EGFR酪氨酸激酶结构域突变检测以及PTEN表达下调对EGFR抑制剂敏感性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Mutations of the Epidermal Growth Factor Receptor Tyrosine Kinase Domain in Chinese Patients with Non-Small-Cell Lung Cancer
  • 作者:穆新林
  • 论文级别:博士
  • 学科专业名称:内科呼吸病学
  • 学位年度:2005
  • 导师:李龙芸
  • 学科代码:100201
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2005-05-01
摘要
目的:针对EGFR的靶向治疗成为继手术、放疗和化疗后NSCLC治疗的又一重要手段,但EGFR特异性抑制剂gefitinib对NSCLC的有效率远低于EGFR在NSCLC中的表达率,并且有证据表明gefitinib疗效与肿瘤细胞的EGFR表达水平无关。NSCLC EGFR酪氨酸激酶结构域突变的发现揭示了肺癌对gefitinib敏感的分子机制,并为预测gefitinib疗效提供了极佳的预测指标。在Ⅱ期临床试验IDEAL1中,日本患者的有效率高于白种人,与此对应的是,日本NSCLC患者中EGFR酪氨酸激酶结构域的突变率高于美国NSCLC患者,提示EGFR突变存在人种间差异。gefitinib在中国NSCLC患者中同样有较高有效率,但目前尚无关于中国NSCLC中EGFR突变情况的报道。本研究旨在对EGFR在中国NSCLC患者中的突变情况进行分析,并进一步验证EGFR酪氨酸激酶结构域突变与gefitinib疗效间的相关性。
     方法:原发NSCLC组织标本取自76例中国患者,其中54例患者未接受gefitinib治疗,22例为gefitinib治疗的患者;所用的肿瘤标本均取自患者进行系统治疗前。用PCR方法对EGFR18~21外显子进行扩增,PCR产物直接测序,所有类型突变均经克隆测序进一步确证。
     结果:28例标本中检测到29个突变(不包括2种沉默突变),包括15个缺失突变和14个错义突变。根据突变引起氨基酸序列的改变,突变分为8种:6种类型的缺失突变均位于19外显子,包括3种单纯的缺失突变(delE746-A750;delL747-P753insS;delE746-T751insA),3种缺失突变合并错义突变(delL747-E749,A750P,T751I;delL747-A750,T751P;delL747-S752,P753Q);另2种类型的突变为位于21外显子的L858R和L861Q。2种沉默(2361G>A,Q787Q;2316C>T,P772P)突变均位于20外显子。在gefitinib治疗的22例患者中,7例疗效为PR患者的肿瘤标本均有突变,8例疗效为PD的患者均无突变(P<0.001);7例SD的患者中3例突变,如果用疾病控制率(disease control rate,DCR,
Objective: Therapy targeted EGFR has become another important modality for treatment NSCLC following surgery, radiotherapy and chemotherapy. But rate of tumor response to gefitinib, a specific EGFR tyrosine kinase inhibitor, was much lower than that of NSCLC with EGFR over-expression, and it has been demonstrated that the level of EGFR expression was not associated with tumor response. The discovery of mutations in EGFR tyrosine kinase domain revealed the mechanism mediating tumor response to gefitinib, and provided a powerful predictor for gefitinib therapy. In phase II clinical trial, tumor response to gefitinib was found more frequently in Japanese NSCLCs. Correspondingly, higher incidence of EGFR mutation was observed in NSCLC patients of Japanese origin compared with those of American origin, indicating different frequency of such mutation between different ethnics. Higher rate of tumor response to gefitinib was also found in Chinese NSCLCs, however, no data about such mutations in Chinese patients with NSCLC could be obtained. In the study we aimed to screen such mutations in Chinese NSCLCs and confirm the correlation between EGFR mutation and tumor response to gefitinib.
    Methods: Primary NSCLC tissues were obtained for analysis of mutations in exons 18-21 of EGFR from a total of 76 Chinese patients, of whom 54 did not receive gefitinib therapy and 22 did. All tumor tissues were obtained during diagnosis or surgical procedure before any treatment of lung cancer. PCR products were sequenced directly and mutations were confirmed by an independent PCR and sequence. All types of mutation were cloned and sequenced.
    Results: 29 mutations were found in 28 tumor tissues not including 2 types of silent mutation, in which included 15 deletion mutations and 14 missense mutations. All mutations can be divided into 8 types, in which 6 types of mutation were occurred in exon 19, 2 types of mutation (L858R and L861Q)were observed in exon 21. Among 6 types of deletion, 3 were simple deletions (delE746-A750; delL747-P753insS; del E746-T751insA), other 3 were deletions coupled with point mutations (delL747-E749, A750P, T751I; delL747-A750, T751P; delL747-S752, P753Q). 2 types of silent mutation (2361G>A, Q787Q; 2316C>T, P772P) were detected in exon 20.
引文
1. Scagliotti GV, Selvaggi G, Novello S, et al. The biology of epidermal growth factor receptor in lung cancer. Clin Cancer Res 2004;10:4227s-32s.
    2. Ciardiello F, Tortora G A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 2001;7:2958-70.
    3. Cohen MH, Williams GA, Sridhara R, et al. United States Food and Drug Administration Drug Approval summary: Gefitinib (ZD1839; Iressa) tablets. Clin Cancer Res 2004;10:1212-8.
    4. Cohen MH, Williams GA, Sridhara R, et al. FDA drug approval summary: gefitinib (ZD1839) (Iressa(?)) tablets. Oncologist 2003;8:303-6.
    5. Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 2001;7:2958-70.
    6. Saltz L, Meropol NJ, Loehrer PJ, et al. Single agent IMC-C225 (ErbituxTM) has activity in CPT-11 refractory colorectal cancer (CRC) that express the epidermal growth factor receptor (EGFR) [Abstract No. 504]. Proc ASCO 2002;21.
    7. Barker AJ, Gibson KH, Grundy W, et al. Studies leading to the identification of ZD1839 (Iressa~(TM)): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg Med Chem Lett 2001;11:1911-4.
    8. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol 2003;21:2237-46.
    9. Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer. A randomized trial. JAMA 2003;290:2149-58.
    10. Ceresoli GL, Cappuzzo F, Gregorc V, Bartolini S, Crino L, Villa E. Gefitinib in patients with brain metastases from non-small-cell lung cancer: a prospective trial. Ann Oncol 2004:15:1042-7.
    11. Wakeling AE, Guy SP, Woodburn JR, et al. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 2002;62:5749-54.
    12. Han SW, Hwang PG, Chung DH, et al. Epidermal growth factor receptor (EGFR) downstream molecules as response predictive markers for gefitinib (Iressa, ZD1839) in chemotherapy-resistant non-small cell lung cancer. Int J Cancer 2005;113:109-15.13. Bailey LR, Kris M, Wolf M, et al. Tumor EGFR membrane staining is not clinically relevant for predicting response in patients receiving gefitinib ('Iressa', ZD1839) monotherapy for pretreated advanced non-small-cell lung cancer: IDEAL 1 and 2. Proc Am Assoc Cancer Res 2003;44(2nd ed.):1362, abs LB-170.
    14. Parra HS, Cavina R, Latteri F, et al. Analysis of epidermal growth factor receptor expression as a predictive factor for response to gefitinib ('Iressa', ZD1839) in non-small-cell lung cancer. Br J Cancer 2004;91:208-12.
    15. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129-39.
    16. Paez JG, J(?)nne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304:1497-500.
    17. Pao W, Miller V, Zakowski M, et al. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 2004;101:13306-11.
    18. Miller VA, Kris MG, Shah N, et al. Bronchioloalveolar pathologic subtype and smoking history predict sensitivity to gefitinib in advanced non-small-cell lung cancer. J Clin Oncol 2004;22:1103-9.
    19. Mu X-L, Li L-Y, Zhang X-T, Wang S-L, Wang M-Z. Evaluation of safety and efficacy of gefitinib ('iressa', zd1839) as monotherapy in a series of Chinese patients with advanced non-small-cell lung cancer: experience from a compassionate-use programme. BMC Cancer 2004;4:51-9.
    20. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 2000;92:205-16.
    21. Huang SF, Liu HP, Li LH, et al. High frequency of epidermal growth factor receptor mutations with complex patterns in non-small cell lung cancers related to gefitinib responsiveness in Taiwan. Clin Cancer Res 2004;10:8195-203.
    22. Sordella R, Bell DW, Haber DA, et al. Gefitinib-Sensitizing EGFR Mutations in Lung Cancer Activate Anti-Apoptotic Pathways. Science;305(5687):1163-67.
    23. Kosaka T, Yatabe Y, Endoh H, et al. Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res 2004;64:8919-23.
    24. Marchetti A, Martella C, Felicioni L, et al. EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J Clin Oncol??2005; 23(4): 857-65.
    25. Baselga J. The science of EGFR inhibition: a roadmap to improved outcomes? Signal 2004; 5(3): 4-8.
    26. Cappuzzo F, Magrini E, Ceresoli GL, et al. Akt phosphorylation and gefitinib efficacy in patients with advanced non-small-cell lung cancer. J Natl Cancer Inst 2004; 96: 1133-41.
    27. Bianco R, Shin I, Ritter CA, et al. Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 2003; 22(18): 2812-22.
    28. She QB, Solit D, Basso A, et al. Resistance to Gefitinib in PTEN-Null HER-Overexpressing Tumor Ceils Can Be Overcome through Restoration of PTEN Function or Pharmacologic Modulation of Constitutive Phosphatidylinositol 3'-Kinase/Akt Pathway Signaling Clin Cancer Res 2003; 9: 4340-46.1. Salomon DS, Brandt R, Ciardiello F, et al. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995;19:183-232.
    2. Sartor CI. Biological modifiers as potential radiosensitizers: targeting the epidermal growth factor receptor family. Semin Oncol 2000;27(suppl 11):15-20.
    3. Newby JC, Johnston SR, Smith IE, et al. Expression of epidermal growth factor receptor and c-erbB2 during the development of tamoxifen resistance in human breast cancer. Clin Cancer Res 1997;3:1643-51.
    4. Chen X, Yeung TK, Wang Z. Enhanced drug resistance in cells coexpressing ErbB2 with EGF receptor or ErbB3. Biochem Biophys Res Commun 2000;277:757-63.
    5. Klijn JG, Look MP, Portengen H, et al. The prognostic value of epidermal growth factor receptor (EGF-R) in primary breast cancer: results of a 10 year follow-up study. Breast Cancer Res Treat 1994;29:73-83.
    6. Fischer-Colbrie J, Witt A, Heinzl H, et al. EGFR and steroid receptors in ovarian carcinoma: comparison with prognostic parameters and outcome of patients. Anticancer Res 1997;17:613-19.
    7. Magne N, Pivot X, Bensadoun RJ, et al. The relationship of epidermal growth factor receptor levels to the prognosis of unresectable pharyngeal cancer patients treated by chemoradiotherapy. Eur J Cancer 2001:37:2169-77.
    8. Aziz SA, Pervez S, Khan S, et al. Epidermal growth factor receptor (EGFR) as a prognostic marker: an immunohistochemical study on 315 consecutive breast carcinoma patients. J Pak Med Assoc. 2002 Mar;52(3):104-10.
    9. Neskovic-Konstantinovic Z, Nikolic-Vukosavljevic D, Brankovic-Magic M et al. Expression of epidermal growth factor receptor in breast cancer, from early stages to advanced disease. J Exp Clin Cancer Res 1999;18:347-355.
    10. Tsutsui S, Ohno S, Murakami S et al. Prognostic value of epidermal growth factor receptor (EGFR) and its relationship to the estrogen receptor status in 1029 patients with breast cancer. Breast Cancer Res Treat 2002;71:67-75.
    11. Berchuck A, Rodriguez GC, Kamel A, et al. Epidermal growth factor receptor expression in normal ovarian epithelium and ovarian cancer. I. Correlation of receptor expression with prognostic factors in patients with ovarian cancer. Am J Obstet Gynecol 1991;164(2):669-74.
    12. Skirnisdottir I, Seidal T, Sorbe B. A new prognostic model comprising p53, EGFR, and tumor grade in early stage epithelial ovarian carcinoma and avoiding the problem of??inaccurate surgical staging. Int J Gynecol Cancer 2004;14(2):259-70.
    13. Scambia G, Benedetti Panici P, Battaglia F, et al. Significance of epidermal growth factor receptor in advanced ovarian cancer. J Clin Oncol 1992;10(4):529-35.
    14. Harlozinska A, Bar JK, Sobanska E, et al. Epidermal growth factor receptor and c-erbB-2 oncoproteins in tissue and tumor effusion cells of histopathologically different ovarian neoplasms. Tumour Biol 1998;19(5):364-73.
    15. Ilekis JV, Connor JP, Prins GS, et al. Expression of epidermal growth factor and androgen receptors in ovarian cancer.: Gynecol Oncol 1997;66(2):250-4.
    16. Bartlett JM, Langdon SP, Simpson BJ, et al. The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer. Br J Cancer 1996;73(3):301-6.
    17. Fischer-Colbrie J, Witt A, Heinzl H, et al. EGFR and steroid receptors in ovarian carcinoma: comparison with prognostic parameters and outcome of patients. Anticancer Res 1997;17(1B):613-9.
    18. Scoccia B, Lee YM, Niederberger C, et al. Expression of the ErbB family of receptors in ovarian cancer. J Soc Gynecol Investig 1998;5(3):161-5.
    19. Ranson M. ZD1839 (Iressa~(TM)): For More Than Just Non-Small Cell Lung Cancer. The Oncologist 2002;7(suppl 4): 16-24.
    20. Paez JG, J(?)nne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304:1497-500.
    21. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129-39.
    22. Mu XL, Li LY, Zhang XT, et al. Gefitinib (IRESSA)-sensitive mutations of the epidermal growth factor receptor tyrosine kinase domain in Chinese patients with non-small-cell lung cancer. Clin Cancer Res (In press).
    23. Lee JW Soung YH Kim SY, et al. Absence of EGFR Mutation in the Kinase Domain in Common Human Cancers Besides Non-small Cell Lung Cancer. Int J Cancer 2005;113:510-11.
    24. Nagahara H, Mimori K, Ohta M1, et al. Somatic Mutations of Epidermal Growth Factor Receptor in Colorectal Carcinoma. Clin Cancer Res 2005;11:1368-71.
    25. Zhang G, Zhang QY, Miao XP, Lin DX, et al. Polymorphisms and mutations of the folate receptor-alpha gene and risk of gastric cancer in a Chinese population. Int J Mol Med 2005;15(4):627-32.26. Jiang L, Katz BJ, Yang Z, et al. Autosomal dominant cone dystrophy caused by a novel mutation in the GCAP1 gene (GUCA1A). Mol Vis 2005;11:143-51.
    27. Fasano T, Bocchi L, Pisciotta L, et al. Denaturing high-performance liquid chromatography in the detection of ABCA1 gene mutations in familial HDL deficiency. J Lipid Res 2005;46(4):817-22.
    28. Gross E, Arnold N, Goette J, et al. A comparison of BRCA1 mutation analysis by direct sequencing, SSCP and DHPLC. Hum Genet 1999;105(1-2):72-8.
    29. Han SW, Kim TY, Hwang PG, et al. Predictive and prognostic impact of epidermal growth factor receptor mutation in non-small-cell lung cancer patients treated with gefitinib. J Clin Oncol 2005;23(11):2493-501.
    30. Yang SH, Mechanic LE, Yang P, et al. Mutations in the tyrosine kinase domain of the epidermal growth factor receptor in non-small cell lung cancer. Clin Cancer Res 2005;11(6):2106-10.
    31. Annie Canu A, Abbas A, Malbruny B, et al. Denaturing High-Performance Liquid Chromatography Detection of Ribosomal Mutations Conferring Macrolide Resistance in Gram-Positive Cocci. Antimicrob Agents Ch 2004;48: 297-304.
    32. Huang SF, Liu HP, Li LH, et al. High frequency of epidermal growth factor receptor mutations with complex patterns in non-small cell lung cancers related to gefitinib responsiveness in Taiwan. Clin Cancer Res. 2004;10(24):8195-203.
    33. Ciardiello F, Caputo R, Bianco R, et al. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res 2000;6:2053-63.1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100(1):57-70.
    2. Salomon DS, Brandt R, Ciardiello F, et al. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995;19:183-232.
    3. Sartor CI. Biological modifiers as potential radiosensitizers: targeting the epidermal growth factor receptor family. Semin Oncol 2000;27(suppl 11): 15-20.
    4. Newby JC, Johnston SR, Smith IE, et al. Expression of epidermal growth factor receptor and c-erbB2 during the development of tamoxifen resistance in human breast cancer. Clin Cancer Res 1997;3:1643-51.
    5. Chen X, Yeung TK, Wang Z. Enhanced drug resistance in cells coexpressing ErbB2 with EGF receptor or ErbB3. Biochem Biophys Res Commun 2000;277:757-63.
    6. Klijn JG, Look MP, Portengen H, et al. The prognostic value of epidermal growth factor receptor (EGF-R) in primary breast cancer: results of a 10 year follow-up study. Breast Cancer Res Treat 1994;29:73-83.
    7. Fischer-Colbrie J, Witt A, Heinzl H, et al. EGFR and steroid receptors in ovarian carcinoma: comparison with prognostic parameters and outcome of patients. Anticancer Res 1997;17:613-19.
    8. Magne N, Pivot X, Bensadoun RJ, et al. The relationship of epidermal growth factor receptor levels to the prognosis of unresectable pharyngeal cancer patients treated by chemoradiotherapy. Eur J Cancer 2001;37:2169-77.
    9. Volm M, Rittgen W, Drings P. Prognostic value of ERBB-1, VEGF, cyclin A, FOS, JUN and MYC in patients with squamous cell lung carcinomas. Br J Cancer 1998;77(7):1198.
    10. Ohsaki Y, Tanno S, Fujita Y, et al. Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression. Onco Rep 2000;7:603-7.
    11. Fontanini G, Vignati S, Bigini D, et al. Epidermal growth factor receptor (EGFr) expression in non-small cell lung carcinomas correlates with metastatic involvement of hilar and mediastinal lymph nodes in the squamous subtype. Eur J cancer 1995;31A:178-83.
    12. Ciardiello F, Tortora G A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 2001;7(10):2958-70.
    13. Janmaat ML, Kruyt FA, Rodriguez JA, et al. Response to epidermal growth factor receptor inhibitors in non-small cell lung cancer cells: limited antiproliferative effects and absence of??apoptosis associated with persistent activity of extracellular signal-regulated kinase or Akt kinase pathways. Clin Cancer Res 2003; 9(6): 2316-26.
    14. Tabemero J, Rojo F, Jimenez E, et al. A phase I PK and serial tumor and skin pharmacodynamic(PD)study of weekly(q1w), every 2-week(q2w)or every 3-week(q3w)1-hour(h)infusion EMD72000, a humanized monoclonal anti-epidermal growth factor receptor(EGFR)antibody, in patients(pt)with advanced tumors. Proc Am Soc Clin Oncol 2003; 22: page 192,(abstr 770).
    15.张蕾 刘彤华 刘鸿瑞 高洁 顾长芳PTEN/MMAC1/TEP1在肺癌中的丢失和失活 中华病理学杂志 2000;29(2):85—88。
    16. Soria JC, Lee HY, Lee JI, et al. Lack of PTEN expression in non-small cell lung cancer could be related to promoter methylation. Clin Cancer Res 2002; 8(5): 1178-84.
    17. Dahia PLM, Aguiar RCT, Alberta J, et al. PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanisms in heamatological malignancies. Hum Mol Genet 1999; 8(2): 185-93.
    18. Mu XL, Li LY, Zhang XT, et al. Evaluation of safety and efficacy of gefitinib('iressa', zd1839)as monotherapy in a series of Chinese patients with advanced non-small-cell lung cancer: experience from a compassionate-use programme. BMC Cancer 2004; 19; 4(1): 51.
    19. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase Ⅱ trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol 2003; 21: 2237-46.
    20. Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 2003; 290(16): 2149-58.
    21. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304: 1497-500.
    22. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 2129-39.
    23. Mu XL, Li LY, Zhang XT, et al. Gefitinib(IRESSA)-sensitive mutations of the epidermal growth factor receptor tyrosine kinase domain in chinese patients with non-small-cell lung cancer. Clin Cancer Res(In press).
    24. Yamada KM, Araki M. Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 2001; 114: 2375-82.25. Cantley LC, Need BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA, 1999;96, 4240-45.
    26. Myers MP, Tonks NK. PTEN: sometimes taking it off can be better than putting it on. Am J Hum Genet 1997;61:1234-38.
    27. Dahia PL. PTEN, a unique tumor suppressor gene. Endocr Relat Cancer 2000;7:115-29.
    28. Van de Vijver MJ, Kumar R, Mendelsohn J. Ligand-induced activation of A431 cell epidermal growth factor receptors occurs primarily by an autocrine pathway that acts upon receptors on the surface rather than intracellularly. J Biol Chem 1991;266, 7503-8.
    29. Petit AM, Rak J, Hung MC, et al. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 1997;151:1523-30.
    30. Bianco R, Shin I, Ritter CA, et al. Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 2003;22(18):2812-22.
    31. Czauderna F, Fechtner M, Aygun H, et al. Functional studies of the PI(3)-kinase signalling pathway employing synthetic and expressed siRNA. Nucleic Acids Res 2003 Jan 15;31(2):670-82.
    32. Bianco R, Shin I, Ritter CA, et al. Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 2003;22(18):2812-22.
    33. She QB, Solit D, Basso A, et al. Resistance to gefitinib in PTEN-null her-overexpressing tumor cells can be overcome through restoration of pten function or pharmacologic modulation of constitutive phosphatidylinositol 3'-kinase/Akt pathway signaling. Clin Cancer Res 2003;9:4340-46.
    34. Vazquez F, Grossman SR, Takahashi Y, et al. Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J Biol Chem 2001;276(52):48627-30.
    35. Vazquez F, Ramaswamy S, Nakamura N, et al. Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 2000;20(14):5010-8.
    36. Tsugawa K, Jones MK, Akahoshi T, et al. Abnormal PTEN expression in portal hypertensive gastric mucosa: a key to impaired PI 3-kinase/Akt activation and delayed injury healing???FASEB J 2003;17(15):2316-8.
    37. Nagata Y, Lan KH, Zhou X, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004;6(2):117-27.1. Alroy I, Yarden Y. The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett 1997;410:83-6.
    2. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990;61:203-12.
    3. Todd R, Wong DT. Epidermal growth factor receptor (EGFR) biology and human oral cancer. Histol Histopathol 1999;14:491-500.
    4. Abe Y, Odaka M, Inagaki F, et al. Disulfide bond structure of human epidermal growth factor receptor. J Biol Chem 1998;273:11150-7.
    5. Mendrola JM, Berger MB, King MC, et al. The single transmembrane domains of ErbB receptors self-associate in cell membranes. J Biol Chem 2002;277:4704-12.
    6. Olayioye MA, Neve RM, Lane HA, et al. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000;19:3159-67.
    7. Klapper LN, Kirschbaum MH, Sela M, et al. Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors. Adv Cancer Res 2000;77:25-79.
    8. Riese DJ 2nd, van Raaij TM, Plowman GD, et al. The cellular response to neuregulins is governed by complex interactions of the erbB receptor family. Mol Cell Biol 1995;15:5770-6.
    9. Carraway KL 3rd, Weber JL, Unger MJ, et al. Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. Nature 1997;387:512-6.
    10. Zhang K, Sun J, Liu N, et al. Transformation of NIH 3T3 cells by HER3 or HER4 receptors requires the presence of HER1 or HER2. J Biol Chem 1996;271:3884-90.
    11. Harari D, Tzahar E, Romano J, et al. Neuregulin-4: a novel growth factor that acts through the ErbB-4 receptor tyrosine kinase. Oncogene 1999;18:2681-9.
    12. Arteaga CL. The epidermal growth factor receptor: from mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia. J Clin Oncol 2001;19(18 Suppl):32S-40S.
    13. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2:127-37.
    14. 14Chan TO, Rittenhouse SE, Tsichlis PN. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 1999;68:965-1014.
    15. Datta SR, Dudek H, Tao X et al. Akt phosphorylation of BAD couples survival signals to the??cell-intrinsic death machinery. Cell 1997;91:231-241.
    16. Cardone MH, Roy N, Stennicke HR et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998;282:1318-1321.
    17. Chan TO, Rittenhouse SE, Tsichlis PN. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 1999;68:965-1014.
    18. Scagliotti GV, Selvaggi G, Novello S, et al. The biology of epidermal growth factor receptor in lung cancer. Clin Cancer Res 2004;10:4227s-32s.
    19. Rusch V, Baselga J, Cordon-Cardo C, et al. Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res 1993; 53: 2379-85
    20. Cerny T, Barnes DM, Hasleton P, et al. Expression of epidermal growth factor receptor (EGF-R) in human lung tumours. Br J Cancer 1986; 54: 265-9
    21. Rusch V, Klimstra D, Linkov I, et al. Aberrant expression of p53 or the epidermal growth factor receptor is frequent in early bronchial neoplasia and coexpression precedes squamous cell carcinoma development. Cancer Res 1995; 55:1365-72
    22. Rusch V, Klimstra D, Venkatraman E, et al. Overexpression of the epidermal growth factor receptor and its ligand transforming growth factor alpha is frequent in resectable non-small cell lung cancer but does not predict tumor progression. Clin Cancer Res 1997; 3:515-22.
    23. Sekine I, Takami S, Guang SG, et al. Role of epidermal growth factor receptor overexpression, K-ras point mutation and c-myc amplification in the carcinogenesis of non-small cell lung cancer. Oncol Rep 1998; 5: 351-4
    24. Reissmann PT, Koga H, Figlin RA, et al. Amplification and overexpression of the cyclin D1 and epidermal growth factor receptor genes in non-small-cell lung cancer. Lung Cancer Study Group. J Cancer Res Clin Oncol 1999; 125: 61-70.
    25. Volm M, Rittgen W, Drings P. Prognostic value of ERBB-1, VEGF, cyclin A, FOS, JUN and MYC in patients with squamous cell lung carcinomas. Br J Cancer 1998; 77: 663-9
    26. Ohsaki Y, Tanno S, Fujita Y, et al. Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression. Oncol Rep 2000; 7:603-7
    27. Fontanini G, Vignati S, Bigini D, et al. Epidermal growth factor receptor (EGFr) expression in non-small cell lung carcinomas correlates with metastatic involvement of hilar and mediastinal lymph nodes in the squamous subtype. Eur J Cancer 1995;31 A: 178-8328. Dickstein BM, Wosikowski K, Bates SE. Increased resistance to cytotoxic agents in ZR75B human breast cancer cells transfected with epidermal growth factor receptor. Mol Cell Endocrinol 1995; 110: 205-1
    29. 29、 Berchuck A, Rodriguez GC, Kamel A, et al. Epidermal growth factor receptor expression in normal ovarian epithelium and ovarian cancer. I. Correlation of receptor expression with prognostic factors in patients with ovarian cancer. Am J Obstet Gynecol 1991;164(2):669-74.
    30. Skirnisdottir I, Seidal T, Sorbe B. A new prognostic model comprising p53, EGFR, and tumor grade in early stage epithelial ovarian carcinoma and avoiding the problem of inaccurate surgical staging. Int J Gynecol Cancer 2004;14(2):259-70.
    31. Scambia G, Benedetti Panici P, et al. Significance of epidermal growth factor receptor in advanced ovarian cancer. J Clin Oncol 1992;10(4):529-35.
    32. Harlozinska A, Bar JK, Sobanska E, et al. Epidermal growth factor receptor and c-erbB-2 oncoproteins in tissue and tumor effusion cells of histopathologically different ovarian neoplasms. Tumour Biol 1998;19(5):364-73.
    33. Ilekis JV, Connor JP, Prins GS, et al. Expression of epidermal growth factor and androgen receptors in ovarian cancer.: Gynecol Oncol 1997;66(2):250-4.
    34. Bartlett JM, Langdon SP, Simpson BJ, et al. The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer. Br J Cancer 1996;73(3):301-6.
    35. Fischer-Colbrie J, Witt A, Heinzl H, et al. EGFR and steroid receptors in ovarian carcinoma: comparison with prognostic parameters and outcome of patients. Anticancer Res 1997;17(1B):613-9.
    36. Scoccia B, Lee YM, Niederberger C, et al. Expression of the ErbB family of receptors in ovarian cancer. J Soc Gynecol Investig 1998;5(3):161-5.
    37. Ciardiello F, Bianco R, Damiano V, et al. Antitumor activity of sequential treatment with topotecan and anti-epidermal growth factor receptor monoclonal antibody C225. Clin Cancer Res 1999; 5:909-16
    38. Aziz SA, Pervez S, Khan S, et al. Epidermal growth factor receptor (EGFR) as a prognostic marker: an immunohistochemical study on 315 consecutive breast carcinoma patients. J Pak Med Assoc. 2002 Mar;52(3):104-10.
    39. Neskovic-Konstantinovic Z, Nikolic-Vukosavljevic D, Brankovic-Magic M et al. Expression of epidermal growth factor receptor in breast cancer, from early stages to advanced disease. J Exp Clin Cancer Res 1999;18:347-55.
    40. Tsutsui S, Ohno S, Murakami S et al. Prognostic value of epidermal growth factor receptor??(EGFR) and its relationship to the estrogen receptor status in 1029 patients with breast cancer. Breast Cancer Res Treat 2002;71:67-75.
    41. Bigner SH, Humphrey PA, Wong AJ, et al. Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts. Cancer Res 1990;50:8017-22.
    42. Humphrey PA, Gangarosa LM, Wong AJ, et al. Deletion-mutant epidermal growth factor receptor in human gliomas: effects of type II mutation on receptor function. Biochem Biophys Res Commun 1991;178:1413-20.
    43. Moscatello DK, Montgomery RB, Sundareshan P, et al. Transformational and altered signal transduction by a naturally occurring mutant EGF receptor. Oncogene 1996;13:85-96.
    44. Chu CT, Everiss KD, Wikstrand CJ, et al. Receptor dimerization is not a factor in the signalling activity of a transforming variant epidermal growth factor receptor (EGFRvIII). Biochem J 1997;324 (Pt 3):855-61.
    45. Moscatello DK, Holgado-Madruga M, Emlet DR, Montgomery RB, Wong AJ. Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor. J Biol Chem 1998;273:200-6.
    46. Sugawa NE, Ekstrand AJ, James CD, et al. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci U S A 1990;87:8602-6.
    47. Schwechheimer K, Huang S, Cavenee WK. EGFR gene amplification-rearrangement in human glioblastomas. Int J Cancer 1995;62:145-8.
    48. Ekstrand AJ, Sugawa N, James CD, et al. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci U S A 1992;89:4309-13.
    49. Garcia de Palazzo IE, Adams GP, Sundareshan P, et al. Expression of mutated epidermal growth factor receptor by non-small cell lung carcinomas. Cancer Res 1993;53:3217-20.
    50. Olapade-Olaopa EO, Moscatello DK, MacKay EH, et al. Evidence for the differential expression of a variant EGF receptor protein in human prostate cancer. Br J Cancer 2000;82:186-94.
    51. Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis. Eur J Cancer 2001;37 Suppl 4:S9-15.
    52. Salomon DS, Brandt R, Ciardiello F, et al. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995;19:183-232.
    53. Xia W, Lau YK, Zhang HZ, et al. Combination of EGFR, HER-2/neu, and HER-3 is a??stronger predictor for the outcome of oral squamous cell carcinoma than any individual family members. Clin Cancer Res 1999;5:4164-74.
    54. Ishitoya J, Toriyama M, Oguchi N, et al. Gene amplification and overexpression of EGF receptor in squamous cell carcinomas of the head and neck. Br J Cancer 1989;59:559-62.
    55. Lee CS, Redshaw A, Boag G Epidermal growth factor receptor immunoreactivity in human laryngeal squamous cell carcinoma. Pathology 1997;29:251-4.
    56. Hoffmann TK, Ballo H, Braunstein S, et al. Serum level and tissue expression of c-erbB-1 and c-erbB-2 proto-oncogene products in patients with squamous cell carcinoma of the head and neck. Oral Oncol 2001;37:50-6.
    57. Issing WJ, Liebich C, Wustrow TP, et al. Coexpression of epidermal growth factor receptor and TGF-alpha and survival in upper aerodigestive tract cancer. Anticancer Res 1996;16:283-8.
    58. Shin DM, Ro JY, Hong WK, Hittelman WN. Dysregulation of epidermal growth factor receptor expression in premalignant lesions during head and neck tumorigenesis. Cancer Res 1994;54:3153-9.
    59. Grandis JR, Melhem MF, Barnes EL, et al. Quantitative immunohistochemical analysis of transforming growth factor-alpha and epidermal growth factor receptor in patients with squamous cell carcinoma of the head and neck. Cancer 1996;78:1284-92.
    60. D'Errico A, Barozzi C, Fiorentino M, et al. Role and new perspectives of transforming growth factor-alpha (TGF-alpha) in adenocarcinoma of the gastro-oesophageal junction. Br J Cancer 2000;82:865-70.
    61. Yacoub L, Goldman H, Odze RD. Transforming growth factor-alpha, epidermal growth factor receptor, and MiB-1 expression in Barrett's-associated neoplasia: correlation with prognosis. Mod Pathol 1997;10:105-12.
    62. Ciardiello F, Tortora G A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 2001;7:2958-70。
    63. Saltz L, Meropol NJ, Loehrer PJ, et al. Single agent IMC-C225 (Erbitux TM) has activity in CPT-11 refractory colorectal cancer (CRC) that express the epidermal growth factor receptor (EGFR) [Abstract No. 504]. Proc ASCO 2002;21.
    64. Schmidt M, Reiser P, Hills D et al. Expression of an oncogenic mutant EGF receptor markedly increases the sensitivity of cells to an EGF-receptor-specific antibody-toxin. Int J Cancer 1998;75:878-84.[Medline]
    65. Schmidt M, Maurer-Gebhard M, Groner B et al. Suppression of metastasis formation by a??recombinant single chain antibody-toxin targeted to full-length and oncogenic variant EGF receptors. Oncogene 1999;18:1711-21.
    66. Zhang M, Zhang X, Bai CX, et al. Inhibition of epidermal growth factor receptor expression by RNA interference in A549 cells. Acta Pharmacol Sin. 2004;25(1):61-7.
    67. Gilmore AP, Valentijn AJ, Wang P et al. Activation of BAD by therapeutic inhibition of epidermal growth factor receptor and transactivation by insulin-like growth factor receptor. J Biol Chem 2002;277:27643-50.
    68. Janmaat ML, Kruyt FA, Rodriguez JA et al. Response to epidermal growth factor receptor inhibitors in non-small cell lung cancer cells: limited antiproliferative effects and absence of apoptosis associated with persistent activity of extracellular signal-regulated kinase or Akt kinase pathways. Clin Cancer Res 2003;9:2316-26.
    69. Woodburn JR, Barker AJ, Gibson KH, et al. ZD1839, an epidermal growth factor tyrosine kinase inhibitor selected for clinical development. Proc Am As soc Cancer Res 1997;38:633.
    70. Barker AJ, Gibson KH, Grundy W, et al. Studies leading to the identification of ZD1839 (IRESSA): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg Med Chem Lett 2001;11:1911-4.
    71. Chan KC, Knox WF, Gee JM, et al. Effect of epidermal growth factor receptor tyrosine kinase inhibition on epithelial proliferation in normal and premalignant breast. Cancer Res 2002;62:122-8.
    72. Sirotnak FM, Zakowski MF, Miller VA, et al. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin Cancer Res 2000;6:4885-92.
    73. Raben D, Helfrich BA, Chan D, et al. ZD1839, a selective epidermal growth factor receptor tyrosine kinase inhibitor, alone and in combination with radiation and chemotherapy as a new therapeutic strategy in non-small cell lung cancer. Semin Oncol. 2002;29(1 Suppl 4):37-46.
    74. Ranson M, Hammond LA, Ferry D, et al. ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase 1 trial. J Clin Oncol 2002; 20: 2240-50.
    75. Nakagawa K, Tamura T, Negoro S, et al. Phase I pharmacokinetic trial of the selective oral epidermal growth factor receptor tyrosine kinase inhibitor gefitinib ('Iressa', ZD1839) in Japanese patients with solid malignant tumors. Ann Oncol 2003; 14: 922-30
    76. Herbst RS, Maddox A-M, Rothenberg ML, et al. Selective oral epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 is generally well-tolerated and has activity in non-small-cell lung cancer and other solid tumors: results of a phase I trial. J Clin Oncol??2002; 18: 3815-25
    77. Baselga J, Rischin D, Ranson M, et al. Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol 2002; 20: 4292-302
    78. Albanell J, Rojo F, Averbuch S, et al. Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: histopathologic and molecular consequences of receptor inhibition. J Clin Oncol 2002;20:110-24.
    79. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol 2003;21:2237-46.
    80. Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer. A randomized trial. JAMA 2003;290:2149-58.
    81. Giaccone G, Herbst RS, Manegold C, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial-INTACT 1. J Clin Oncol. 2004;22(5):777-84.。
    82. Herbst RS, Giaccone G, Schiller JH, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial-INTACT 2. J Clin Oncol 2004;22(5):785-94.
    83. Doctor Letter Regarding Iressa (gefitinib) ISEL Data from: http://www.astrazeneca-us.com/modules/PRMS/
    84. Miller VA, Kris MG, Shah N, et al. Bronchioloalveolar pathologic subtype and smoking history predict sensitivity to gefitinib in advanced non-small-cell lung cancer. J Clin Oncol 2004;22(6):1103-9.
    85. Cohen MH, Williams GA, Sridhara R, et al. FDA Drug Approval Summary: Gefitinib (ZD1839) (Iressa(r)) Tablets. The Oncologist, Vol. 8, No. 4, 303-306, August 2003.
    86. Mu XL, Li LY, Zhang XT, Wang S-L, et al. Evaluation of safety and efficacy of gefitinib ('Iressa', zd1839) as monotherapy in a series of Chinese patients with advanced non-small-cell lung cancer: experience from a compassionate-use programme. BMC Cancer 2004;4:51-9.
    87. Bailey RL, Kris M, Wolf M, et al. Tumor EGFR membrane staining is not clinically relevant for predicting response in patients receiving gefitinib ('Iressa', ZD1839) monotherapy for pretreated advanced non-small-ce; lung cancer: IDEAL 1 and 2 [abstract]. Proc Am Assoc??Cancer Res 2003;44:1362.
    88. Polowy C, Coon J, Villaflor W, et al. potential molecular prognostic factors in non-small cell lung cancer (NSCLC) patients treated with gefitinib. J Clin Oncol 2004;22:14S(15suppl.):7089
    89. Harris L, Luftner D, Jager W et al. c-erbB-2 in serum of patients with breast cancer. Int J Biol Markers. 1999; 14(1):8-15.
    90. Lenferink AE, Pinkas-Kramarski R, van de Poll ML, et al. Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J. 1998 Jun 15;17(12):3385-97.
    91. Karunagaran D, Tzahar E, Beerli RR, et al. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J. 1996 Jan 15;15(2):254-64.
    92. Moasser MM, Basso A, Averbuch SD, et al. The tyrosine kinase inhibitor ZD1839 ("Iressa") inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells. Cancer Res. 2001 Oct 1;61(19):7184-8.
    93. Cappuzzo F, Gregorc V, Rossi E, et al. Gefitinib in pretreated Non-Small-Cell Lung cancer (NSCLC): analysis of efficacy and correlation with HER2 and epidermal growth factor receptor expression in locally advanced or metastatic NSCLC. J Clin Oncol 2003;21(14): 2658-63
    94. Cappuzzo F, Magrini E, Ceresoli GL, et al. Akt phosphorylation and gefitinib efficacy in patients with advanced non-small-cell lung cancer. J Natl Cancer Inst 2004;96(15):1133-41.
    95. Han SW, Hwang PG, Chung DH, et al. Epidermal growth factor receptor (EGFR) downstream molecules as response predictive markers for gefitinib (Iressa, ZD1839) in chemotherapy-resistant non-small cell lung cancer. Int J Cancer 2005;113(1):109-15.
    96. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304(5676): 1497-500.
    97. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350(21):2129-39.
    98. Pao W, Miller V, Zakowski M, et al. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 2004;101(36):13306-11.
    99. Huang SF, Liu HP, Li LH, et al. High frequency of epidermal growth factor receptor mutations with complex patterns in non-small cell lung cancers related to gefitinib??responsiveness in Taiwan. Clin Cancer Res 2004;10(24):8195-203.
    100. Mu XL, Li LY, Zhang XT, et al. Gefitinib-sensitive mutations of the epidermal growth factor receptor tyrosine kinase domain in Chinese patients with non-small-cell lung cancer. Clin Cancer Res (In press).
    101. Sordella R, Bell DW, Haber DA, et al. Gefitinib-Sensitizing EGFR Mutations in Lung Cancer Activate Anti-Apoptotic Pathways. Science 2004;305(5687):1163-67.
    102. Lee JW, Soung YH, Kim SY, et al. Absence of EGFR Mutation in the Kinase Domain in Common Human Cancers Besides Non-small Cell Lung Cancer. Int J Cancer 2005;113:510-11.
    103. Barber TD, Vogelstein B, Kinzler KW, et al. Somatic Mutations of EGFR in Colorectal Cancers and Glioblastomas. N Engl J Med 2004;351(27):2883.
    104. Nagahara H, Mimori K, Ohta M1, et al. Somatic Mutations of Epidermal Growth Factor Receptor in Colorectal Carcinoma. Clin Cancer Res 2005;11:1368-71.
    105. Lee JW, Soung YH, Kim SY, Somatic mutations of EGFR gene in squamous cell carcinoma of the head and neck. Clin Cancer Res 2005;11(8):2879-82.
    106. Koizumi F, Shimoyama T, Taguchi F, et al. Establishment of a human non-small cell lung cancer cell line resistant to gefitinib. Int J Cancer 2005 [Epub ahead of print].
    107. Tabernero J, Rojo F, Jimenez E, et al. A phase I PK and serial tumor and skin pharmacodynamic (PD) study of weekly (q1w), every 2-week (q2w) or every 3-week (q3w) 1-hour (h) infusion EMD72000, a humanized monoclonal anti-epidermal growth factor receptor (EGFR) antibody, in patients (pt) with advanced tumors. Proc Am Soc Clin Oncol 2003; 22:192 (abstract 770).
    108. Dahia PLM, Aguiar RCT, Alberta J, et al. PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanisms in heamatological malignancies. Hum Mol Gen 1999;8(2):185-193.
    109. Nagata Y, Lan KH, Zhou X, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004;6(2):117-27.
    110. Bianco R, Shin I, Ritter CA, Yakes FM, et al. Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene. 2003;22(18):2812-22.
    111. She QB, Solit D, Basso A, et al. Resistance to Gefitinib in PTEN-Null HER-Overexpressing Tumor Cells Can Be Overcome through Restoration of PTEN Function or Pharmacologic??Modulation of Constitutive Phosphatidylinositol 3'-Kinase/Akt Pathway Signaling. Clin Cancer Res 2003;9:4340-46.
    112. Long L, Rubin R, Brodt P. Enhanced invasion and liver colonization by lung carcinoma cells overexpressing the type 1 insulin-like growth factor receptor. Exp Cell Res. 1998;238(1):116-21.
    113. Rocha RL, Hilsenbeck SG, Jackson JG, et al. Insulin-like growth factor binding protein 3 and insulin receptor substrate 1 in breast cancer: correlation with clinical parameters and disease-free survival. Clin Cancer Res 1997;3(1): 103-9.
    114. Pollak M. Insulin-like growth factors and prostate cancer. Epidemiol Rev 2001;23(1):59-66.
    115. Lu Y, Zi X, Zhao Y, et al. Insulin-Like Growth Factor-I Receptor Signaling and Resistance to Trastuzumab (Herceptin). J Natl Cancer Inst 2001;93(24):1852-7.
    116. Chakravarti A, Loeffler JS, Dyson NJ. Insulin-like Growth Factor Receptor I Mediates Resistance to Anti-Epidermal Growth Factor Receptor Therapy in Primary Human Glioblastoma Cells through Continued Activation of Phosphoinositide 3-Kinase Signaling. Cancer Res 2002;62(1):200-7.
    117. Sawyers C. Targeted cancer therapy. Nature 2004;432:294-7.
    118. Al-Ali HK, Heinrich MC, Lange T, et al. High incidence of BCR-ABL kinase domain mutations and absence of mutations of the PDGFR and KIT activation loops in CML patients with secondary resistance to imatinib. Hematol J 2004;5:55-60.
    119. Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001;293:876-80.
    120. Shah NP, Nicoll JM, Nagar B, et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002;2:117-125。
    121. Tamborini E, Bonadiman L, Greco A, et al. A new mutation in the KIT ATP pocket causes acquired resistance to imatinib in a gastrointestinal stromal tumor patient. Gastroenterology 2004;127:294-99.
    122. Cools J, DeAngelo DJ, Gotlib J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003;348:1201-14.
    123. Blencke S, Ullrich A, Daub H. Mutation of threonine 766 in the epidermal growth factor receptor reveals a hotspot for resistance formation against selective tyrosine kinase inhibitors. J Biol Chem. 2003;278(17):15435-40.124. Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of Non-Small-Cell Lung Cancer to gefitinib. N Engl J Med 2005;352(8):786-92.
    125. Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the egfr kinase domain. PLoS Med. 2005;2(3):e73.
    126. Huncharek M, Muscat J, Geschwind JF. K-ras oncogene mutation as a prognostic marker in non-small cell lung cancer: a combined analysis of 881 cases. Carcinogenesis 1999;20:1507-10.
    127. Pao W, Wang TY, Riely GJ, et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PloS Med 2005;2(1):e17.