基于稀疏性的空时自适应处理理论和方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空时自适应处理(Space-Time Adaptive Processing, STAP)技术可实现对机载/星载雷达中强地/海杂波的有效抑制,显著改善机载/星载雷达对空/地运动目标的检测性能。传统STAP方法通常要求有两倍于系统空时自由度的独立同分布的训练样本才能使得最优性能损失低于3dB。并且传统STAP方法的计算复杂度高,需要大量的存储单元。然而在实际应用中,受限于雷达系统参数、阵列几何结构、系统内部非理想因素、变化的杂波环境以及当前器件发展水平和计算能力,上述条件常常无法满足。本文以机载雷达为背景,围绕杂波抑制以及运动目标检测技术展开研究,探索了空时回波信号中杂波的稀疏性本质特性,针对STAP中稀疏性先验,开展了一系列降低独立同分布训练样本数、适合复杂多变环境的稳健STAP方法研究。
     本文首先阐述了STAP技术面临的难点问题,归纳总结了现有STAP方法和稀疏恢复算法的发展历史和研究现状,探讨了基于稀疏性STAP方法的优势和存在的关键科学问题,为后续研究提供了基础。
     第二章研究了STAP中存在的稀疏性约束,建立了基于稀疏性的STAP理论框架。一方面分析了杂波空时功率谱稀疏性的内在机理,指出了杂波空时功率谱稀疏度与杂波秩的相互关系;另一方面,从系统自由度和杂波自由度方面分析了空时滤波器中的“稀疏性”。在上述基础上,以稀疏滤波器、空时功率谱稀疏性和阵列流形知识三条主线构建了基于稀疏性的STAP理论框架,并分别推导或介绍了上述理论框架下稀疏滤波器STAP基本原理,基于空时功率谱稀疏恢复STAP基本原理,基于阵列流形知识的STAP基本原理以及基于阵列流形知识和空时功率谱稀疏恢复STAP基本原理。
     第三章研究了基于稀疏滤波器的STAP技术。考虑到空时滤波器中的“稀疏性”,针对现有自适应迭代空时滤波器收敛速度慢的问题,提出了基于稀疏滤波器的一系列STAP方法,包括:基于L1范数约束的采样矩阵求逆STAP方法,基于L1范数约束的在线序贯下降STAP法,基于L1范数约束的递归最小二乘STAP方法以及基于L1范数约束的传统/改进共轭梯度STAP方法。详细分析了基于L1范数约束空时滤波器算法中涉及的正则化参数设置问题,针对正则化参数设置难的问题,提出了两种基于开关选择机制的自适应正则化参数选择方法。在给定一定先验知识的条件下,这两种算法都能有效实现正则化参数的自适应挑选。
     第四章研究了基于阵列流形知识的STAP技术。严格推导了基于阵列流形知识的STAP技术的基本原理,为基于阵列流形知识的STAP技术提供了理论基础。针对阵列流形先验知识不确定性问题,提出了基于阵列流形知识和低秩特性的STAP方法和基于阵列流形知识特征分析的STAP方法。针对最小均方方法中求逆运算复杂度高的问题,利用杂波子空间只依赖于杂波空时导向矢量的特点,提出了基于Gram-Schmidt正交化的子空间计算方法。针对基于阵列流形知识和低秩特性的全维STAP方法难以满足实时性处理强的雷达系统,提出了次优的基于阵列流形知识和低秩特性的降维STAP方法。这些算法具有极快的收敛性且对运动平台速度测量误差、偏航角测量误差以及杂波内部运动比较稳健。
     第五章研究了基于空时功率谱稀疏恢复的多训练样本STAP技术。针对直接进行中值滤波器的非参数化自适应迭代算法计算复杂度高和对弱目标检测难的问题,提出了利用多训练样本的基于自适应软判决门限的非参数化自适应迭代算法。该算法不仅计算复杂度低,而且能实现对更慢速度和更低SNR运动目标的有效检测。针对现有稀疏恢复算法计算复杂度高和正则化参数设置难的问题,提出了基于复数域同伦的空时功率谱稀疏恢复STAP算法。研究表明相比现有复数域同伦算法和FOCUSS算法,该算法参数设置更为简单,计算复杂度也更低。
     第六章研究了基于空时功率谱稀疏恢复的直接数据域STAP技术。基于加权L1范数方法相比L1范数更能逼近L0范数的事实,提出了直接数据域的基于Capon谱L1范数加权的空时功率谱稀疏恢复STAP方法和基于Fourier谱L1范数加权的空时功率谱稀疏恢复STAP方法。该方法能获得比不加权方法更高的输出SINR。针对直接数据域稀疏恢复STAP只利用单个样本进行空时功率谱估计精度不高的问题,提出了基于空时平滑思想的空时功率谱稀疏恢复STAP方法。该方法利用平滑处理获得了多个空时子快拍样本,由多个空时子快拍样本稀疏恢复的空时功率谱相比单个样本稀疏恢复的空时功率谱估计精度更高,所获得的输出SINR更高。
     第七章研究了基于阵列流形知识与空时功率谱稀疏恢复的STAP技术。该技术利用阵列流形知识获得了缩小的空时导向字典,提出了采用正交匹配追踪和同伦的基于阵列流形知识与空时功率谱稀疏恢复的STAP方法,通过在缩小的空时导向字典内稀疏恢复杂波的空时功率谱获得了更优的功率谱估计结果和更低的计算复杂度。探讨和分析了基于阵列流形知识和空时功率谱稀疏恢复STAP技术中涉及的字典设计和杂波阵列流形选择问题。
     第八章对全文进行总结,并指出进一步可能的研究方向。
     本文研究成果对稀疏表示/稀疏重构/压缩感知等理论发展,对系统辨识、运动平台下杂波抑制、运动目标检测等应用均具有一定的理论指导意义和工程应用价值。
Space-timeadaptiveprocessing(STAP)caneffectivelysuppressthestrongground/seaclutter and improve the moving target detection performance for airborne/spaceborneradar systems. Traditional STAP algorithms require about twice the degrees of freedom(DOFs) of the independent and identically distributed (IID) training snapshots to yieldan average performance loss of roughly3dB, have a high computational complexity andneed a lot of memory elements. However, in real applications, because of the limits ofradarsystemparameters,arraygeometrystructure,internalsystemnon-idealeffects,vary-ing clutter environments and the computational capacity, it is usually hard to satisfy theabove conditions. In this dissertation, we focus on the clutter suppression and movingtarget detection in airborne radar applications. By exploiting the intrinsic clutter sparsityof the space-time returns, we design a series of robust STAP algorithms for the complexand varying clutter environments with lower requirements of IID training snapshots.
     This dissertation first discusses the difficulties in STAP, elaborates the developmenthistory and current work of the STAP algorithms and sparse recovery algorithms, andanalyzes the advantages and key problems of the sparsity-based STAP algorithms, whichprovides a basis for the following researches.
     The second chapter studies the sparsity in the STAP and builds the theory frameworkfor the sparsity-based STAP algorithms. On one hand, it analyzes the intrinsic sparsityof the space-time power spectrum and discusses the relationship between the clutter spar-sity and clutter rank. On the other hand, it details the sparsity of the space-time filtersfrom the points of the system DOFs and the clutter DOFs. Then it builds the theoryframework for the sparsity-based STAP algorithms based on sparse filters, space-timepower spectrum sparsity and array geometry knowledge, followed by the derivations orintroductionsoftheprinciplesofthesparse-filter-basedSTAPtechniques, thespace-time-power-specturm-sparsity-based STAP techniques, the array geometry knowledge-aided(KA) STAP techniques and the space-time-power-specturm-sparsity-based STAP tech-niques exploiting prior knowledge of array geometry.
     The third chapter studies the sparse-filter-based STAP techniques. Considering thesparsity in the space-time filters, this chapter proposes a series of L1-regularized STAP al-gorithmstoovercometheslowconvergenceoftheiterativeadaptivespace-timefilters,in- cluding the L1-norm-based sample matrix inversion STAP algorithm, the L1-norm-basedonline coordinate gradient STAP algorithm, the L1-norm-based recursive least-squaresSTAP algorithm and the L1-norm-based conjugate gradient STAP algorithms. It also de-tails the setting of the regularization parameters in the proposed algorithms and developstwo approaches to adaptively select the regularization parameters’ value. Under condi-tions of certain prior knowledge, these two approaches can effectively select the regular-ization parameters’ value.
     The fourth chapter studies the array geometry KA-STAP techniques. It first strictlyderives the principle of the array geometry KA-STAP techniques which provides a basisfor this technique. For the uncertainty of the array geometry prior knowledge, we pro-pose the KA-STAP algorithm that exploit the low-rank dominant clutter and the arraygeometry properties (LRGP) and the eigenanalysis-based STAP algorithm. For the highcomputational complexity of the least-squares method, we present an efficient subspacecomputationmethodbasedonGram-Schmidtorthogonalizationbyexploitingthefactthatthe clutter subspace is only determined by the space-time steering vectors. For practicalapplications, a reduced-dimension version of the proposed LRGP-KA-STAP algorithmis also developed. It illustrates that a fast convergence and a robustness to the platformvelocity measured errors, yaw angle measured errors and the inner clutter motion of theproposed algorithms are obtained.
     The fifth chapter studies the space-time-power-specturm-sparsity-based STAP tech-niques with multiple training snapshots. To improve the performance of the recentlydeveloped weighted least-squares-based iterative adaptive approach (IAA) in STAP forweak or slow targets detection, we propose a novel IAA scheme to adaptively suppressthe ground clutter by using the training data. It shows that the proposed IAA scheme out-performs the conventional IAA scheme over weak or slow targets detection but a lowercomputational complexity. Since it is hard to set the regularization parameters of the cur-rentsparserecoveryalgorithms,weproposeanovelspace-time-power-specturm-sparsity-basedSTAPalgorithmbasedonthecomplex-valuedhomotopytechnique. Comparedwiththe current complex homotopy sparse recovery algorithm and the focal under-determinedsystem solution algorithm, the proposed algorithm provides excellent detection perfor-mance with lower computational complexity and easier parameter settings.
     Thesixthchapterstudiesthedirectdatadomainspace-time-power-specturm-sparsity-based STAP techniques. We first develop novel space-time-power-specturm-sparsity- basedSTAPalgorithmsthatutilizetheCaponspectrumandtheFourierspectrumweightedl1-norm penalty to further enforce the sparsity and approximate the original l0-norm. Thisweighted methods exhibit better performance than the non-weighted methods. Since theestimated clutter covariance matrix is not stable for the current direct data domain space-time-power-specturm-sparsity-based STAP algorithm, we propose a novel direct data do-main space-time-power-specturm-sparsity-based STAP algorithm utilizing subaperture s-moothing techniques. It uses only the snapshot in the cell under test to generate multiplesub-snapshots and jointly recovers the clutter spectrum using all generated multiple sub-snapshots, which can reduce the variance of the estimated clutter spectrum resulting inimproved signal-to-interference-plus-noise-ratio (SINR).
     The seventh chapter studies the space-time-power-specturm-sparsity-based STAPtechniques exploiting prior knowledge of array geometry. By using the prior knowledgeof array geometry, we propose orthogonal matching pursuit and homotopy KA-STAP al-gorithms which reduce the dimension of the space-time steering dictionary. Because theproposed algorithms recover the clutter power spectrum in a reduced-dimension space-time steering dictionary, it results in a lower computational complexity and a better spec-trum estimate. Furthermore, the details of the selection of potential clutter array manifoldvectors according to prior knowledge are also discussed for the proposed algorithms.
     Theeighthchaptermakesasummaryofthedissertation,whileseveralopenproblemsfor the sparsity-based STAP algorithms are proposed.
     In conclusion, the studies and results in this dissertation provide useful theory di-rections and valuable engineering applications for sparse representation/reconstruction,compressive sensing, system identification, clutter suppression and moving target detec-tion.
引文
[1] Skolnik M. Introduction to radar systems [M]. New York: McGraw-Hill,2002.
    [2] Klemm R. Principles of Space-Time Adaptive Processing [M]. London, UK: In-stitute of Electical Engineering,2006.
    [3] Monzingo R A, Miller T W. Introduction to adaptive arrays [M]. New York: JohnWiley&Sons, Inc.,1980.
    [4] Widrow B. Adaptive antenna system [J]. Proc. IEEE.1967,55(12):2143–2159.
    [5] Applebaum S P. Adaptive arrays [J]. IEEE Transactions on Antennas Propagation.1976,24(5):585–598.
    [6] Applebaum S P, Chapman D J. Adaptive arrays with main beam constraints [J].IEEE Transactions on Antennas Propagation.1976,24(5):650–662.
    [7]王永良,丁前军,李荣锋.自适应阵列处理[M].北京:清华大学出版社,2009.
    [8] BrennanLE,MallettJD,ReedIS.Theoryofadaptiveradar[J].IEEETransactionson Aerospace and Electronics Systems.1973,9(2):237–251.
    [9]王永良,彭应宁.空时自适应信号处理[M].北京:清华大学出版社,2000.
    [10] Pillai S U, Li K Y, Himed B. Space based radar: theory&applications [M].McGraw-Hill Companies,2008.
    [11] Guerci J R. Space-time adaptive processing for radar [M]. Artech House,2003.
    [12] Klemm R. Applications of space-time adaptive processing [M]. London, UK: TheInstitution of Electrical Engineers,2004.
    [13] Richards M A. Fundamentals of Radar Signal Processing [M]. New York, USA:McGraw-Hill,2005.
    [14] Ward J. Space-time adaptive processing for airborne radar, Technical Report1015[R].1994.
    [15] Rangaswamy M. An overview of space-time adaptive processing for radar [C]. InProc. IEEE Radar Conference.2003:45–50.
    [16] Melvin W L. A STAP overview [J]. IEEE Aerospace and Electronics SystemsMagazine.2004,19(1):19–35.
    [17] Wicks M C, M Rangaswamy R A, Hale T B. Space-time adaptive processing: aknowledge-based perspective for airborne radar [J]. IEEE Signal Processing Mag-azine.2006,23(1):51–65.
    [18] Lapierre F D, Verly J G. Framework and taxonomy for radar space-time adaptiveprocessing (STAP) methods [J]. IEEE Transactions on Aerospace and ElectronicsSystems.2007,43(3):1084–1099.
    [19]傅琦.先进鹰眼E-2D预警机[J].兵器知识.2009,4:48–51.
    [20] Klemm R. Low-error bearing estimation in shallow water [J]. IEEE Transactionson Aerospace and Electronics Systems.1982,18(4):352–357.
    [21] Fante R L, Vaccaro J J. Wideband cancellation of interference in a GPS receivearray [J]. IEEE Transactions on Aerospace and Electronics Systems.2000,36(2):549–564.
    [22] PaulrajAJ,LindskogE.Taxonomyofspace-timeprocessingforwirelessnetwork-s [J]. IEE Proc. Radar, Sonar and Navigation.1998,145(1):25–31.
    [23] de Lamare R C, Sampaio-Neto R. Reduced-Rank Space-Time Adaptive Inter-ference Suppression With Joint Iterative Least Squares Algorithms for Spread-Spectrum Systems [J]. IEEE Transactions on Vehicular Technology.2010,59(3):1217–1228.
    [24] deLamareRC,Sampaio-NetoR.Adaptivereduced-rankprocessingbasedonjointanditerativeinterpolation,decimation,andfiltering[J].IEEETransactionsonSig-nal Processing.2009,57(7):2503–2514.
    [25] See C M S, Cowan C F N, Nehorai A. Spatio-temporal channel identification andequalisation in the presence of strong cochannel interference [J]. Signal Process-ing.1999,78:127–138.
    [26] Reed I S, Mallett J D. Rapid convergence rate in adaptive arrays [J]. IEEE Trans-actions on Aerospace and Electronics Systems.1974,10(6):853–863.
    [27] Tsakalides P, Nikias C L. Robust space-time adaptive processing (STAP) in non-Gaussian clutter environments [J]. IEE Radar Sonar Navigation.1999,146(2):84–93.
    [28] Michels J H, Himed B, Rangaswamy M. Performance of STAP tests in Gaussianand compound-Gaussian clutter [J]. Digital Signal Processing.2000,10:309–324.
    [29] Michels J H, Rangaswamy M, Himed B. Performance of parametric and covari-ance based STAP tests in compound-Gaussian clutter [J]. Digital Signal Process-ing.2002,12:307–328.
    [30] Maria S, Fuchs J J. Application of the global matched filter to STAP data an effi-cient algorithmic approach [C]. In Proc. IEEE International Conference Acoustic,Speech and Signal Processing.2006:14–19.
    [31] Maria S, Fuchs J J. Detection performance for the GMF applied to STAP data [C].In Proc.14th European Signal Processing Conference. Florence, Italy,2006.
    [32] Selesnick I W, Pillai S U, Li K Y, et al. Angle-Doppler processing using sparseregularization [C]. In Proc. IEEE International Conference Acoustic, Speech andSignal Processing.2010:2750–2753.
    [33] Sun K, Zhang H, Li G, et al. A novel STAP algorithm using sparse recovery tech-nique [C]. In Proc. IEEE International Geoscience and Remote Sensing Symp.2009:336–339.
    [34] Zhang H, Li G,, et al. A class of novel STAP algorithms using sparse recoverytechnique [J].2009[Online]. Available: http://arxiv.org/abs/0904.1313.
    [35] Sun K, Zhang H, Li G, et al. Airborne radar STAP using sparse recovery of clutterspectrum [J].2010[Online]. Available: http://arxiv.org/abs/1008.4185.
    [36] SunK,MengH, Lapierre FD,et al.Registration-basedcompensationusingsparserepresentation in conformal-array STAP [J]. Signal Processing.2011,91(10):2268–2276.
    [37] Li J, Zhu X, Stoica P, et al. High resolution angle-Doppler imaging for MTIradar [J]. IEEE Transactions on Aerospace and Electronics Systems.2010,46(3):1544–1556.
    [38] Xue M, Zhu X, Li J, et al. MIMO radar angle-Doppler imaging via iterative space-time adaptive processing [C]. In Proc.6th International Waveform Diversity&Design Conference.2009:129–133.
    [39] Li J, Zhu X, Stoica P, et al. Iterative space-time adaptive processing [C]. In Proc.IEEE Digital Signal Processing Workshop.2009:440–445.
    [40] Sun K, Meng H, Wang Y, et al. Direct data domain STAP using sparse represen-tation of clutter spectrum [J]. Signal Processing.2011,91(9):2222–2236.
    [41]王伟伟,廖桂生,朱圣棋,等.一种基于压缩感知的地面运动目标检测方法[J].电子与信息学报.2012,34(8):1872–1878.
    [42] Sen S, Glover C W. Frequency adaptability and waveform design for OFDM radarspace-timeadaptiveprocessing[C].InProc.IEEERadarConference.Atlanta,GA,2012:230–235.
    [43] Sen S. Sparsity-based space-time adaptive processing using OFDM radar [C].In Proc.6th International Waveform Diversity&Design Conference. Kauai, HI,2012:160–165.
    [44] Sen S. OFDM radar space-time adaptive processing by exploiting spatio-temporalsparsity [J]. IEEE Transactions on Signal Processing.2012: Early Access.
    [45] Anderson D B. Amicrowave technique to reduce platform motion and scanningnoise in airborne moving target radar [J]. IRE WESCON Conv. Record.1958,2:202–211.
    [46] Skolnik M. Radar handbook,1st edn.[M]. McGraw-Hill,1970.
    [47] Titi G W, Marshall D F. The ARPA/NAVY mountaintop program: adaptive sig-nal processing for airborne early warning radar [C]. In Proc. IEEE InternationalConference Acoustic, Speech and Signal Processing.1996:1165–1168.
    [48] Suresh B N, Torres J A, Melvin W L. Processing and evaluation of multichannelairborne radar measurements (MCARM) measured data [C]. In Proc. IEEE In-ternational Symposium on Phased Array Systems and Technology. Boston, MA,1996:395–399.
    [49] Guerci J R, Baranoski E J. Knowledge-Aided adaptive radar at DARPA: anoverview [J]. IEEE Signal Processing Magazine.2006,23(1):41–50.
    [50] KlemmR.AdaptiveairborneMTI:anauxiliarychannelapproach[J].IEEProceed-ings F: Communications, Radar and Signal Processing.1987,134(3):269–276.
    [51]保铮,张玉洪,廖桂生.机载预警雷达空时二维滤波的一种方案及其改进[C].In机载雷达研讨会.北京,中国,1992:24–38.
    [52]保铮,廖桂生,吴仁彪.相控阵机载雷达杂波抑制的时空二维自适应滤波[J].电子学报.1993,21(9):1–7.
    [53] Wang Y, Bao Z, Liao G. Three united configurations on adaptive spatial-temporalprocessing for airborne surveillance radar system [C]. In Proc. International Con-ference on Signal Processing. Beijing, China,1993:381–386.
    [54]廖桂生,保铮,张玉洪.机载雷达时空二维部分联合自适应处理[J].电子科学学刊.1993,15(6):575–580.
    [55] Wang Y, Peng Y, Bao Z. Space-time processing for airborne radar with vari-ous array orientation [J]. IEE Proc. Radar, Sonar and Navigation.1997,144(6):330–340.
    [56] Gabriel W F. Adaptive digital processing investigation of the DFT subbanding vstransversal filter canceler [R].1986.
    [57] Dipietro R C. Extended factored space-time processing for airborne radar system-s[C].InProc.the26thAsilomarConferenceonSignals,Systems,andComputing.Pacific Grove, CA, Oct.1992:425–430.
    [58]廖桂生,保铮,张玉洪.相控阵AEW雷达杂波抑制的简化辅助通道法[J].电子科学学刊.1993,15(5):475–481.
    [59] WangH,CaiL.Onadaptivespartial-temporalprocessingforairbornesurveillanceradarsystems[J].IEEETransactionsonAerospaceandElectronicsSystems.1994,30(3):660–670.
    [60] Brown R D, Wicks M C. A space-time adaptive processing approach for improvedperformance and affordability [C]. In Proc.1996IEEE International Radar Con-ference. MI, USA,1996:321–326.
    [61] Zhang Y, Wang H. Further results of Σ-STAP approach to airborne surveillanceradars [C]. In Proc.1997IEEE International Radar Conference. Syracuse, NewYork,1997:337–342.
    [62] Zhang Y, Wang H. Further study on space-time adaptive processing with sum anddifferencebeams[C]. InProc.IEEE AntennasandPropagation Symposium.Mon-treal Que, Canada,1997:2422–2425.
    [63] BrownRD,SchneibleRA,WicksMC.STAPforcluttersuppressionwithsumanddifference beams [J]. IEEE Transactions on Aerospace and Electronics Systems.2000,36(2):634–646.
    [64]王永良,吴志文,彭应宁.适于非均匀杂波环境的空时自适应处理方法[J].电子学报.1999,27(9):56–58.
    [65]陈建文,王永良,陈辉.机载相控阵雷达波束多普勒域部分自适应处理方法研究[J].电子学报.2001,29(12):1032–1035.
    [66] Klemm R. Some properties of space-time covariance matrices [C]. In Proc. Inter-national Conference on Radar. Paris,1986:357–362.
    [67] Goodman N A, Stiles J M. On clutter rank observed by arbitrary arrays [J]. IEEETransactions on Signal Processing.2007,55(1):178–186.
    [68] Klemm R. New airborne MTI techniques [C]. In Proc. IEE Radar87. London,1987:380–384.
    [69] Haimovich A. The eigencanceler: adaptive radar by eigenanalysis methods [J].IEEE Transactions on Aerospace and Electronics Systems.1996,32(2):532–542.
    [70] Haimovich A, Berin M. Eigenanalysis-based space-time adaptive radar: perfor-mance analysis [J]. IEEE Transactions on Aerospace and Electronics Systems.1997,33(4):1170–1179.
    [71] Haimovich A. Asymptotic distribution of the conditional signal-to-noise ratio in aeigenanalysis-based adaptive array[J]. IEEE Transactionson Aerospaceand Elec-tronics Systems.1997,33(3):988–996.
    [72] Haimovich A, Peckham C, Ayoub T. Performance analysis of reduced-rankSTAP [C]. In Proc. IEEE International Radar Conference. Syracuse, NY, USA,1997:42–47.
    [73] Ayoub T F, Haimovich A, Pugh M L. Reduced-rank STAP for high PRF radar [J].IEEE Transactions on Aerospace and Electronics Systems.1999,35(3):953–962.
    [74] Xu G, Kailath T. Fast subspace decomposition [J]. IEEE Transactions on SignalProcessing.1994,42(3):539–551.
    [75] Belkacemi H, Marcos S. Fast iterative subspace algorithms for airborne STAPradar [J]. EURASIP Journal on Applied Signal Processing.2006,2006:1–8.
    [76] Friedlander B. A subspace method for space time adaptive processing [J]. IEEETransctions on Signal Processing.2005,53(1):74–82.
    [77] DibS,BarkatM,GrimesM.PASTandOPASTalgorithmsforSTAPinmonostaticairborne radar [C]. In Proc. International Symposium on Innovations in IntelligentSystems and Applications.2007:177–181.
    [78] Shen M, Zhu D, Zhu Z. Reduced-rank space-time adaptive processing using amodified projection approximation subspace tracking deflation approach [J]. IETRadar, Sonar and Navigation.2009,3(1):93–100.
    [79] Wang P, Pun M O, Sahinoglu Z. Low-complexity STAP via subsapce trackingin compund-Gaussian environment [C]. In Proc. IEEE Radar Conference.2011:356–361.
    [80] Yang Z, He S, Liao G, et al. A modified Fast approximated power iteration sub-space tracking method for space-time adaptive processing [J]. Journal of Electron-ical and Computer Eigineering.2010,2010:1–6.
    [81] Goldstein J S, Reed I S. Theory of partially adaptive radar [J]. IEEE Transactionson Aerospace and Electronics Systems.1997,33(4):1309–1325.
    [82] Goldstein J S, Reed I S. Subspace selection for partially adaptive sensor arrayprocessing [J]. IEEE Transactions on Aerospace and Electronics Systems.1997,33(2):988–996.
    [83] Goldstein J S, Reed I S, Zulch P A. A multistage STAP CFAR detection tech-nique [C]. In Proc. IEEE International Radar Conference. Dallas, USA,1998:111–116.
    [84] GoldsteinJS,ReedIS,ScharfLL.AmultistagerepresentationoftheWienerfilterbased on orthogonal projections [J]. IEEE Transactions on Information Theory.1998,44(7):2943–2959.
    [85] GoldsteinJS,ReedIS,ZulchPA.MultistagePartiallyAdaptiveSTAPCFARDe-tection Algorithm [J]. IEEE Transactions on Aerospace and Electronics Systems.1999,35(2):645–661.
    [86] Guerci J R, Goldstein J S. Optimual and adaptive reduced-rank STAP [J]. IEEETransactions on Aerospace and Electronics Systems.2000,36(2):647–661.
    [87] Honig M L, Goldstein J S. Adaptive reduced-rank interference suppression basedon the multistage wiener filter [J]. IEEE Transactions on Communications.2002,50(6):986–994.
    [88] Pados D A, Karystinos G N. An iterative algorithm for the computation of theMVDR filter [J]. IEEE Transactions on Signal Processing.2001,49(2):290–300.
    [89] Pados D A, Karystinos G N, Batalama S N, et al. Short-data-record adaptive de-tection [C]. In Proc. IEEE Radar Conference. Apr.2007:357–361.
    [90] Burykh S, Abed-Meraim K. Reduced-rank adaptive filtering using Krylov sub-space [J]. EURASIP Journal on Applied Signal Processing.2002,12:1387–1400.
    [91] Honig M L, Xiao W. Adaptive reduced-rank interference suppression with adap-tive rank selection [C]. In Proc. of Milcom2000.2000:747–751.
    [92] Madurasinghe D. A new algorithm for space time adaptive processing using theconjugate gradient method [C]. In Proc. International Symposium on Signal Pro-cessing and ite Applications. Gold Coast, Australia,1996:696–699.
    [93] Smith S T. Linear and nonlinear conjugate gradient methods for adaptive process-ing [C]. In Proc. IEEE International Conference Acoustic, Speech and Signal Pro-cessing.1996:1834–1837.
    [94] BojanczykAW,MelvinWL.SimplifyingthecomputationalaspectsofSTAP[C].In Proc. IEEE Radar Conference.1998:123–128.
    [95] Chang P S, Willson J A N. Analysis of conjugate gradient algorithms for adaptivefiltering [J]. IEEE Transactions on Signal Processing.2000,48(2):409–418.
    [96] Jiang C, Li H, Rangaswamy M. Conjugate gradient parametric adaptive matchedfilter [C]. In Proc. IEEE Radar Conference.2010:740–745.
    [97] Wang L, de Lamare R. Constrained adaptive filtering algorithms based on conju-gate gradient techniques for beamforming [J]. IET Signal Processing.2010,4(6):686–697.
    [98] Hua Y, Nikpour M, Stoica P. Optimal reduced rank estimation and filtering [J].IEEE Transactions on Signal Processing.2001,49(3):457–469.
    [99] de Lamare R C, Sampaio-Neto R. Reduced-rank adaptive filtering based on jointiterative optimization of adaptive filters [J]. IEEE Signal Processing Letters.2007,14(12):980–983.
    [100] de Lamare R C. Adaptive reduced-rank LCMV beamforming algorithms based onjoint iterative optimization of filters [J]. Electonics Letters.2008,44(9):565–566.
    [101] de Lamare R C, Wang L, Fa R. Adaptive reduced-rank LCMV beamforming al-gorithms based on joint iterative optimization of filters: design and analysis [J].Signal Processing.2010,90:640–652.
    [102] Fa R, de Lamare R C. Reduced-Rank STAP Algorithms using Joint Iterative Opti-mization of Filters [J]. IEEE Transactions on Aerospace and Electronics Systems.2011,47(3):1668–1684.
    [103] Fa R, de Lamare R C, Wang L. Reduced-rank STAP schemes for airborne radarbased on switched joint interpolation, decimation and filtering algorithm [J]. IEEETransactions on Signal Processing.2010,58(8):4182–4194.
    [104] Michels J H, Himed B, Rangaswamy M. Evaluation of the normalized paramet-ric adaptive matched filter STAP test in airborne radar clutter [C]. In Proc. IEEEInternational Radar Conference. Washington, DC,2000:769–774.
    [105] Roman J R, Rangaswamy M, Davis D W. Parametric adaptive matched filter forairborne radar applications [J]. IEEE Transactions on Aerospace and ElectronicsSystems.2000,36(2):677–692.
    [106] Sohn K J, Li H, Himed B. Parametric rao test for multichannel adaptive signaldetection [J]. IEEE Transactions on Aerospace and Electronics Systems.2007,43(3):920–933.
    [107] Wang P, Li H, Himed B. Parametric rao tests for multichannel adaptive detectionin partially homogeneous environment [J]. IEEE Transactions on Aerospace andElectronics Systems.2011,47(3):1850–1862.
    [108] Jiang C, Li H, Rangaswamy M. Conjugate gradient parametric detection of mul-tichannel signals [J]. IEEE Transactions on Aerospace and Electronics Systems.2012,48(2):1521–1536.
    [109] Swindlehurst A L, Parker P. Parametric clutter rejection for space-time adaptiveprocessing [C]. In Proc. the ASAP-2000Workshop. Lexington, MA,2000:–.
    [110] Parker P, Swindlehurst A L. Space-time autoregressive filtering for matched sub-space STAP [J]. IEEE Transactions on Aerospace and Electronics Systems.2003,39(2):510–520.
    [111] Wang P, Li H, Himed B. A Bayesian parametric test for multichannel adaptivesignal detection in nonhomogeneous environments [J]. IEEE Signal ProcessingLetters.2010,17(4):351–354.
    [112] Wang P, Li H, Himed B. Knowledge-aided parametric tests for multichannel adap-tive signal detection [J]. IEEE Transactions on Signal Processing.2011,59(12):5970–5982.
    [113] Wang P, Sahinoglu Z, Pun M O, et al. Persymmetric parametric adaptive matchedfilter for multichannel adaptive signal detection [J]. IEEE Transactions on SignalProcessing.2012,60(6):3322–3328.
    [114] Zhang Q T. Asymptotic performance analysis of information-theoretic criteria fordetermining the number of signals in spatially correlated noise [J]. IEEE Transac-tions on Signal Processing.1994,42(6):1537–1539.
    [115] Liavas A P, Regalia P A. On the behavior of information theoretic criteria formodel order selection [J]. IEEE Transactions on Signal Processing.2001,49(8):1689–1695.
    [116] Nadler B. Nonparametric detection of signals by information theoretic criteria:performance analysis and an improved estimator [J]. IEEE Transactions on SignalProcessing.2010,58(5):2746–2756.
    [117] FishlerE,MesserH.Ontheuseoforderstatisticsforimproveddetectionofsignalsby the MDL criterion [J]. IEEE Transactions on Signal Processing.2000,48(8):2242–2247.
    [118] Ding Q, Kay S K. Inconsistency of the MDL: on the performance of model orderselection criteria with increasing signal-to-noise ratio [J]. IEEE Transactions onSignal Processing.2011,59(5):1959–1969.
    [119] Schmidt D F, Makalic E. The consistency of MDL for linear regression modelswith increasing signal-to-noise ratio [J]. IEEE Transactions on Signal Processing.2012,60(3):1508–1510.
    [120] ParchamiM,AmindavarH,RitceyJA.Aclassofsuboptimummethodsforspace-timeadaptiveprocessingusingempiricalcharacteristicfunction[C].InProc.IEEEWorkshop on Statistical Signal Processing.2011:721–724.
    [121] SarkerTK, SangrujiN.Anadaptivenullingsystemforanarrowbandsignalwithalook-direction constraint utilizing the conjugate gradient method [J]. IEEE Trans-actions on Antennas and Propagation.1989,37(7):940–944.
    [122] Wang H, Zhang Y, Zhang Q. A view of current status of space-time processing al-gorithmresearch[C].InProc.IEEE1995InternationalRadarConference.Alexan-dria, VA, USA,1995:635–640.
    [123] ZatmanM,MarshallD.Forwards-backwardsaveragingforadaptivebeamformingandSTAP[C].InProc.InternationalConferenceonAppliedSocialScience.1996:2630–2633.
    [124] Pillai S U, Guerci J R, Kim Y L. Generalized forward/backward subaperture s-moothing techniques for sample starved STAP [C]. In Proc. IEEE InternationalConference Acoustic, Speech and Signal Processing.1998:2501–2504.
    [125] Pillai S U, Kim Y L, Guerci J R. Generalized forward/backward subaperture s-moothing techniques for sample starved STAP [J]. IEEE Transactions on SignalProcessing.2000,48(12):3569–3574.
    [126] RabideauDJ,SteinhardtAO.Improvedadaptivecluttercancellationthroughdata-adaptive training [J]. IEEE Transactions on Aerospace and Electronics Systems.1999,35(3):879–891.
    [127] Kogon S M, Zatman M A. STAP adaptive weight training using phase and powerselectioncriteria[C].InProc.ofthe35thAsilomarConferenceonSignalsSystemsand Computers. Pacific Grove, CA,2001:98–102.
    [128] Melvin W L, Wicks M C, Brown R D. Assessment of multichannel airborne radarmeasurements for analysis and design of space-time processing architectures andalgorithms [C]. In Proc. IEEE National Radar Conference. Ann Arbor, Michigan,1996:130–135.
    [129] Melvin W L, Wicks M C. Improving practical space-time adaptive radar [C]. InProc. IEEE International Radar Conference. Syracuse, New York,1997:48–53.
    [130] Adve R S, Hale T B, Wicks M C. Transform domain localized processing usingmeasured steering vectors and non-homogeneity detection [C]. In Proc. IEEE Na-tional Radar Conference. Boston, MA, USA,1999:285–290.
    [131] Wicks M C, Melvin W L, Chen P. An efficient architecture for nonhomogeneitydetection in space-time adaptive processing airborne early warning radar [C]. InProc. IEEE Radar Conference. Edinburgh, UK,1997:295–299.
    [132] Wang Y, Chen J, Bao Z. Robust space-time adaptive processing for airborne radarinnonhomogeneousclutterenvironments[J].IEEETransactionsonAerospaceandElectronics Systems.2003,39(1):71–81.
    [133] Gerlach K, Picciolo M L. A robust STAP using reiterative censoring [C]. In Proc.IEEE National Radar Conference. Huntsville, AL,2003:244–251.
    [134] Gerlach K, Blunt S D, Picciolo M L. Robust adaptive matched filtering usingFRACTA algorithm [J]. IEEE Transactions on Aerospace and Electronics Sys-tems.2004,40(3):929–945.
    [135] Blunt S D, Gerlach K, Rangaswamy M. STAP using knowledge-aided covarianceestimation and the FRACTA algorithm [J]. IEEE Transactions on Aerospace andElectronics Systems.2006,42(3):1043–1057.
    [136] Shackelford A K, Gerlach K, Blunt S D. Partially adaptive STAP using the FRAC-TAalgorithm[J].IEEETransactionsonAerospaceandElectronicsSystems.2009,45(1):58–69.
    [137] PallottaL,AubryA,MaioAD,etal.Geomericbarycentersandtheirapplicationtoradar training data selection/target detection [C]. In Proc.13th International RadarSymposium.2012:85–90.
    [138] Melvin W L, Wicks M, Antonik P, et al. Knowledge-based space-time adaptiveprocessing for airborne early warning radar [J]. IEEE Aerospace and ElectronicsSystems Magazine.1998,13(4):37–42.
    [139] Berger S D, Melvin W L, Showman G A. Map-aided secondary data selection [C].In Proc. IEEE Radar Conference.2007:762–767.
    [140] Capraro C T, Capraro G T, Brandaric I, et al. Implementing digital terrain da-ta in knowledge-aided space-time adaptive processing [J]. IEEE Transactions onAerospace and Electronics Systems.2006,42(3):1080–1099.
    [141] Conte E, Maio A D, Farina A, et al. Design and analysis of a knowledge-aidedradar detector for Doppler processing [J]. IEEE Transactions on Aerospace andElectronics Systems.2006,42(3):1058–1079.
    [142] Chang H H. Improving space-time adaptive processing (STAP) radar performancein nonhomogeneous clutter [D]. USA: Syracuse University,1997.
    [143] Guerci J R, Bergin J S. Theory and application of covariance matrix tapers forrobust adaptive beamforming [J]. IEEE Transactions on Signal Processing.1999,47(4):977–985.
    [144] Guerci J R, Bergin J S. Principal components, covariance matrix tapers, and thesubspace leakage problem [J]. IEEE Transactions on Aerospace and ElectronicsSystems.2002,38(1):152–162.
    [145] Bergin J S, Teixeira C M, Techau P M, et al. Improved clutter mitigation perfor-mance using knowledge-aided space-time adaptive processing [J]. IEEE Transac-tions on Aerospace and Electronics Systems.2006,42(3):997–1009.
    [146] Stoica P, Li J, Zhu X, et al. On using a priori knowledge in space-time adaptiveprocessing [J]. IEEE Transactions on Signal Processing.2008,56(6):2598–2602.
    [147] Zhu X, Li J, Stoica P. Knowledge-aided space-time adaptive processing [J]. IEEETransactions on Aerospace and Electronics Systems.2011,47(2):1325–1336.
    [148] W Xie F G Y W, K Duan, Zhang Z. Clutter suppression for airborne phased radarwith conformal arrays by least squares estimation [J]. Signal Processing.2011,91:1665–1669.
    [149] Fa R, de Lamare R C, Nascimento V H. Knowledge-Aided STAP Algorithm Us-ing Convex Combination of Inverse Covariance Matrices for Heterogeneous Clut-ter [C]. In Proc. IEEE International Conference Acoustic, Speech and Signal Pro-cessing.2010:2742–2745.
    [150] Lim C H, Mulgrew B. Prediction of inverse covariance matrix (PICM) sequencesfor STAP [J]. IEEE Signal Processing Letters.2006,13(4):236–239.
    [151] Lim C H, Mulgrew B. Linear prediction of range-dependent inverse covariancematrix (PICM) sequences [J]. Signal Processing.2007,87:1412–1420.
    [152] Maio A D, Foglia G, Farina A, et al. Knowledge-aided covariance matrix esti-mation: a MAXDET approach [J]. IET Radar Sonar and Navigation.2009,3(4):341–356.
    [153] Aubry A, Maio A D, Pallotta L, et al. Maximum likelihood estimation of a struc-tured covariance matrix with a condition number constraint [J]. IEEE Transactionson Signal Processing.2012,60(6):3004–3021.
    [154] Bidon S, Besson O, Tourneret J. Covariance matrix estimation with heterogeneoussamples [J]. IEEE Transactions on Signal Processing.2008,56(3):909–920.
    [155] Sarkar T K, Park S, Koh J, et al. A deterministic least squares approach to adaptiveantennas [J]. Digital Signal Processing.1996,6:185–194.
    [156] SarkarTK,WangH,ParkS,etal.Adeterministicleast-squaresapproachtospace-timeadaptiveprocessing(STAP)[J].IEEETransactionsonAntennasPropagation.2001,49(1):91–103.
    [157] Sarkar T K, Adve R. Space-time adaptive processing using circular arrays [J].IEEE Antennas Propagation Magazine.2001,43(1):138–143.
    [158] Kim K, Sarkar T K, Palma M S. Adaptive processing using a single snapshot fora nonuniformly spaced array in the presence of mutual coupling and near-fieldscatterers[J].IEEETransactionsonAntennasPropagation.2002,50(5):582–590.
    [159] Kim K, Sarkar T K, Wang H, et al. Direction of arrival estimation based on tem-poral and spatial processing using a direct data domain approach [J]. IEEE Trans-actions on Antennas Propagation.2004,52(2):533–541.
    [160] Choi W S, Sarkar T K. Phase-only adaptive processing based on a direct data do-main least squares approach using the conjugate gradient method [J]. IEEE Trans-actions on Antennas Propagation.2004,52(12):3265–3272.
    [161] Choi W, Sarkar T K, Wang H, et al. Adaptive processing using real weights basedonadirectdatadomainleastsquaresapproach[J].IEEETransactionsonAntennasPropagation.2006,54(1):182–191.
    [162] Choi W, Sarkar T K. Minimum norm property for the sum of the adaptive weightsfor a direct data domain least squares algorithm [J]. IEEE Transactions on Anten-nas Propagation.2006,54(3):1045–1050.
    [163] Burintramart S, Sarkar T K, Zhang Y, et al. Performance comparison betweenstatistical-based and direct data domain STAPs [J]. Digital Signal Processing.2007,17:737–755.
    [164] Cristallini D, Burger W. A robust direct data domain approach for STAP [J]. IEEETransactions on Signal Processing.2012,60(3):1283–1294.
    [165] Prasanth R K. Stochastic system identification approach to radar data process-ing [C]. In Proc. IEEE Radar Conference.2010:1064–1070.
    [166] Prasanth R K. State space system identification approach to radar data process-ing [J]. IEEE Transactions on Signal Processing.2011,59(8):3675–3684.
    [167] AdveRS,HaleTB,WicksMC.Practicaljointdomainlocalizedadaptiveprocess-inginhomogeneousandnonhomogeneousenvironments.PartI:homogeneousen-vironments [J]. IEE Radar, Sonar and Navigation.2000,147(2):57–65.
    [168] Adve R S, Hale T B, Wicks M C. Practical joint domain localized adaptive pro-cessinginhomogeneousandnonhomogeneousenvironments.PartII:nonhomoge-neous environments [J]. IEE Radar, Sonar and Navigation.2000,147(2):66–74.
    [169] E Yang J C, R Adve, Chun J. Hybrid direct data domain sigma-delta space-timeadaptive processing algorithm in non-homogeneous clutter [J]. IET Radar, Sonarand Navigation.2010,4(4):611–625.
    [170] Aboutanios E, Mulgrew B. Hybrid detection approach for STAP in heterogeneousclutter[J].IEEETransactionsonAerospaceandElectronicsSystems.2010,46(3):1021–1033.
    [171] Borsari G. Mitigating effects on STAP processing caused by an inclined array [C].In Proc. IEEE National Radar Conference. Dallas, TX,1998:135–140.
    [172] Pearson F, Borsari G. Simulation and analysis of adaptive interference suppres-sion for bistatic surveillance radars [C]. In Proc. of the Adaptive Sensor ArrayProcessing Workshop. Lincoln Laboratory, MA,2001.
    [173] Himed B, Zhang Y, Hajjari A. STAP with angle-Doppler compensation for bistaticairborne radars [C]. In Proc. IEEE National Radar Conference. Long Beach, CA,2002:22–25.
    [174] Leatherwood D A, Melvin W L. Adaptive processing in a nonstationary space-borne environment [C]. In Proc. IEEE National Aerospace Conference. Big Sky,MT,2003:8–15.
    [175] Melvin W L, Himed B, Davis M E. Doubly-adaptive bistatic clutter riletring [C].In Proc. IEEE National Radar Conference. Huntsville, AL,2003:171–178.
    [176] MelvinWL,DavisME.Adaptivecancellationmethodforgeometry-inducednon-stationary bistatic clutter environments [J]. IEEE Transactions on Aerospace andElectronics Systems.2007,43(2):651–672.
    [177] ZatmanM.CirculararraySTAP[C].InProc.theIEEENationalRadarConference.Boston, MA,1999:108–113.
    [178] Zatman M. Circular array STAP [J]. IEEE Transactions on Aerospace and Elec-tronics Systems.2000,36(2):510–517.
    [179] Hyberg P, Jannson M, Ottersten B. Array mapping: optimal transformation matrixdesign [C]. In Proc. International Conference on Acoustics, Systems and SignalProcessing.2002:2905–2908.
    [180] Friedlander B. The MVDR beamformer for circular arrays [C]. In Proc. the34thAsilomar Conference on Signal, Systems and Computers.2000:25–29.
    [181] Varadarajan V, Krolik J L. Joint space-time interpolation for distorted linear andbistaticarraygeometries[J].IEEETransactionsonSignalProcessing.2006,56(3):848–860.
    [182] Lapierre F, Verly J. Registration-based method for range-dependence compen-sation in bistatic radar STAP operating on simulated stochastic snapshots [J].EURASIP Journal of Advanced Signal Processing.2005.
    [183]高飞,谢文冲,王永良.非均匀杂波环境3D-STAP方法研究[J].电子学报.2009,37(4):868–872.
    [184]高飞.机载雷达空时自适应处理技术应用基础研究[D].长沙:国防科学技术大学,2009.
    [185] Hale T, Temple M, Wicks M. clutter suppression using elevation interferome-try fused with space-time adaptive processing [J]. IEE Electronics Letters.2001,37(12):793–794.
    [186] Corbell P M, Perez J J, Rangaswamy M. Enhancing GMTI performance in non-stationary clutter using3D STAP [C]. In Proc. IEEE Radar Conference.2007:647–652.
    [187]段克清,谢文冲,陈辉,等.基于俯仰维信息的机载雷达非均匀杂波抑制方法[J].电子学报.2011,39(3):585–590.
    [188]王万林,廖桂生.机载预警雷达三维空时自适应处理及其降维研究[J].系统工程与电子技术.2005,27(3):431–434.
    [189] Xiang C, Feng D, Lv H, et al. Three-dimensional reduced-dimension transforma-tion for MIMO radar space-time adaptive processing [J]. Signal Processing.2011,91:2121–2126.
    [190] CorbellPM,HaleTB.3-DimensionalSTAPperformanceanalysisusingthecross-spectral metric [C]. In Proc. IEEE Radar Conference.2004:610–615.
    [191] Hale T B, Temple M A, Raquet J F, et al. Localised three-dimensional adaptivespatial-temporal processing for airborne radar [J]. IEE Radar, Sonar and Naviga-tion.2003,150(1):18–22.
    [192] Gabel R A, Kogon S M, Rabideau D J. Algorithms for mitigating terrain-scattered interference [J]. Electronics and Communication Engineering Journal.1999,11(1):49–56.
    [193] Rabideau D J. Clutter and jammer multipath cancellation in airborne adaptiveradar [J]. IEEE Transactions on Aerospace and Electronics Systems.2000,36(2):565–583.
    [194] Zhu S, Liao G, Qu Y, et al. Performance improvement for monostatic clutter mit-igation using space-time-range three-dimensional adaptive processing [J]. SignalProcessing.2011,21:248–261.
    [195] ChenC,VaidyanathanPP.MIMOradarspace-timeadaptiveprocessingusingpro-late spheroidal wave functions [J]. IEEE Transactions on Signal Processing.2008,56(2):623–635.
    [196] Wang G, Lu Y. Clutter rank of STAP in MIMO radar with waveform diversity [J].IEEE Transactions on Signal Processing.2010,58(2):33–39.
    [197] Forsythe K W, Bliss D W. MIMO radar waveform constraints for GMTI [J]. IEEEJournal of Selected Topics in Signal Processing.2010,4(1):21–32.
    [198] Rui F, de Lamare R C. Reduced-rank STAP for MIMO radar based on joint iter-ative optimization of knowledge-aided adaptive filters [C]. In Proc.43th Asilo-mar Conference on Signals, Systems and Computers. Pacific Grove, USA,2009:496–500.
    [199] Chen C, Vaidyanathan P P. Beamforming issues in modern MIMO radars withDoppler [C]. In Proc. IEEE Asilomar Conference on Signals, Systems and Com-puters. Pacific Grove, USA,2006:41–45.
    [200] Chen C, Vaidyanathan P P. A subspace method for MIMO radar space-time adap-tive processing [C]. In Proc. International Conference on Acoustics Speech andSignal Processing.2007:925–928.
    [201] Mecca V F, Ramakrishnan D, Krolik J L. MIMO radar space-time adaptive pro-cessing for multiple clutter mitigation [C]. In Proc. IEEE Workshop on SensorArray and Multichannel Signal Processing. Waltham, MA,2006:249–253.
    [202] Mecca V F, Krolik J L. Slow-time MIMO STAP with improved power efficien-cy [C]. In Proc.41th Asilomar Conference on Signals, Systems and Computers.Pacific Grove, CA,2007:202–206.
    [203] MeccaVF,KrolikJL.MIMOSTAPcluttermitigationperformancedemonstrationusing acoustic arrays [C]. In Proc.41th Asilomar Conference on Signals, Systemsand Computers. Pacific Grove, CA,2008:634–638.
    [204] Mecca V F, Krolik J L, Robey F C. Beamspace slow-time MIMO radar for multi-path clutter mitigation [C]. In Proc. International Conference on Acoustics Speechand Signal Processing.2008:2133–2136.
    [205] Bozard M, Ginolhac G, Pascal F, et al. Low rank tensor STAP filter based onmultilinear SVD [C]. In Proc. IEEE7th Sensor Array and Multichannel SignalProcessing Workshop.2012:305–308.
    [206] Park H R, Wang H. An adaptive polarization-space-time processor for radar sys-tem [C]. In Proc. IEEE International Symposium on Antennas and Propagation.1993:698–701.
    [207] Showman G A, Melvin W L, Belenkii M. Performance evaluation of two polari-metric STAP architectures [C]. In Proc. IEEE Radar Conference. Huntsville, AL,2003:59–65.
    [208] Li J, Stoica P. MIMO Radar signal processing [M]. New York: Wiley,2009.
    [209] Li J, Stoica P. MIMO radar with colocated antennas [J]. Signal Processing Maga-zine.2007,24(5):106–114.
    [210] Mecca V F, Krolik J L. MIMO enabled multipath clutter rank estimation [C]. InProc. IEEE Radar Conference. New York, USA,2009:1–6.
    [211] Rui F, de Lamare R C. Knowledge-aided reduced-rank STAP for MIMO radarbased on joint iterative constrained optimization of adaptive filters with multipleconstraints [C]. In Proc. International Conference on Acoustics Speech and SignalProcessing.2010:2762–2765.
    [212] Gao F, Wang Y, Chen H, et al. Effect of channel mismatch on STAP perfor-mance [C]. In Proc.2008Congress on Image and Signal Processing.2008:85–89.
    [213] Wu R, Bao Z. Training method in space-time adaptive processing with strong gen-eralizing ability [C]. In Proc. IEEE Radar Conference.1995:603–608.
    [214] Zatman M, Baranoski E. Time delay steering architectures for space-time adaptiveprocessing [C]. In Proc. Digest of the Antennas and Propagation Society Interna-tional Symposium. Montreal, Quebec,1997:2426–2429.
    [215] BlumRS,McDonaldKF.AnalysisofSTAPalgorithmsforcaseswithmismatchedsteering and clutter statistics [J]. IEEE Transactions on Signal Processing.2000,48(2):301–310.
    [216] Nickel U. On the influence of channel errors on array signal processing method-s [J]. Proc. Of the AEU.1993,47(4):209–219.
    [217] Sarkar T K, Adve R S, Wicks M C. Effects of mutual coupling and channel mis-match on space-time adaptive processing algorithms [C]. In Proc. IEEE Interna-tional Conference on Phased Array Systems and Technology. Dana Point,CA,2000:545–548.
    [218] Nguyen H N. Robust steering vector mismatch techniques for reduced rank adap-tive array signal processing [D]. USA: Virginia Polytechnic Institute and StateUniversity,2002.
    [219] FrielEM,PasalaKM.EffectsofmutualcouplingontheperformanceofSTAPan-tenna arrays [J]. IEEE Transactions on Aerospace and Electronics Systems.2000,36(2):518–527.
    [220] Zatman M, Marshall D. Forward-backward averaging in the presence of arraymanifold errors [J]. IEEE Transactions on Antennas Propagation.1998,46(1):1700–1704.
    [221] Abramovich Y I, Rangaswamy M, Johnson B A, et al. Performance analysis oftwo-dimensional parametric STAP for airborne radar using KASSPER data [J].IEEE Transactions on Aerospace and Electronics Systems.2011,47(1):118–139.
    [222] Adve R S, Wicks M C, Hale T B, et al. Ground moving target indication usingknowledge based space time adaptive processing [C]. In Proc. IEEE Radar Con-ference. Alexandria, VA,2000:735–740.
    [223] Mevin W L, Showman G A. An approach to knowledge-aided covariance estima-tion [J]. IEEE Transactions on Aerospace and Electronics Systems.2006,42(3):1021–1042.
    [224] Adve R S, Wicks M C. Joint domain localized processing using measured spatialsteeringvectors[C].InProc.IEEERadarConference.Dallas,TX,1998:165–170.
    [225] ElkamchouchiHM,MohamedDAE,AliWAE.DirectdatadomainleastsquaresSTAP approach on signals from nonuniformly, semicircular and sinusoidal spacedarrays of real elements [C]. In Proc. IEEE International Conference on Microwaveand Millimeter Wave Technology.2010:1364–1367.
    [226] Ries P, Lapierre F D, Lesturgie M, et al. Handling partially calibrated confor-mal antenna arrays in range-dependence compensation for airborne bistatic space-time adaptive processing radar [J]. IET Radar, Sonar and Navigation.2009,3(4):373–383.
    [227]李京生,孙进平,毛士艺.一种基于协方差矩阵加权的阵元误差补偿STAP处理[J].航空学报.2009,30(7):1292–1297.
    [228] Zatman M. Production of adaptive array troughs by dispersion synthesis [J]. Elec-tronics Letters.1995,31(25):2141–2142.
    [229]刘聪峰,廖桂生.基于最差性能最优的稳健STAP算法[J].电子学报.2008,36(3):581–585.
    [230] Elkamchouchi H M, Mohamed D A E, Ali W A E. Multiple constraint space-time direct data domain approach using nonuniformly, semicircular and sinusoidalspaced arrays of real elements [C]. In Proc. IEEE Proceedings of InternationalSymposium on Signals Systems and Electronics.2010.
    [231] Jin W, Jia W M, Yao M L, et al. Robust adaptive beamforming based on iterativeimplementation of worst-case performance optimization [J]. Electronics Letters.2012,48(22):1389–1391.
    [232] Wu R, Bao Z. Array pattern distortion and remedies in space-time adaptive pro-cessing for airborne radar [J]. IEEE Transactions on Antennas Propagation.1998,46(7):963–970.
    [233] Zhang Y, Kim K, Hajjari A, et al. Beamspace space-time adaptive processing forconformal array radars [C]. In Proc. IEEE Radar Conference.2006:552–559.
    [234] Luminati J E, Hale T B. Steering vector mismatch: analysis and reduction [C]. InProc. IEEE Radar Conference.2004:592–597.
    [235] Zheng Y R. A variable-order FLOM algorithm for heavy-tailed clutter suppres-sion [C]. In Proc. IEEE Conference on Military Communications. San Diego, CA,2008:1–6.
    [236] Zheng Y R, Shao T, Blasch E. A fast-converging space-time adaptive process-ing algorithm for non-Gaussian clutter suppression [J]. Digital Signal Processing.2012,22(1):74–86.
    [237] Zheng Y R, Shao T. A variable step-size LMP algorithm for heavy-tailed interfer-ence suppression in phased array radar [C]. In Proc. IEEE Aerospace Conference.2009:1–6.
    [238] YangZ,deLamareRC,LiX.Aswitched-OrderFLOMSTAPalgorithminhetero-geneous clutter environment [C]. In Proc. Sensor Signal Processing for DefenceConference. London, UK,2011.
    [239] Rangaswamy M. Novel space-time adaptive processing methods for Gaussian andnon-Gaussian radar clutter [R].2001.
    [240] Rangaswamy M, Lin F C, Gerlach K R. Robust adaptive signal processing meth-ods for heterogeneous radar clutter scenarios [J]. Signal Processing.2004,84:1653–1665.
    [241] Rangaswamy M. Statistical analysis of the nonhomogeneity detector for non-Gaussian interference backgrounds [J]. IEEE Transactions on Signal Processing.2005,53(6):2101–2111.
    [242] Shu T, He J, Liu X. Robust STAP in non-Gaussian clutter via infinity-normsnapshot-normalization [C]. In Proc. IEEE Radar Conference.2008:1–6.
    [243] Bang J H, Melvin W L, Lanterman A. STAP performance in K-distributed clut-ter [C]. In Proc. IEEE Radar Conference.2010:1089–1093.
    [244] Salama Y, Senn R. Knowledge base applications to adaptive space-time process-ing, Volume I: summary [R].2001.
    [245] Schuman H. Knowledge base applications to adaptive space-time processing, Vol-ume II: airborne radar filtering [R].2001.
    [246] Schuman H. Knowledge base applications to adaptive space-time processing, Vol-ume III: radar filtering rule book [R].2001.
    [247] MorganC,MoyerL.Knowledgebaseapplicationstoadaptivespace-timeprocess-ing, Volume IV: knowledge-based tracking [R].2001.
    [248] MorganC,MoyerL.Knowledgebaseapplicationstoadaptivespace-timeprocess-ing, Volume V: knowledge-based tracker rule book [R].2001.
    [249] Salama Y, Senn R. Knowledge base applications to adaptive space-time process-ing, Volume VI: knowledge-based space-time adaptive processing (KBSTAP) us-er’s manual and programmer’s manual [R].2001.
    [250] Farina A, Saverione A, Timmoneri L. The MVDR vectorial lattice applied tospace-time processing for AEW radar with large instantaneous bandwidth [J]. IEERadar Sonar and Navigation.1996,143(1):41–46.
    [251] Hwang K, Xu Z, Arakawa M. Benchmark evaluation of the IBM SP2for paral-lel signal processing [J]. IEEE Transactions on Parallel and Distributed Systems.1996,7(5):522–535.
    [252] LindermanMH,LindermanRW.Real-timeSTAPdemonstrationonanembeddedhigh performance computer [J]. IEEE Aerospace and Electronics Systems Maga-zine.1998,13(3):15–31.
    [253] Choudhary A, Wei-Keng L. Design, implementation and evaluation of parallelpipelined STAP on parallel computers [J]. IEEE Transactions on Aerospace andElectronics Systems.2000,36(23):528–548.
    [254] Rajan K, Patnaik L M. Implementation of STAP algorithms on IBM SP2and onADSP21062dual digital signal processor systems [J]. Microprocessors and Mi-crosystems.2003,27:221–227.
    [255]王永良,李天泉.机载雷达空时自适应信号处理技术回顾与展望[J].中国电子科学研究院学报.2008,3(3):271–276.
    [256]苏涛.并行处理技术在雷达信号处理中的应用研究[D].西安:西安电子科技大学,1999.
    [257]范西昆.机载雷达空时自适应处理算法及其实现问题研究[D].长沙:国防科学技术大学,2006.
    [258] Baraniuk R G. Compressive sensing [J]. IEEE Signal Processing Magazine.2007:118–121.
    [259] S F Cotter K E, B D Rao, Kreutz-Delgado K. Sparse solutions to linear inverseproblems with multiple measurement vectors [J]. IEEE Transactions on SignalProcessing.2005,53(7):2477–2488.
    [260] Davies M E, Eldar Y C. Rank awareness in joint sparse recovery [J]. IEEE Trans-actions on Information Theory.2012,58(2):1135–1146.
    [261] Lee K, Bresler Y, Junge M. Subspace methods for joint sparse recovery [J].http://arxiv.org/abs/1004.3071v4.2011.
    [262] Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries [J]. IEEETransactions on Signal Processing.1993,41(12):3397–3415.
    [263] Tropp2010J A, Wright S J. Computational methods for sparse solution of linearinverse problems [J]. Proceddings of the IEEE.2010,98(6):948–958.
    [264] Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit: recur-sive function approximation with applications to wavelet approximation [C]. InProc.27th Annu. Asilomar Conference on Signals, Systems and Computers.1993:40–44.
    [265] Davis G, Mallat S, Acellaneda M. Adaptive greedy approximation [J]. Journal ofConstructive Approximation.1997,13:57–98.
    [266] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogo-nal matching pursuit [J]. IEEE Transactions on Information Theory.2007,53(12):4655–4666.
    [267] Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined lin-ear equations by stagewise orthogonal matching pursuit (StOMP)[R/OL].2006.http://www.stat.stanford.edu/~donoho/Reports/2006/.
    [268] Needell D, Vershynin R. Uniform uncertainty principle and signal recovery viaregularized orthogonal matching pursuit [J]. Foundations of Computational Math-ematics.2009,9(3):317–334.
    [269] NeedellD,VershyninR.Signalrecoveryfromincompleteandinaccuratemeasure-ments via regularized orthogonal matching pursuit [J]. IEEE Journal of SelectedTopics on Signal Processing.2009,4(2):310–316.
    [270] Needell D, Tropp J A. CoSaMP: Iterative signal recovery from incomplete andinaccurate samples [J]. Applied Computational Harmonic Analysis.2009,26(3):301–321.
    [271] DaiW,MilenkovicO.Subspacepursuitforcompressivesensingsignalreconstruc-tion [J]. IEEE Transactions on Information Theory.2009,55(5):2230–2249.
    [272] Devore R, Temlyakov V N. Some remarks on greedy algorithms [J]. AdvancedComputatinal Mathematics.1996,5:173–187.
    [273] HuangC,CheangG,BarronAR.Riskofpenalizedleast-squares,greedyselection,and l1-penalization for flexible function libraries [J]. Annals of Statistics.2008.
    [274] ChenS,DonohoD,SaundersM.Atomicdecompositionbybasispursuit[J].SIAMReview.2001,43(1):129–159.
    [275] Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition [J].IEEE Transactions on Information Theory.2001,47(7):2845–2862.
    [276] Donoho D L, Elad M. Optimally sparse representation in general (nonorthogonal)dictionaries via l1minimization [J]. Proc. National Academy of Sciences.2003,100:2197–2202.
    [277] Tropp J A. Greedy is good: algorithmic results for sparse approximation [J]. IEEETransactions on Information Theory.2004,50(10):2231–2242.
    [278] Tropp J A. Just relax: convex programming methods for identifying sparse signalsin noise [J]. IEEE Transactions on Information Theory.2006,53(3):1030–1051.
    [279] Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcompleterepresentations in the presence of noise [J]. IEEE Transactions on InformationTheory.2006,52(1):6–18.
    [280] Fuchs J J. On sparse representations in arbitrary redundant bases [J]. IEEE Trans-actions on Information Theory.2004,50(6):1341–1344.
    [281] Saunders M A. PDCO: Primal-dual interior-point method for convex objec-tives [R].2002.
    [282] Syst. Optim. Lab., Stanford University. SparseLab software [R/OL]. http://sparselab.stanford.edu.
    [283] Candes E J. l1-magic [R/OL]. http://www.acm.caltech.edu/l1magic/.
    [284] Candes E J, Romberg J. l1-MAGIC: recovery of sparse signals via convex pro-gramming [R].2005.
    [285] Kim S J, Koh K, Lustig M, et al. An interior-point method for large-scale l1-regularized least squares [J]. IEEE Journal of Selected Topics on Signal Process-ing.2007,1(4):606–617.
    [286] Sturm J F. Using SeDuMi1.02, a matlab toolbox for optimization over symmet-ric cones [R/OL]. http://www.unimaas.nl/~sturm/papers/guide.ps.gz.
    [287] Mathematical programming system [R/OL]. http://www.mosek.com.
    [288] Daubechies I, Defriese M, Mol C D. An iterative thresholding algorithm for lin-ear inverse problems with a sparsity constraint [J]. Communications on Pure andApplied Mathematics.2004,4(4):1168–1200.
    [289] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linearinverse problems [J]. SIAM Journal of Imaging Sciences.2009,2(1):183–202.
    [290] Wright S J, Nowak R D, Figueiredo M A T. Sparse reconstruction by separa-ble approximation [J]. IEEE Transactions on Signal Processing.2009,57(7):2479–2493.
    [291] Bioucas-Dias J M, Figueiredo M A T. A new TwIST: two-step iterative shrink-age/thresholdingalgorithmsforimagerestoration[J].IEEETransactionsonImageProcessing.2007,16(2):2292–3004.
    [292] Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse recon-struction: application to compressed sensing and other inverse problems [J]. IEEEJournal of Selected Topics on Signal Processing.2007,1(4):586–597.
    [293] HaleET,YinW,ZhangY.Afixed-pointcontinuationmethodforl1-minimization:methodology and convergence [J]. SIAM Journal of Optimization.2008,19:1107–1130.
    [294] Osborne M R, Presnell B, Turlach B A. A new approach to variable selectionin least squares problems [J]. IMA Journal of Numerical Analysis.2000,20:389–403.
    [295] Efron B, Hastie T, Johnstone I M, et al. Least angle regression [J]. Ann. Statist.2004,32(2):407–499.
    [296] Donoho D L, Tsaig Y. Fast solution of l1-norm minimization problems when thesolutionmaybesparse[J].IEEETransactionsonSignalProcessing.2008,54(11):4789–4812.
    [297] Asif M S. Primal dual pursuit: a homotopy based algorithm for the dantzig selec-tor [D].[S. l.]: Georgia Institute of Technology,2008.
    [298] YangAY,GaneshA,ZhouZ,etal.Areviewoffastl1-minimizationalgorithmsforrobust face recognition [J]. Available: http://arxiv.org/abs/1007.3753v2.2010[On-line].
    [299] Malioutov D M, etin M, Willsky A S. Homotopy continuation for sparse signalrepresentation [C]. In Proc. IEEE International Conference Acoustic, Speech andSignal Processing. Philadelphia, PA,2005:733–736.
    [300] Liu C, Zakharov Y V, Chen T. Broadband underwater localization of multiplesources using basis pursuit de-noising [J]. IEEE Transactions on Signal Process-ing.2012,60(4):1708–1717.
    [301] Xiao L, Zhang T. A proximal-gradient homotopy method for the l1-regularizedleast-squares problem [J].
    [302] Trzasko J, Manduca A. Highly undersampled magnetic resonance image recon-structionviahomotopic L0-minimization[J].IEEETransactionsonMedicalImag-ing.2009,28(1):106–121.
    [303] TippingME.SparseBayesianlearningandtherelevancevectormachine[J].Jour-nal of Machine Learning Research.2001,1:211–244.
    [304] Wipf D P, Rao B D. Sparse Bayesian learning for basis selection [J]. IEEE Trans-actions on Signal Processing.2004,52(8):2153–2164.
    [305] Wipf D P. Sparse estimation with structured dictionaries [J]. Advances in NeuralInformation Processing Systems.2011,24:2016–2024.
    [306] Nagarajan D P W S. Iterative reweighted L1and L2methods for finding sparsesolutions [J]. IEEE Journal of Selected Topics in Signal Processing.2010,4(2):317–329.
    [307] Baraniuk R G, Cevher V, Duarte M F, et al. Model-based compressive sensing [J].IEEE Transactions on Information and Theory.2010,56(4):1982–2001.
    [308] Zhang Z, Rao B D. Sparse signal recovery with temporally correlated source vec-tors using sparse Bayesian learning [J]. IEEE Journal of Selected Topics in SignalProcessing.2011,5(5):912–926.
    [309] Zhang Z, Rao B D. Extension of SBL algorithms for the recovery of block sparsesignal with intra-block correlation [J]. IEEE Transactions on Signal Processing,Available: arXiv:1201.0862.2012.
    [310] Chartrand R. Exact reconstruction of sparse signals via nonconvex minimiza-tion [J]. IEEE Signal Processing Letters.2007,14(10):707–710.
    [311] Chartrand R, Staneva V. Restricted isometry properties and nonconvex compres-sive sensing [J]. Inverse Problems.2008,24:1–14.
    [312] Candes E J, Wakin M B, Boyd S P. Enhancing sparsity by weighted L1-minimization [J]. Jouranal of Fourier Analysis and Applications.2008,14(5):877–905.
    [313] Foucart S, Lai M J. Sparsest solutions of underdetermined linear systems via Lqminimization for0    [314] Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data usingFOCUSS: a re-weighted minimum norm algorithm [J]. IEEE Transactions on Sig-nal Processing.1997,45(3):600–616.
    [315] Baron D, Sarvotham S, Baraniuk R G. Bayesian compressive sensing via beliefpropagation [J]. IEEE Transactions on Signal Processing.2010,58(1):269–280.
    [316] DonohoDL,MalikiA,MontanariA.Message-passingalgorithmsforcompressedsensing [J]. Proc. National Academy of Sciences.2009,106(45):18914–18919.
    [317] Mohimani G H, Babaie-Zadeh M, Jutten C. A fast approach for overcomplete s-parse decomposition based on smoothed l0norm [J]. IEEE Transactions on SignalProcessing.2009,57(1):289–301.
    [318] Jin J, Gu Y, Mei S. A stochastic gradient approach on compressive sensing signalreconstructionbasedonadaptivefilteringframework[J].IEEEJournalofSelectedTopics in Signal Processing.2010,4(2):409–420.
    [319] Chen Y, Gu Y, Hero A. Sparse LMS for system identification [C]. In Proc.IEEE International Conference Acoustic, Speech and Signal Processing.2009:3125–3128.
    [320] Chen Y, Gu Y, Hero A O. Regularized least-mean-square algorithms [J]. Arxivpreprint arXiv:1012.5066v2.2010.
    [321] Angelosante D, Giannakis G. RLS-weighted Lasso for adaptive estimation of s-parse signals [C]. In Proc. IEEE International Conference Acoustic, Speech andSignal Processing.2009:3245–3248.
    [322] BabadiB,KalouptsidisN,TarokhV.SPARLS:thesparseRLSalgorithm[J].IEEETransactions on Signal Processing.2010,58(8):4013–4025.
    [323] Angelosante D, Bazerque J, Giannakis G. Online adaptive estimation of sparsesignals:whereRLSmeetsthel1norm[J].IEEETransactionsonSignalProcessing.2010,58(7):3436–3447.
    [324] Kopsinis Y, Slavakis K, Theodoridis S. Online sparse system identification andsignal reconstruction using projections onto weighted l1balls [J]. IEEE Transac-tions on Signal Processing.2011,59(3):936–952.
    [325] Murakami Y, Yamagishi M, Yukawa M, et al. A sparse adaptive filtering usingtime-varying soft-thresholding techniques [C]. In Proc. IEEE International Con-ference Acoustic, Speech and Signal Processing. Dallas, USA,2010:3734–3737.
    [326] Shi K, Ma X. Transform domain LMS algorithms for sparse system identifica-tion [C]. In Proc. International Conference on Acoustic, Speech and Signal Pro-cessing.2010:3714–3717.
    [327] Duttweiler D L. Improving convergence of the PNLMS algorithm for sparse im-pulse response identification [J]. IEEE Signal Processing Letters.2005,12(3):181–184.
    [328] Yang Z, Zhang R, SGrant. Proportionate affine proection sign algorithms for net-work echo cancellation [J]. IEEE Transactions on Audio, Speech and LanguageProcessing.2011,19:2273–2284.
    [329] Eksioglu E M. RLS adaptive filtering with sparse regularization [C]. In Proc.10thInternational Conference on Information Science, Signal Processing and their Ap-plications.2010:550–553.
    [330] Eksioglu E M, Tanc A K. RLS algorithm with convex regularization [J]. IEEESignal Processing Letters.2011,18(8):470–473.
    [331] Meng R, de Lamare R C, Nascimento V H. Sparsity-aware affine projection adap-tive algorithms for system identificaion [C]. In Proc. Sensor Signal Processing forDefence Conference. London, UK,2011.
    [332] Charles A S, Rozell C J. Re-weighted l1dynamic filtering for time-varying sparsesignal estimation [J]. arXiv:1208.0325v2.2012.
    [333] Asif M S, Romberg J. Dynamic updating for l1minimization [J]. IEEE Journal ofSelected Topics in Signal Processing.2010,4(2):421–434.
    [334] Garrigues P J, Ghaoui L E. An homotopy algorithm for the Lasso with onlineobservations [J]. Neural Information Processing Systems.2008:489–496.
    [335] Robey F C, Baranoski E J. Full space-time clutter covariance estimation [C]. InProc. IEEE International Conference Acoustic, Speech and Signal Processing.1995:1896–1899.
    [336] Barton T A, Smith S T. Stuctured covariance estimation for space-time adaptiveprocessing [C]. In Proc. IEEE International Conference Acoustic, Speech and Sig-nal Processing.1997:3493–3496.
    [337] LegtersGR,GuerciJR.Physics-basedairborneGMTIradarsignalprocessing[C].In Proc. IEEE Radar Conference.2004:283–288.
    [338] Fuhrmann D R, Boggio L A, Maschmeyer J, et al. Clutter scattering function es-timation and ground moving target detection from multiple STAP datacubes [C].In Proc. IEEE International Conference Acoustic, Speech and Signal Processing.2005:593–596.
    [339] Parker J T, Potter L C. A Bayesian perspective on sparse regularization for STAPpost-processing [C]. In Proc. IEEE Radar Conference.2010:1471–1475.
    [340] Kelly E J. An adaptive detection algorithm [J]. IEEE Transactions on Aerospaceand Electronics Systems.1986,22(1):115–127.
    [341] Cai L, Wang H. Performance comparisons of modified SMI and GLR algorithm-s [J]. IEEE Transactions on Aerospace and Electronics Systems.1991,27(3):487–491.
    [342] ReedIS,GauYL,TruongTK.CFARdetectionandestimationforSTAPradar[J].IEEE Transactions on Aerospace and Electronics Systems.1998,34(3):722–735.
    [343]伍勇.空时自适应杂波抑制[D].北京:清华大学,2008.
    [344] Zhang Q, Mikhael W B. Estimation of the clutter rank in the case of subarrayingfor space-time adaptive processing [J]. Electronics Letters.1997,33(5):419–420.
    [345] Kaykin S. Adaptive filter theory: Fourth Edition [M]. Prentice Hall,2002.
    [346] Trees H L V. Optimum array processing: Part IV of detection, estimation and mod-ulation theory [M]. New York: John Wiley&Sons, Inc.,2002.
    [347] Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage [J].Biometrika.1994,81(3):425–455.
    [348] Light Speed Matlab [R/OL]. http://research.microsoft.com/en-us/um/people/minka/software/lightspeed/.
    [349] Elad M. Why simple shrinkage is still relevant for redundant representations [J].IEEE Transactions on Information Theory.2006,52(12):5559–5569.
    [350] Honig M L, Goldstein J S. Adaptive reduced-rank interference suppression basedon the multistage Wiener filter [J]. IEEE Transactions on Communications.2002,50(6):986–994.
    [351] Lin X, Blum R S. Robust STAP algorithms using prior knowledge for airborneradar applications [J]. Signal Processing.1999,79:273–287.
    [352] Gurram P R, Goodman N A. Spectral-domain covariance estimation with a prioriknowledge [J]. IEEE Transactions on Aerospace and Electronics Systems.2006,42(3):1010–1020.
    [353] Horn R A, Johnson C R. Matrix Analysis [M]. Cambridge, U.K.: Cambridge Univ.Press,1985.
    [354] Sun H, Lu Y, Lesturgie M. Experimental investigation of iterative adaptive ap-proach for ground moving target indication [C]. In IEEE CIE International Con-ference on Radar.2011:715–718.
    [355] Roberts W, Stoica P, Li J, et al. Iterative adaptive approaches to MIMO radarimaging [J]. IEEE Journal of Selected Topics In Signal Process.2010,4(1):5–20.
    [356] Barcelo M, Vicario J L, Seco-Granados G. A Reduced Complexity Approachto IAA Beamforming for Efficient DOA Estimation of Coherent Sources [J].EURASIP Journal on Advances in Signal Processing.2011,2011:521265:doi:10.1155/2011/521265.
    [357] Xue M, Xu L, Li J. IAA Spectral estimation: fast implementation using theGohberg-Semencul factorization [J]. IEEE Transactions on Signal Processing.2011,59(7):3251–3261.
    [358] GlentisGO,JakobssonA.Efficientimplementationofiterativeadaptiveapproachspectral estimation techniques [J]. IEEE Transactions on Signal Processing.2011,59(9):4154–4167.
    [359] Glentis G O, Jakobsson A. Superfast approximative implementation of the I-AA spectral estimate [J]. IEEE Transactions on Signal Processing.2012,60(1):472–478.
    [360] Yang Z, Liu Z, Li X, et al. Performance analysis of STAP algorithms based on fastsparse recovery techniques [J]. Progress In Electromagnetics Research B.2012,41:251–268.
    [361] Yang Z, Li X, Wang H. Space-Time Adaptive Processing Based on Weighted Reg-ularized Sparse Recovery [J]. Progress In Electromagnetics Research B.2012,42:245–262.
    [362] Stoica P, Moses R. Spectral Analysis of Signals [M]. New Jersey: Prentice Hall,2005.