2547.
    101. Stone, H.D., Brugh, M., Beard, C.W., Comparison of three experimental inactivated oil-emulsionNewcastle disease vaccines. Avian diseases1981,25:1070-1076.
    102. Stricker, R., Mottet, G., Roux, L., The Sendai virus matrix protein appears to be recruited in thecytoplasm by the viral nucleocapsid to function in viral assembly and budding. The Journal of generalvirology1994,75(Pt5):1031-1042.
    103. Sun, Y., Yu, S., Ding, N., et al., Autophagy benefits the replication of newcastle disease virus in chickencells and tissues. Journal of virology2014,88:525-537.
    104. Toker, A., Cantley, L.C., Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature1997,387:673-676.
    105. Topisirovic, I., Svitkin, Y.V., Sonenberg, N., et al., Cap and cap-binding proteins in the control of geneexpression. Wiley interdisciplinary reviews. RNA2011,2:277-298.
    106. Truniger, V., Aranda, M.A., Recessive resistance to plant viruses. Advances in virus research2009,75:119-159.
    107. Ueda, T., Watanabe-Fukunaga, R., Fukuyama, H., et al., Mnk2and Mnk1are essential for constitutiveand inducible phosphorylation of eukaryotic initiation factor4E but not for cell growth or development.Molecular and cellular biology2004,24:6539-6549.
    108. Vanhaesebroeck, B., Leevers, S.J., Ahmadi, K., et al., Synthesis and function of3-phosphorylatedinositol lipids. Annual review of biochemistry2001,70:535-602.
    109. Ventoso, I., Sanz, M.A., Molina, S., et al., Translational resistance of late alphavirus mRNA toeIF2alpha phosphorylation: a strategy to overcome the antiviral effect of protein kinase PKR. Genes&development2006,20:87-100.
    110. Walsh, D., Arias, C., Perez, C., et al., Eukaryotic translation initiation factor4F architectural alterationsaccompany translation initiation factor redistribution in poxvirus-infected cells. Molecular and cellularbiology2008,28:2648-2658.
    111. Walsh, D., Mohr, I., Phosphorylation of eIF4E by Mnk-1enhances HSV-1translation and replication inquiescent cells. Genes&development2004,18:660-672.
    112. Walsh, D., Perez, C., Notary, J., et al., Regulation of the translation initiation factor eIF4F by multiplemechanisms in human cytomegalovirus-infected cells. Journal of virology2005,79:8057-8064.
    113. Wek, R.C., Jiang, H.Y., Anthony, T.G., Coping with stress: eIF2kinases and translational control.Biochemical Society transactions2006,34:7-11.
    114. Wendel, H.G., Silva, R.L., Malina, A., et al., Dissecting eIF4E action in tumorigenesis. Genes&development2007,21:3232-3237.
    115. Widmann, C., Gibson, S., Jarpe, M.B., et al., Mitogen-activated protein kinase: conservation of athree-kinase module from yeast to human. Physiological reviews1999,79:143-180.
    116. Willcocks, M.M., Carter, M.J., Roberts, L.O., Cleavage of eukaryotic initiation factor eIF4G andinhibition of host-cell protein synthesis during feline calicivirus infection. The Journal of generalvirology2004,85:1125-1130.
    117. Willcocks, M.M., Locker, N., Gomwalk, Z., et al., Structural features of the Seneca Valley virus internalribosome entry site (IRES) element: a picornavirus with a pestivirus-like IRES. Journal of virology2011,85:4452-4461.
    118. Wullschleger, S., Loewith, R., Hall, M.N., TOR signaling in growth and metabolism. Cell2006,124:471-484.
    119. Yan, W., Gale, M.J., Jr., Tan, S.L., et al., Inactivation of the PKR protein kinase and stimulation ofmRNA translation by the cellular co-chaperone P58(IPK) does not require J domain function.Biochemistry2002,41:4938-4945.
    120. Yatherajam, G., Huang, W., Flint, S.J., Export of adenoviral late mRNA from the nucleus requires theNxf1/Tap export receptor. Journal of virology2011,85:1429-1438.
    121. Yusoff, K., Nesbit, M., McCartney, H., et al., Location of neutralizing epitopes on the fusion protein ofNewcastle disease virus strain Beaudette C. The Journal of general virology1989,70(Pt11):3105-3109.
    122. Yusoff, K., Tan, W.S., Newcastle disease virus: macromolecules and opportunities. Avian pathology:journal of the W.V.P.A2001,30:439-455.
    123. Zanetti, F., Berinstein, A., Carrillo, E., Effect of host selective pressure on Newcastle disease virusvirulence. Microbial pathogenesis2008,44:135-140.