飞秒激光脉冲在光子晶体光纤中传输特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文详细阐述了飞秒激光脉冲在光子晶体光纤中的传输特性,从理论和实验的角度分析和研究了飞秒激光脉冲与光子晶体相互作用时发生的多种非线性效应。首先综述了非线性光学及飞秒激光和光子晶体光纤的发展历程; 利用有限元法计算和分析了光子晶体光纤的色散特性、有效模面积、双折射度、模式折射率等参数; 利用分步傅立叶法数值模拟了广义的非线性薛定谔方程,分析研究了多种条件下超连续光谱的产生过程; 实验上系统研究了在多种结构的光子晶体光纤中超连续光谱的产生并详细讨论了超连续光谱的影响因素; 系统研究了光子晶体光纤中模式和偏振控制下的位相匹配过程。主要研究内容如下:
    第一、利用有限元法分析和计算了不同空气比的光子晶体光纤的色散特性,论述了该方法的可靠性和精度,阐述了包层空气孔结构对光子晶体光纤色散特性的影响; 在此基础上分析和计算了不同空气比的光子晶体光纤的有效模面积并利用微扰法分析了双折射光子晶体光纤; 研究了增强数值孔径型光子晶体光纤的特性和大空气比光子晶体的高阶模折射率;
    第二、利用分步傅立叶法对广义的非线性薛定谔方程进行了数值求解,在加入高阶色散和高阶非线性效应的情况下,模拟了飞秒激光脉冲在光子晶体光纤中的传输情况,分析了飞秒激光脉冲在正负色散区传输时的时域和频域展宽情况; 研究了高阶色散、自陡峭、脉冲内喇曼效应对光子晶体光纤中超短脉冲的传输以及最后超连续光谱产生的影响。
    第三、实验上系统研究了飞秒激光脉冲在具有相同芯径、不同包层结构的光子晶体光纤中超连续光谱的产生情况,指出光子晶体光纤可控色散特性在非线性光学研究中的重要性; 在多种结构的光子晶体光纤中获得了超连续光谱,并对比进行了分析; 在多芯集成的光子晶体光纤中,通过简单调整耦合位置在这种光纤中获得不同波段、不同带宽的超连续光谱; 在渐变数值孔径型的光子晶体光纤中,超连续光谱的输出功率明显提高; 分析讨论了飞秒激光脉冲参数对超连续光谱的影响以及脉冲不稳定性对超连续光谱产生的影响情况; 并首次研究了硅材料热效应对超连续光谱的影响,发现了光子晶体光纤中超连续产生过程中的温度效应。
    第四、利用单模双折射光子晶体光纤与纳焦耳量级的飞秒激光脉冲相互作用,首次在可见光波段高效率地获得了波长可调谐的反斯托克斯超短激光脉冲。所产生的反斯托克斯波脉冲的中心波长分别为490nm和510nm,并相应观察到明亮的蓝光和绿光基模输出。实验系统研究了泵浦光偏振方向和泵浦光强度对反斯托克斯波产生的影响。
    第五、利用多模双折射光子晶体光纤与纳焦耳量级的飞秒激光脉冲相互作
The propagation of femtosecond laser pulses in photonic crystal fiber is demonstrated in this dissertation. The experimental and numerical results for nonlinear evolution of femtosecond pulses during propagation in photonic crystal fibers are presented. The phenomena known as supercontinuum generation and other nonlinear optical processes are investigated with the focus mainly on their occurrence in photonic crystal fibers. It is analyzed how Finite Element Method (FEM) calculations are done to find the frequency dependent propagation constant, dispersion curve, effective area, birefringence, modal refractive index of the fibers. The processes responsible for the generation of a supercontinuum are identified though the simulation of the nonlinear Schrodinger equation by Split-step Fast Fourier Transform Method. Efficient intermodally phase-matched processes are generated in birefrigent photonic crystal fibers and controlled by the polarization of the pumping femtosecond pulses. The details are described as follows:
    1 The FEM calculations provide dispersion curves of the photonic crystal fibers with different air filling fractions. The precision and error of this method is discussed. Base on the FEM calculation, the birefringence is obtained with the perturbation theory. The characters of the enhanced-numerical-aperture photonic crystal fibers and the higher-oder refractive indices of the large core size photonic crystal fibers are discussed here.
    2 The nonlinear Schr?dinger equation with higher-order dispersions and nonlinearity has been applied to describe the propagation of femtosecond laser pulses and supercontinuum generation in photonic crystal fibers. Numerical simulation results show that the supercontinuum bandwidth varies as the femtosecond laser pulses propagating in different dispersion ranges and the role of Self-Steepening and Raman Shock is highlighted.
    3 Experimental results show that the nonlinearities can be efficiently harnessed to generate supercontinuum and laser light at new wavelengths through appropriate choice of the dispersion curve. The ability to control light on the femtosecond timescale, by manipulating the dispersion profiles precisely over a broad wavelength band, defines a new territory in nonlinear optics. And an array of fused silica waveguiding channels with randomly distributed transverse sizes in a disordered phtonic crystal fiber is shown to have an ability to generate a highly efficient and
    broadly tunable supercontinuum by low-energy ultrashort laser pulses, which dispersion can be switched in such waveguide arrays by coupling the pump field into waveguiding wires with different diameters. And a new kind of photonic crystal fiber with very high numerical aperture is used to enhance the efficiency of supercontinuum generation. The instability of the femtosecond laser pulses which can wash out the spectral fine structure and degrade the coherence of the generated supercontinuum has also been discussed here. Slowly-expanding supercontinuum generation phenomena were observed and proved to be the result of the temperature of the fiber end, arising from heat flow into the fiber from the in put light. 4 Birefringent microstructure fibers are shown to allow efficient generation of frequency-tunable Anti-Stokes line emissions as a result of nonlinear-optical spectral transformation of unamplified femtosecond Ti: sapphire laser pulses. The pumping femtosecond pulses polarized along the fast and slow axes of the elliptical core of a photonic crystal fiber generate intense blue-shifted lines centered at 490 and 510 nm, respectively, observed as bright blue and green emissions at the output of a 10-cm length microstructure fiber. 5 Nonlinear-optical spectral transformation of unamplified 30-fs Ti:sapphire laser pulses in a birefringent fused silica photonic-crystal fiber is shown to result in the efficient generation of a doublet of two physically distinct states of the anti-Stokes radiation field. The central wavelength of frequency-upconverted radiation and its transverse intensity profile are controlled in our experiments through a selective coupling of the pump field into higher order modes of the fiber and the polarization-sensitive phase matching in parametric four-wave mixing, allowing the central wavelength of the Anti-Stokes output to be tuned and its transverse intensity profile to be modified by varying the polarization state of the input pumping field.
引文
[1] 石顺祥,陈果夫,赵卫,等,非线性光学,西安:西安电子科技大学出版社,2003,1~3
    [2] P.A.Franken, A.E.Hill, C.W.Peters, et.al. Generation of Optical Harmonics, Phys. Rev. Lett., 1961,7:118-121
    [3] M. Hentschel, R. Kienberger, Ch. Spielmann, et.al. Attosecond metrology, Nature 2001,414: 509-513
    [4] R. L. Fork, Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking, Appl. Phys. Lett. 1981,38: 671-673
    [5] J. A. Valdmanis, R. L. Fork and J. P. Gorden, Generation of optical pulse as short as 27 femtosecond intracavity directly from a laser and balancing self-phase modulation, group-velocity dispersion, saturable ansorption and saturable gain, Opt. Lett. 1995,10:131-133
    [6] 王清月,邢岐荣,向望华,等, 脉冲碰撞锁模环形染料激光器的研究,光学学报,1986, 16: 320-324
    [7] R. L. Fork, C. H. B. Cruz, P. C. Becker, et.al. Compression of optical pulses to six femtoseconds by using cubic phase compensation, Opt. Lett. 1987,12:483-485
    [8] D. E. Spence, P. N. Kean and W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser, Opt. Lett. 1991,16:42-44
    [9] H. A. Haus, J. G. Fujimoto and E. P. Ippen, Structure for additive pulse mode locking, J. Opt. Soc. Am. B, 1991,8:2068-2076
    [10] T. Brabec, Ch. Spielman, P. E. Curley et.al. Kerr lens mode locking, Opt. Lett. 1992,17: 1292-1294
    [11] 王清月,戴建明,掺钛蓝宝石激光器实现飞秒级自聚焦锁模运转,光学学报, 1993 , 13 (1): 93-97
    [12] M. Piché and F. Salin, Self-mode locking of solid-state lasers without aperture, Opt. Lett. 1993,18: 1041-1043
    [13] 王清月,戴建明,张伟力, 等,15fs 低功率泵浦的自锁模掺钛蓝宝石激光器,中国激光,1997,24: 1057-1060
    [14] G. Cerullo, S. De Silvestri, V. Magni, et.al. Resonators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers, Opt. Lett. 1994, 19: 807-809
    [15] Y.-C. Chen and W.-Z. Lin, Thick lens model for self-focusing in Kerr medium, Appl. Phys. Lett. 1998,73:429-431
    [16] 王专,王清月,韩英魁,等,直接从钛宝石激光器获得超连续光谱,物理学报,2004,53(10): 3375-3378
    [17] R. Ell, U. Morgner and F. X. K?rtner, et.al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser, Opt. Lett. 2001,26: 373-375
    [18] A. Baltuska, Z. Wei, M. Pshenichnikov, et.al. Optical pulse compression to 5 fs at 1MHz repetition rate, Opt. Lett. 1997,22: 102-104
    [19] U. Keller, G. W. Hooft, W. H. Knox, et.al. Femtosecond pulses from a continuously self-starting passively mode-locked Ti:sapphire laser, Opt. Lett. 1991,16: 1022-1024
    [20] I. D. Jung, F. X. K?rtner, N. Matuschek, et.al. Self-starting 6.5-fs pulses from a Ti:sapphire laser, Opt. Lett. 1997, 22: 1009-1011
    [21] Z. Zhang, K.Torizuka, T. Itatani, et.al. Femtosecond Cr:forsterite laser with mode locking intiated by a quantum-well saturable absorber, IEEE J. Quantum Electron. 1997,33(11): 1975-1981
    [22] 柴路,王清月,张志刚,等,用腔内半导体可饱和吸收镜钛宝石激光器中自锁模状态的实验研究,物理学报,2001,50(1): 68-72
    [23] 王清月,王勇,张伟力,等,飞秒放大系统中振荡级自启动的动力学过程研究,中国科学,2001,31(2): 173-177
    [24] D. Strickland and G. Mourou, Compression of amplified chirped optical pulses, Opt. Comm. 1985,56: 219-221
    [25] P. Maine, D. Strickland, P.Bado, et.al. Generation of ultrahigh peak power pulses by chirped pulse amplification, IEEE J. Quantum Electron. 1988, 24: 398-403
    [26] J. P. Zhou, C. P. Huang, M. M. Murnane, et.al. Amplification of 26-fs, 2-TW pulses near the gain-narrowing limit in Ti:sapphire, Opt. Lett. 1995, 20: 64-66
    [27] Z. Zhang, S. Harayama, T. Yagi, et.al.Vertical chirp in grating pair stretcher and compressor, Appl. Phys. Lett. 1995, 67: 176-178
    [28] 王清月,张伟力,王勇,等,飞秒激光啁啾放大过程中的放大自发辐射及其抑制,中国科学,2000,30(5): 456-463
    [29] M. D. Perry and G. Mourou, Terawatt to petawatt subpicosecond lasers, Science, 1994,264 917-924
    [30] M. Aoyama, K. Yamakawa, Y. Akahane, et.al. 0.85-PW, 33-fs Ti:sapphire laser, Opt. Lett. 2003,28(17):1594-1596
    [31] F. Patterson, F. J. Bonlie, D. Price, et.al in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, Washington, DC), Post-Deadline Paper CPD6
    [32] M. Nisoli, S. De Silvestri and O. Svelto, Generation of high energy 10 fs pulses by a new pulse compression technique, Appl. Phys. Lett. 1996, 68: 2793-2795
    [33] M. Nisoli, S. De Silvestri, O. Svelto,et.al. Compression of high-energy laser pulses below 5 fs, Opt. Lett. 1997, 22: 522-524
    [34] K. Yamane, Z. Zhang, K. Oka, et.al. Optical pulse compression to 3.4fs in the monocycle region by feedback phase compensation, Opt. Lett., 2003, 28: 2258-2262
    [35] Focus issue on supercontinuum generation in photonic crystal fibers, J. Opt. Soc. Am. B, 2002, 19(9): 2148-2190
    [36] A. Zheltikov, Ed, Special issue on supercontinuum generation. Appl. Phy. B, 2003, 77(2-3): 143-376
    [37] M.L.Hu, C.-y.Wang, Y.F. Li,et.al. Supercontinuum Generation and Transmission in a Random Distributed Microstructure Fiber, Las. phy.,2004,14(5): 776-779
    [38] M. Adachi, K. Yamane, R. Morita, et.al. Pulse compression using direct feedback of the spectral phase from photonic crystal fiber output without the need for the Taylor expansion method,IEEE Photon. Tech. Lett. 2004,16 (8): 1951-1953
    [39] E. Yablonovitch , Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Phys. Rev. Lett. 1987,58: 2059-2062
    [40] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 1987,58: 2486-2489
    [41] E. Yablonovitch and T. J. Gmitter, Photonic band structure: The face-centered-cubic case, Phys. Rev. Lett. 1989,63: 1950–1953
    [42] E. Yablonovitch , T. J. Gmitter, R. D. Meade, et.al. Donor and acceptor modes in photonic band structure, Phys. Rev. Lett. 1991, 67: 3380–3383
    [43] J.C. Knight, T.A. Birks, P.St.J. Russell, et.al., All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett., 1996, 21(19):1547-1549
    [44] T.A. Birks, J.C. Knight, P.St.J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett., 1997, 22(13):961-963
    [45] J.C. Knight, J. Broeng, T.A. Birks, et. al., Photonic band gap guidance in optical fibers, Science,1998, 282(5393):1476-1478
    [46] Kaiser, P. & Astle, H. W. Low loss single material fibers made from pure fused silica. Bell Syst. Tech. J. 1974,53: 1021-1039
    [47] R. K. Kumar, A.K. George, W.H. Reeves, et. al., Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation, Opt. Exp., 2002, 10(25): 1520-1525
    [48] M. V. Eijkelenborg, M. Large, A. Argyros, et.al., Microstructured polymer optical fibre, Opt. Exp., 2001, 9(7):319-327
    [49] B.Temelkuran, S. D.Hart, G.. Benoit, et.al. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature, 2002 420: 650–653
    [50] P. Falkenstain, C.D. Merritt, B.L. Justus et. al., Fused performs for the fabrication of photonic crystal fibers, Opt. Lett., 2004, 29(16): 1858-1860
    [51] T. K. Tajima, J. Zhou, Y. Nakajima, et. al., Ultra low loss and long length photonic crystal fiber, J. Lightwave Tech., 2004, 22(1):7-10.
    [52] B.J. Mangan, L. Farr, A.Langford, et. al., Low loss (1.7 dB/km) hollow core photonic bandgap fiber, Optical Fiber Communications Conference(OFC), 2004, PDP24-1-PDP24-3
    [53] N.G.R. Broderick, T.M. Monro, P.J. Bennett, et. al., Nonlinearity in holey optical fibers: measurement and future opportunities, Opt. Lett., 1999, 24(20): 1395-1397
    [54] W.J. Wadsworth, R.M. Percival, G. Bouwmans, et. al., Very high numerical aperture fibers, IEEE Photon. Tech. Lett., 2004, 16(3):843-845
    [55] J.C. Knight, J. Broeng, T.A. Birks, et. al., Photonic band gap guidance in optical fibers, Science,1998, 282(5393):1476-1478
    [56] A. Argyros, I. Bassett, M.A. van Eijkelenborg, et. al., Analysis of ring-structured Bragg fibres for single TE mode guidance, Opt. Exp., 2004, 12(12):2688-2698
    [57] D.G. Ouzounov, F.R. Ahmad, D. Müller, et. al., Generation of megawatt optical solitons in hollow-core photonic band-gap fibers, Science, 2003, 301 (5640):1702-1704
    [58] W. Gobel, A. Nimmerjahn, F. Helmchem, et.al., Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber, Opt. Lett., 2004, 29(11):1285-1287
    [59] N. Nishizawa, Y. Ito, T. Goto, Wavelength-tunable femtosecond soliton pulse generation for wavelengths of 0.78-1.0μm using photonic crystal fibers and a ultrashort fiber laser, Japanese J. Appl. Phy., 2003, 42(2A): 449-452
    [60] F. Druon, N. Sanner, G. Lucas-Leclin, et. al., Self-compression and Raman soliton generation in a photonic crystal fiber of 100-fs pulses produced by a diode-pumped Yb-doped oscillator, Appl. Opt., 2003, 42(33):6769-6770
    [61] D.V. Skryabin, F. Luan, J.C. Knight, et. al., Soliton self-frequency shift cancellation in photonic crystal fibers, Science, 2003, 301(5640):1705-1708
    [62] K.S. Abedin, F. Kubota, Widely tunable femtosecond soliton pulse generation at a 10-GHz repetition rate by use of the soliton self-frequency shift in photonic crystal fiber, Opt. Lett., 2003, 28(19):1760-1762
    [63] W.J. Wadsworth, J.C. Knight, A. Ortigosa-Blanch, et. al., Soliton effects in photonic crystal fibres at 850nm, Electron. Lett., 2000, 36 (1):53-55
    [64] B.R. Washburn, S.E. Ralph, P.A. Lacourt, et. al., Tunable near-infrared femtosecond soliton generation in photonic crystal fibres, Electron. Lett., 2001, 37 (25):1510-1512
    [65] N. Nishizawa, Y. Ito, T. Goto, 0.78-0.90-μm wavelength-tunable femtosecond soliton pulse generation using photonic crystal fiber, IEEE Photon. Tech. Lett., 2002, 14(7): 986-988
    [66] W.J. Wadsworth, N.Joly, J.C. Knight, et. al., Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres, Opt. Exp., 2004, 12(2):299-309
    [67] J. Limpert, A. Liem, M. Reich, et. al., Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier, Opt. Exp., 2004, 12(7): 1313-1319
    [68] N. A. Mortensen, M.D. Nielsen, J.R. Folkenberg, et. al., Improved large-mode-area endlessly single-mode photonic crystal fibers, Opt. Lett., 2003, 28(6): 393-395
    [69] D.G. Ouzounov, K.D. Moll, M.A. Foster, et. al., Delivery of nanojoule femtosecond pulses through large-core microstructured fibers, Opt. Lett., 2002, 27(17):1513-1515
    [70] J.C. Knight, T.A. Birks, R.F. Cregan, et. al., Large mode area photonic crystal fibre, Electron. Lett., 1998, 34 (13):1347-1348
    [71] Y. Ni, L. Zhang, J. Peng, Optimization of holey fiber for dispersion compensation, Chinese Opt. Lett., 2003, 1(7): 385-387
    [72] F. Poli, A. Cucinotta, M. Fuochi, et. al., Characterization of microstructured optical fibers for wideband dispersion compensation, J. Opt. Soc. Am. B, 2003, 20(10): 1958-1962
    [73] B. Zsigri, J. L?gsgaard, A. Bjarklev, A novel photonic crystal fibre design for dispersion compensation, J. Opt. A, 2004, 6(7): 717-720
    [74] L.P. Shen, W.-P. Huang, G.X. Chen, et. al., Design and optimization of photonic crystal fibers for broad-band dispersion compensation, IEEE Photon. Tech. Lett., 2003, 15(4):540-542
    [75] T.A. Birks, D. Mogilevtsev, J.C. Knight, et. al., Dispersion compensation using single-material fibers, IEEE Photon. Tech. Lett., 1999, 11(6): 674-676
    [76] Y. Ni, L. Zhang, L. An, et. al., Dual-core photonic crystal fiber for dispersion compensation, IEEE Photon. Tech. Lett., 2004, 16(6):1516-1518
    [77] 胡明列, 王清月, 栗岩锋等, 大空气比微结构光纤中增强的非线性光谱展宽的研究, 中国激光, 2004, 31(12): 1429-1432
    [78] 李曙光,冀玉领,周桂耀等,多孔微结构光纤中飞秒激光脉冲超连续谱的产生,物理学报,2004, 53(2):478-483
    [79] 胡明列,王清月,栗岩锋等,非均匀微结构光纤中超连续光的产生和传输, 中国激光,2004, 31(5):567-569
    [80] S.G. Leon-Saval, T.A. Birks, W.J. Wadsworth, et. al., Supercontinuum generation in submicron fibre waveguides, Opt. Exp., 2004, 12(13):2864-2869
    [81] N. Haverkamp, H.R. Telle, Complex intensity modulation transfer function for supercontinuum generation in microstructure fibers, Opt. Exp., 2004,12(4): 582-587
    [82] L. Provino, J.M. Dudley, H. Maillotte, et. al., Compact broadband continuum source based on microchip laser pumped microstructured fibre, Electron. Lett., 2001, 37 (9):558-560
    [83] L. Tartara, I. Cristiani, V.J. Degiorgio, Nonlinear propagation of ultrashort laser pulses in a microstructured fiber, J. Nonlinear Opt. Phy. & Mat., 2002, 11(4): 409-419
    [84] A.B. Fedotov, V.V. Yakovlev, A.M. Zheltikov, Generation of a cross-phase-modulated third harmonic with unamplified femtosecond Cr: forsterite laser pulses in a holey fiber, Las. Phy., 2002, 12(2):268-272
    [85] L. Tartara, I. Cristiani, V.J. Degiorgio, et. al., Phase-matched nonlinear interactions in a holey fiber induced by infrared super-continuum generation, Opt. Comm., 2003, 215(1-3):191-197
    [86] A.N. Naumov, A.B. Fedotov, A.M. Zheltikov, et. al., Enhanced χ (3)interactions of unamplified femtosecond Cr:forsterite laser pulses in photonic-crystal fibers, J. Opt. Soc. Am. B, 2002, 19(9): 2183-2190
    [87] D.A. Akimov, E.E. Serebryannikov, A.M. Zheltikov, et. al., Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber, Opt. Lett., 2003, 28(20):1948-1950
    [88] S.O. Konorov, A.M. Zheltikov, Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation, Opt. Exp., 2003, 11(19):2440-2445
    [89] T.M. Monro, V. Pruneri, N.G. R. Broderick, et. al., Broad-band second-harmonic generation in holey optical fibers, IEEE Photon. Tech. Lett., 2001, 13 (9):981-983
    [90] M. Hu, C. Wang, L. Chai, et. al., Birefringence-controlled anti-Stokes line emission from a microstructure fiber, Las. Phy. Lett., 1(6):299-302
    [91] S.O. Konorov, E.E. Serebryannikov, P. Zhou, et. al., Mode-controlled spectral transformation of femtosecond laser pulses in microstructure fibers, Las. Phy. Lett., 1(4):199-204
    [92] A.M. Zheltikov, Microstructure-fiber frequency converters, Las. Phy. Lett., 1(5):220-233
    [93] S.O. Konorov, E.E. Serebryannikov, A.M. Zheltikov, et. al., Mode-controlled colors from microstructure fibers, Opt. Exp., 2004, 12(5):730-735
    [94] M. Hu, C.-y. Wang, Y. Li, et.al. Multiplex frequency conversion of unamplified 30-fs Ti: sapphire laser pulses by an array of waveguiding wires in a random microstructure fiber, Opt. Exp., 2004,12(25): 6129-6234
    [95] X.E. Lin, Photonic band gap fiber accelerator, Physical Review Special Topics-Accelerators and Beams, 2001, 4(5): 051301-1-051301-7
    [96] I.V. Mel’nikova, J.W. Haus, P.G. Kazansky, Vecksler-Macmillan phase stability for neutral atoms accelerated by a laser beam, Opt. Comm., 2003, 220 (1-3): 143-150
    [97] F. Benabid, J.C. Knight, P.St.J. Russell, Particle levitation and guidance in hollow-core photonic crystal fiber, Opt. Exp., 2002, 10(21):1195-1203
    [98] Y. Li, Q. Wang, M. Hu, Numerical analysis of multicore photonic crystal fibers, Chinese Opt. Lett., 2003, 1(10): 570-572
    [99] P.J. Roberts, T.J. Shepherd, The guidance properties of multi-core photonic crystal fibres, J. Opt. A, 2001, 3(2):S133-S140
    [100] P.M. Blanchard, J.G. Burnett, G.R.G. Erry, et. al., Two-dimensional bend sensing with a single, multi-core optical fibre, Smart Materials and Structures, 2000, 9(2): 132-140
    [101] J. Canning, M.A. van Eijkelenborg, T. Ryan, et. al., Complex mode coupling within air-silica structured optical fibres and applications, Opt. Comm., 2000, 185(4-6):321-324
    [102] W.N. MacPherson, M.J. Gander, R. McBride, et. al., Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre, Opt. Comm., 2001, 193(1-6):97-104
    [103] W.N. MacPherson, J.D.C. Jones, B.J. Mangan, et. al., Two-core photonic crystal fibre for Doppler difference velocimetry, Opt. Comm., 2003, 223(4-6): 375-380
    [104] B.J. Mangan, J.C. Knight, T.A. Birks, et. al., Experimental study of dual-core photonic crystal fibre, Electron. Lett., 2000, 36 (16): 1358-1359
    [105] W.E.P. Padden, M.A. van Eijkelenborg, A. Argyros, et. al., Coupling in a twin-core microstructured polymer optical fiber, Appl. Phy. Lett., 2004, 84(10): 1689-1691
    [106] T. Südmeyer, F. Brunner, E. Innerhofer, et. al., Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber, Opt. Lett., 2003, 28(20):1951-1953
    [107] G. Chang, T.B. Norris, H.G. Winful, Optimization of supercontinuum generation in photonic crystal fibers for pulse compression, Opt. Lett., 2003, 28(7):546-548
    [108] C.J.S. de Matos, S.V. Popov, J.R. Taylor, Short-pulse, all-fiber, Raman laser with dispersion compensation in a holey fiber, Opt. Lett., 2003, 28(20):1891-1893
    [109] H. Lim, F.O. Ilday, F.W. Wise, Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control, Opt. Exp., 2002, 10(25):1497-1502
    [110] J. Limpert, T. Schreiber, S. Nolte, et. al., All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber, Opt. Exp., 2003, 11(24): 3332-3337
    [111] C.J.S. de Matos, J.R. Taylor, T.P. Hansen, et. al., All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber, Opt. Exp., 2003, 11(22):2832-2837
    [112] A.V. Avdokhin, S.V. Popov, J.R. Taylor, Totally fiber integrated, figure-of-eight, femtosecond source at 1065 nm, Opt. Exp., 2003, 11(3):265-269
    [113] K.S. Abedin, F. Kubota, 10 GHz, 1 ps regeneratively modelocked fibre laser incorporating highly nonlinear and dispersive photonic crystal fibre for intracavity nonlinear pulse compression, Electron. Lett., 2004, 40 (1):58-60
    [114] G. McConnell, E. Riis, Ultra-short pulse compression using photonic crystal fibre, Appl. Phy. B, 2004, 78(5):557-563
    [115] H. Lim, F. W. Wise, Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber, Opt. Exp., 2004, 12(10):2231-2235
    [116] C.J.S. de Matos, J.R. Taylor, Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40× pulse compression using air-core fiber and conventional erbium-doped fiber amplifier, Opt. Exp., 2004, 12(3):405-409
    [117] S. Lakó, J. Seres, P. Apai, et. al., Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation, Appl. Phy. B, 2003, 76(6-7):267-275
    [118] T.M. Monro, W. Belardi, K. Furusawa, et. al., Sensing with microstructured optical fibres, Measurement Science and Technology, 2001, 12(7):854-858
    [119] J.M. Fini, Microstructure fibres for optical sensing in gases and liquids, Measurement Science and Technology, 2004, 15(6):1120-1128
    [120] P.M. Blanchard, J.G. Burnett, G.R.G. Erry, et. al., Two-dimensional bend sensing with a single, multi-core optical fibre, Smart Materials and Structures, 2000, 9(2): 132-140
    [121] Y.L. Hoo, W. Jin, C. Shi, et. al., Design and modeling of a photonic crystal fiber gas sensor, Applied Optics, 2003, 42(18):3509-3515
    [122] M.T. Myaing, J.Y. Ye, T.B. Norris, et. al., Enhanced two-photon biosensing with double-clad photonic crystal fibers, Opt. Lett., 2003, 28(14):1224-1226
    [123] T.M. Monro, D.J. Richardson, P.J. Bennett, Developing holey fibres for evanescent field devices, Electron. Lett., 1999, 35 (14):1188-1189
    [124] Y.L. Hoo, W. Jin, H.L. Ho, et. al., Measurement of gas diffusion coefficient using photonic crystal fiber, IEEE Photon. Tech. Lett., 2003, 15(10):1434-1436
    [125] C. Kerbage, P. Steinvurzel, A. Hale, et. al., Microstructured optical fibre with tunable birefringence, Electron. Lett., 2002, 38 (7):310-312
    [126] C. Kerbage, M. Sumetsky, B.J. Eggleton, Polarisation tuning by micro-fluidic motion in air-silica microstructured optical fibre, Electron. Lett., 2002, 38(18): 1015-1017
    [127] S. Lorenz, Ch. Silberhorn, N. Korolkova, et. al., Squeezed light from microstructured fibres: towards free-space quantum cryptography, Appl. Phy. B, 2001, 73(8):855-859
    [128] J. E. Sharping, J. Chen, X. Li, et.al.Quantum-correlated twin photons frommicrostructure fiber, Opt. Exp., 2004, 12(14):3087-3094
    [129] M.A. van Eijkelenborg, Imaging with microstructured polymer fibre, Opt. Exp., 2004, 12(2):342-346
    [130] K. Shi, P. Li, S. Yin, et. al., Chromatic confocal microscopy using supercontinuum light, Opt. Exp., 2004, 12(10):2096-2101
    [131] F. Benabid, J.C. Knight, G. Antonopoulos, et. al., Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber, Science, 2002, 98(5592):399-402
    [132] F. Benabid, G. Bouwmans, J. C. Knight, et.al.Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen , Phys. Rev. Lett. 2004, 93, 123903-1-123903-4
    [133] R. Holzwarth, Th. Udem, T.W. H?nsch, et. al., Optical frequency synthesizer for precision spectroscopy, Phy. Rev. Lett., 2000, 85(11): 2264-2267
    [134] Th. Udem, S.A. Diddams, K.R. Vogel, et. al., Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser, Phy. Rev. Lett., 2001, 86(22): 4996-4999
    [135] Th. Udem, R. Holzwarth, T.W. H?nsch, Optical frequency metrology, Nature, 2002, 416(16): 233-237
    [136] A. A. Maradudin, A. R. McGurn. Out of plane propagation of electromagnetic waves in two-dimensional periodic dielectric medium. J. Mod. Opt. 1994,41: 275-284
    [137] S. Guenneau, A. Nicolet, F. Zolla, et al. NUMERICAL AND THEORETICAL STUDY OF PHOTONIC CRYSTAL FIBERS. Progress In Electromagnetics Research. PIER. 2003, 41:271-305
    [138] Y.-L. Hsueh, E. S.-T. Hu, M. E. Marhic, et al. Opposite-parity orthonormal function expansion for efficient full-vectorial modeling of holey optical fibers. Opt. Lett., 2003 , 28(14): 1188-1190
    [139] A. Ferrando, E. Silvestre, J. J. Miret, et al. Full-vector analysis of a realistic photonic crystal fiber. Opt. Lett. 1999,24(5):276-278
    [140] T.M. Monro, D.J. Richardson, N.G.R. Broderick, et. al., Holey optical fibers: an efficient modal model, J. Lightwave Tech., 1999, 17(6):1093~1102
    [141] T.M. Monro, D.J. Richardson, N.G.R. Broderick, et. al., Modeling large air fraction holey optical fibers, J. Lightwave Tech., 2000, 18(1):50~56
    [142] T. P.White, R.C.McPhedran, C.M. deSterke, et al. Confinement losses in microstructured optical fibers. Opt. Lett. 2001, 26(21): 1660-1662
    [143] T.P. White, R.C. McPhedran. Calculations of air-guided modes in photonic crystal fibers using the multipole method. Opt. Exp.. 2001 , 9(13): 721-732
    [144] L.Poladian, N.A.Issa, T.M. Monro. Fourier decomposition algorithm for leaky modes of fibres with arbitrary geometry. Opt. Exp., 2002, 10(10): 449-454
    [145] J. M. Fini. Analysis of microstructure optical fibers by radial scattering decomposition. Opt. Lett., 2003, 28(12): 992-994
    [146] G. B. Ren, Z.Wang, S.Q. Lou, et. al., Mode classification and degeneracy in photonic crystal fibers, Opt. Exp., 2003, 11(11):1310~1321
    [147] G. B. Ren, Z.Wang, S.Q. Lou, et. al., Full-vectorial analysis of complex refractive-index photonic crystal fibers, Opt. Exp., 2004, 12(6): 1126-1135
    [148] Z.Wang, G. B. Ren, S.Q. Lou, et. al., Mode disorder in elliptical hole PCFs, Opt. Fib. Tech..2004, 10: 124–132
    [149] F. Fogli, L. Saccomandi, P. Bassi. Full vectorial BPM modeling of Index-Guiding Photonic Crystal Fibers and Couplers. Opt. Exp.. 2002, 10(1): 54-59
    [150] C.A.De Francisco, B.V.Borges, M.A.Romero. A semivectorial iterative finite-difference method to model photonic crystal fibers. IEEE MTT-S IMOC, 2001:407-409
    [151] E. P. Kosmidou, T. D. T siboukis. An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials. Opt. and Quant. Electron., 2003, 35: 931-946
    [152] M.-Y. Chen, R.-J. Yu. Analysis of Photonic Bandgaps in Modified Honeycomb Structures IEEE Photonics Technol. Lett. 2004,16:819-821
    [153] S. Stagira. Full vectorial analysis of cylindrical waveguides using Green functions. Opt. Comm. 2003, 225: 281-291
    [154] M. Koshiba, Y. Tsuji. Curvilinear Hybrid Edge/Nodal Elements with Triangular Shape for Guided-Wave Problems. IEEE J. Lightwave Tech., 2000, 18: 737-743
    [155] M. Koshiba. Full-vector analysis of photonic crystal fibers using the finite element method. IEICE TRANS. ELECTRON. 2002, E85-C:881-888
    [156] M. Koshiba, K. Saitoh. Numerical Verification of Degeneracy in Hexagonal Photonic Crystal Fibers. IEEE Photonics Techn. Lett., 2001, 13: 1313-1315
    [157] 胡明列,王清月,栗岩锋,微结构光纤的有限元分析计算法,中国激光,2004,31(11):1337-1342
    [158] K. Saitoh, M. Koshiba, Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme:Application to Photonic Crystal Fibers. IEEE J. of Quntum Electronics, 2002, 38: 927-933
    [159] Ni Guan, S Habu, KTakenaga, et al. Boundary Element Method for Analysis of Holey Optical Fibers. J. Lightwave Tech.. 2003, 21(8): 1787-1789
    [160] A. Cucinotta, S. Selleri, L. Vincetti, et al. Perturbation Analysis of Dispersion Properties in Photonic Crystal Fibers Through the Finite Element Method. J. Lightwave Tech. 2002, 20(8): 1433-1442
    [161] F. Brechet, J. Marcou, D. Pagnoux, et al. Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method. Opt. Fib. Tech.. 2000, 6: 181-191
    [162] 李曙光,刘晓东,侯蓝田. 光子晶体光纤的导波模式和色散特性研究. 物理学报,2003, 52(11):2811-2817
    [163] 李曙光,微结构光纤中超短激光脉冲传输及其色散特性研究:[博士学位论文],秦皇岛; 燕山大学,2004
    [164] 李曙光,刘晓东,侯蓝田. 一种光子晶体光纤基模色散特性的矢量法分析. 物理学报,2004, 53(6):1873-1879
    [165] 李曙光,刘晓东,侯蓝田. 光子晶体光纤色散补偿特性的理论研究,物理学报,2004, 53(6):1880-1886
    [166] 李曙光,刘晓东,侯蓝田. 接近于零色散的色散平坦光子晶体光纤的数值模拟与分析. 中国激光,2004,31(6):713-717
    [167] 宋俊峰,王海嵩,常玉春,等.光子晶体光纤的基模分析,光学学报,2002,22(9):1032-1034
    [168] 栗岩锋,光子晶体光纤色散特性的理论研究:[博士学位论文],天津; 天津大学,2005
    [169] 田贺斌,杨天新,王颖,等,光子晶体光纤模式特性分析,量子电子学报,2003,20(5): 580-583
    [170] 栗岩锋,胡明列,王清月,800 nm 处为零色散的光子晶体光纤的计算与设计, 中国激光,2003, 30(5):427-430
    [171] Y. Li, B. Liu, Z. Wang, et. al., Influence on photonic crystal fiber dispersion of the size of air holes in different rings within the cladding, Chinese Opt. Lett., 2004, 2(2): 75-77
    [172] Y.-F. Li, C.-Y. Wang, M.L. Hu, A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation , Opt. Comm.,2004, 238(1-3): 29-34
    [173] 吴重庆.光波导理论. 北京:清华大学出版社, 2000:1-66
    [174] 廖延彪. 光纤光学. 北京:清华大学出版社, 2000:18-28
    [175] T.M. Monro, P.J. Bennett, N.G.R. Broderick, et. al., Holey fibers with random cladding distributions, Opt. Lett., 2000, 25(4):206-208
    [176] J.C. Baggett, T.M. Monro, W. Belardi, et. al., Assorted core air-clad fibre, Electron. Lett., 2000, 36 (25):2065-2066
    [177] D. Kominsky, G.R. Pickrell1, R. Stolen, Generation of random-hole optical fiber, Opt. Lett., 2003, 28(16):1409-1411
    [178] G.E. Town, T. Funaba, T. Ryan, et. al., Optical supercontinuum generation from nanosecond pump pulses in an irregularly microstructured air-silica optical fiber, Appl. Phy. B, 2003, 77(2-3):235-238
    [179] N.A. Mortensen, Effective area of photonic crystal fibers, Opt. Exp., 2002, 10(7): 341-348
    [180] T. Hirooka, Y. Hori, M. Nakazawa, Gaussian and sech approximations of mode field profiles in photonic crystal fibers, IEEE Photon. Tech. Lett., 2004, 16(4):1071-1073
    [181] N.A. Mortensen, J.R. Folken, P.M.W. Skovgaard, et. al., Numerical aperture of single-mode photonic crystal fibers, IEEE Photon. Tech. Lett., 2002, 14(8):1094-1096
    [182] G.E. Town, J.T. Lizier, Tapered holey fibers for spot-size and numerical-aperture conversion, Opt. Lett., 2001, 26(14):1042~1044
    [183] T. P. Hansen, J. Broeng, S. E. B. Libori, et al. Highly Birefringent Index-Guiding Photonic Crystal Fibers IEEE Photon. Tech. Lett., 2001, 13(6):588-590
    [184] A. Bjarklev, J. Broeng, S.E. Barkou, et. al., Polarization properties of honeycomb-structured photonic bandgap fibres, Journal of Optics A, 2000, 2(6):584-588
    [185] A. Ortigosa-Blanch, J.C. Knight, W.J. Wadsworth, et. al., Highly birefringent photonic crystal fibers, Opt. Lett., 2000, 25(18):1325-1328
    [186] J. K. Ramka, R.S. Windeler, A.J. Stentz, Optical properties of high-delta air-silica microstructure optical fibers, Opt. Lett., 2000, 25(11): 796-798
    [187] N. I. Nikolov, T. S?rensen. Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing. J. Opt. Soc. Am. B. 2003,11(20): 2329-2337
    [188] X. Fang, N. Karasawa, R. Morita, et al. Nonlinear Propagation of a-Few-Optical-Cycle Pulses in a Photonic Crystal Fiber-Experimental and Theoretical Studies Beyond the Slowly Varying-Envelope Approximation. IEEE Photon. Tech. Lett., 2003,15(2): 233-235
    [189] T. Schreiber, J. Limpert, H. Zellmer. High average power supercontinuum generation in photonic crystal fibers. Opt. Comm.. 2003, 228: 71-78
    [190] G.P. Agrawal, Nonlinear Fiber Optics 3rd Ed. (Academic Press, New York, 2001).
    [191] N.G.R. Broderick, T.M. Monro, P.J. Bennett, et. al., Nonlinearity in holey optical fibers: measurement and future opportunities, Opt. Lett., 1999, 24(20): 1395-1397
    [192] J. A. Fleck, J. R. Morris, and M. D. Feit, Time-dependent propagation of high energy laser beams through the atmosphere, Appl. Phys. 1976,10:129-160
    [193] M. Lax, J. H. Batteh, and G. P. Agrawal, Channeling of intense electromagnetic beam, J. Appl. Phys. 1981,52(1): 109-125
    [194] M. D. Feit and J. A. Fleck, Light propagation in graded-index optical fibers, Appl. Opt. 1978, 17: 3990-3998
    [195] M. D. Feit and J. A. Fleck, Calculation of dispersion in graded-index multimode fibers by a propagating beam method, Appl. Opt. 1979, 18: 2843-2851
    [196] G. P. Agrawal, Fast-Fourier-transform based beam-propagation model for stripe-geometry semiconductor lasers: Inclusion of axial effects, J. Appl. Phys. 1984, 56: 3100-3109
    [197] P. Meissner, E. Patzak, and D. Yevick, A self-consistent model of stripe geometry lasers based on the beam propagation method, IEEE J. Quantum Electron. 1984, QE-20: 899-905
    [198] G. P. Agrawal, Lateral Analysis of Quasi-Index-Guided Injec-tion Lasers: Transition from Gain to Index Guiding,, J. Lightwave Technol. 1984, LT-2: 537-543
    [199] E. A. Sziklas and A. E. Siegman, Fast Fourier transform method, Appl. Opt. 1975, 14: 1874-1889.
    [200] M. Lax, G. P. Agrawal, M. Belic, et.al. Electromagnetic field distribution in loaded unstable resonators, J. Opt. Soc. Am. 1985, A2: 731-742
    [201] B. Hermansson, D. Yevick, and P. Danielsen, Propagation beam analysis of multimode waveguide tapers, IEEE J. Quantum Electron., 1983, QE-19: 1246-1251
    [202] L. Thylen, E. M. Wright, G. I. Stegeman, et.al. Beam propagation method analysis of a non-linear directional coupler, Opt. Lett. 1986, 11: 739-741
    [203] A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion, Appl. Phys. Lett. 1973, 23:142-144
    [204] 丁永奎,光通讯波段超短光脉冲产生技术的理论及实验研究:[博士学位论文],天津; 天津大学,2003
    [205] K.M. Hilligsoe, H.N. Paulsen, J.Thogersen, et. al. Initial steps of supercontinuum generation in photonic crystal fibers, J. Opt. Soc. Am. B .2003, 20(9): 1887-1896
    [206] B.R.Washburn, Dispersion and nonlinearities associated with supercontinuum generation in microstructure fibers: [Ph. D Dissertation], Atlant; Georgia,2002
    [207] 陈泳竹,徐文成,崔虎,等,光纤色散对超连续谱产生的影响,光学学报,2003,23(3):297-301
    [208] 成纯富,王晓方,鲁波,飞秒光脉冲在光子晶体光纤中非线性传输何超连续谱产生,物理学报,2004,53(6):1826-1830
    [209] 孙敬华,自启动高平均功率克尔透镜锁模钛宝石激光器及三元腔克尔透镜锁模钛宝石激光器的研究:[博士学位论文],天津; 天津大学,2002
    [210] X. C. Ni, C. Y. Wang, J. G. Liang, et.al, Coherent Signal Detection During Interaction of Femtosecond Laser with Transparent Material, 3rd International Symposium on Instrumentation Science and Technology, 2004,2: 0956-0960
    [211] 韩英魁,飞秒激光脉冲宽度测量的研究:[硕士学位论文],天津; 天津大学,2004
    [212] 贾东方,余震虹等译. 非线性光纤光学原理及应用.北京: 电子工业出版社,2002:2-188
    [213] C.A.De Francisco, D.H.Spadoti, B.V.Borges, et al. Numerical Analysis of Chromatic Dispersion in Photonic Crystal Fibers. IEEE MTTS IMOC. 2003:1007-1011
    [214] J.A. Monsoriu. High-index-core Bragg fibers: dispersion properties. Opt. Exp.. 2003, 11(12): 1400-1405
    [215] Cucinotta, S.Selleri. Photonic Crystal Fibers: Perturbation Analysis of Polarization and Dispersion Properties. OFC, 2002:521-523
    [216] G. Renversez, B. Kuhlmey. Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses. Opt. Lett.. 2003, 28(12): 989-901
    [217] W.H. Reeves, J.C. Knight, P.St.J. Russell, et al. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt. Exp., 2002, 10(14):609-613
    [218] A. Ferrando, E. Silvestre, P. Andr′es et.al. Designing the properties of dispersion-flattened photonic crystal fibers. Opt. Exp., 2001, 9(13):687-697
    [219] A. Ferrando, E. Silvestre, J. J. Miret, et al. Nearly zero ultraflattened dispersion in photonic crystal fibers. Opt. Lett., 2000, 25(11):790-792
    [220] Ferrando,P.St.Russell. Designing a photonic crystal fibre with flattened chromatic dispersion. Electron. Lett., 1999, 35 (4):325-327
    [221] K. P. Hansen. Dispersion flattened hybrid-core nonlinear photonic crystal fiber.Opt. Exp.. 2003, 11(13):1503-1509
    [222] K. Saitoh, M. Koshiba, Leakage loss and group velocity dispersion in air-core photonic bandgap fibers, Opt. Exp., 2003, 11(23):3100-3109
    [223] J. Jasapara, Tsing Hua Her, R. Bise, et al. Group-velocity dispersion measurements in a photonic bandgap fiber. J. Opt. Soc. Am. B .2003, 20(8): 1611-1615
    [224] Q. Li, Pedram Zare Dashti, I. V. Tomov, et al. Measurement of modal dispersion in optical fiber by means of acousto-optic coupling. Opt. Lett. .2003, 28(2): 75-77
    [225] M.Wegmuller, F.Scholder. Evaluation of Measurement Techniques for Characterization of Photonic Cryatal Fibers. QELS, 2002:246-247
    [226] M.J.Gander, P.St.J.Russell. Experimental measurement of group velocity dispersion in photonic crystal fibre. Electron. Lett.. 1999,35(1): 63-64
    [227] J. B. Eom, K. W. Park, Y. Chung, et al. Optical properties measurement of several photonic crystal fibers. Opt. Exp., 2002, 12(1): 29-34
    [228] G. Genty, H. Ludvigsen, M. Kaivola, et. al., Measurement of anomalous dispersion in microstructured fibers using spectral modulation, Opt. Exp., 2004, 12(5): 929~934
    [229] K.S. Abedin, F. Kubota. 10 GHz, 1 ps regeneratively modelocked fibre laser incorporating highly nonlinear and dispersive photonic crystal fibre for intracavity nonlinear pulse compression . Electron. Lett.. 2004, 40(1): 58-59
    [230] X. Liu, C. Xu, W.H. Knox, et. al., Soliton self-frequency shift in a short tapered air-silica microstructure fiber, Opt. Lett., 2001, 26(6):358-360
    [231] A. Ferrando, M. Zacar′es. Spatial soliton formation in photonic crystal fibers, Opt. Exp.. 2003, 11(5): 452-459
    [232] J. C. Knight, P. St. Russell., Soliton effects in photonic crystal fibres at 850nm. Electron. Lett.. 2000, 36(1):63-66
    [233] C.J.S. de Matos, K.P. Hansen, J.R. Taylor. Experimental characterisation of Raman gain efficiency of holey fibre. Electron. Lett..2003, 39(5):424-425
    [234] M. Fuochi, F. Poli, S. Selleri, et al. Study of Raman Amplification Properties in Triangular Photonic Crystal Fibers. J. Lightwave Technology .2003, 21(10): 2247-2254
    [235] V. Avdokhin, S. V. Popov, J. R. Taylor. Continuous-wave, high-power, Raman continuum generation in holey fibers. Opt. Lett. .2003, 28(15):1353-1355
    [236] Kolevatova, A.N. Naumov, A.M. Zheltikov .Guiding high-intensity laser pulses through hollow fibers: self-phase modulation and cross-talk of guided modes. Opt. Comm. .2003, 217 :169-177
    [237] A. B. Fedotov, A. M. Zheltikov. Spectral Broadening of Femtosecond Laser Pulses in Fibers with a Photonic-Crystal Cladding. JETP Lett.. 2000, 71(7):407-411
    [238] S. O. Konorov, A. B. Fedotov, A.A.Ivanov, et al. Guiding Femtosecond Second-Harmonic Pulses of a Cr:Forsterite Laser through Hollow-Core Photonic-Crystal Fibers. Las. Phy.. 2003, 13(8):1046-1049
    [239] F. Biancalana, D. V. Skryabin, P. St. J. Russell. Four-wave mixing instabilities in photonic-crystal and tapered fibers. Phy. Rev. E. 2003, 68(4): 046603. 1-046603.8
    [240] A. Pifferi, P. Taroni, A. Torricelli, et.al. Four-wavelength time-resolved optical mammography in the 680–980-nm range. Opt. Lett.. 2003, 28(13):1138-1140
    [241] J. H. Lee, W. Belardi, K. Furusawa, et al. Four-Wave Mixing Based 10-Gb/s Tunable Wavelength Conversion Using a Holey Fiber With a High SBS Threshold. IEEE Photon. Tech. Lett.. 2003, 15(3):440-442
    [242] J. K. Ranka, R. S. Windeler, A. J. Stentz. Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 2000, 25(1):25-27
    [243] A. B. fedotov, P. Zhou, A.N. Aumov, et al. Spectral broadening of 40-fs Ti:sapphire laser pulses in photonic-molecule modes of a cobweb-microstructure fiber. Appl. Phys. B, 2002, 75(22): 621–627
    [244] 胡明列, 王清月, 栗岩锋,等, 飞秒激光在光子晶体光纤中产生超连续光谱机制的实验研究, 物理学报, 2004, 53(12): 4243-4247
    [245] H. Jeong, K. Oh. Broadband amplified spontaneous emission from an Er3+Tm3+codoped silica fiber. Opt. Lett.. 2003, 28(3): 161-163
    [246] R. F. Cregan, J. C. Knight, P. St. J. Russell, et al.Distribution of Spontaneous Emission from an Er3+-Doped Photonic Crystal Fiber. J. Lightwave Tech.. 1999,17(11):2138-2141
    [247] S. Coen, A.H.L. Chau, R. Leonhardt, et. al., White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber, Opt. Lett., 2001, 26(17):1356~1358
    [248] A.M. Zheltikov, A. N. Naumov. Group-velocity-matched ultrashort-pulse synthesis in a hollow fibre filled with a Raman-active gas. Quant. Electron.,2001,31 (6): 471-476
    [249] A. B. Ortigosa, J. C. Knight, P. Russell, Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers J. Opt. Soc. Am. B, 2002, 19: 2567-2572
    [250] T. Yamamoto, H. Kubota, S. Kawanishi. Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiber. Opt. Exp..30 June 2003, 11(13):1537-1540
    [251] H. Hundertmark, D. Kracht, D. Wandt, et al. Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm. Opt. Exp., 2003, 11(24): 3196-3201
    [252] X. Gu, M. Kimmel, A. P. Shreenath, et al. Experimental studies of the coherence of microstructure-fiber supercontinuum Opt. Exp., 2003, 11(21): 2697-2703
    [253] J. W. Nicholson, M. F. Yan, P. Wisk, et al. All-fiber, octave-spanning supercontinuum. Opt. Lett., 2003, 28(8):643-645
    [254] J. H. V. Price, W. Belardi, T. M. Monro, et al. Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source. Opt. Exp., 2002,10(8):382-387
    [255] A. B. Fedotov, A.r N. Naumov, A. M. Zheltikov. Frequency-tunable supercontinuum generation in photonic-crystal fibers by femtosecond pulses of an optical parametric amplifier J. Opt. Soc. Am. B. 2002,19(9):2156-2164
    [256] A.Apolonski, B. Povazay, A. Unterhuber et al. Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses. J. Opt. Soc. Am. B. 2002, 19(9): 2165-2170
    [257] A.V. Husakou, J. Herrmann. Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers. J.Opt.Soc.Am.B. 2002, 19(9): 2171-2182
    [258] S.O.Konorov, D.A.Akimov, A.A.Inanov, et.al. Anti-Stokes generation in guided modes of photonic-crystal fibers modified with an array of nanoholes. Las. Phy. Lett. 2004, 1(8):402-405
    [259] J.M. Dudley, X. Gu, L. Xu, et. al., Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments, Opt. Exp., 2002, 10(21):1215~1221
    [260] T. A. Birks, W. J. Wadsworth, P. St.J. Russell, Supercontinuum generation in tapered fibers, Opt. Lett., 2000, 25:1415-1417
    [261] J.J.Mcferran, A.N. Luiten, et.al. Uniform oscillations of supercontinua, Appl. Phy. B: Lasers and Optics, 2003, 77(2): 259-264
    [262] 张军,魏志义,王兆华,等,利用光子晶体光纤产生超连续飞秒激光光谱. 光学学报,2003,23(4): 511-512
    [263] S. G. Li, L. T. Hou,Y. L. Ji, et al.Supercontinuum Generation in Holey Microstructure fibres with Random Cladding Distribution by Femtosecond Laser Pulses Chin. Phys. Lett. 2003, 20(8): 1300-1302
    [264] I. Hartl, X.D. Li, C. Chudoba, et. al., Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber, Opt. Lett., 2001, 26(9):608-610
    [265] S. Coen, A. H. L. Chau, R. Leonhardt, et al., Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers , J. Opt. Soc. Am. B, 2002, 19(9): 753-764
    [266] J.E. Sharping, M. Fiorentino, A. Coker, et. al., Four-wave mixing in microstructure fiber, Opt. Lett., 2001, 26(14):1048-1050
    [267] A.L. Gaeta, Nonlinear propagation and continuum generation in microstructured optical fibers, Opt. Lett., 2002, 27(11):924-926
    [268] A.V. Husakou, J. Herrmann, Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers, Phy. Rev. Lett., 2001, 87(20): 203901-1-203901-4
    [269] J. Herrmann, U. Griebner, N. Zhavoronkov, et. al., Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers, Phy. Rev. Lett., 2002, 88(17): 173901-1-173901-4
    [270] D.J. Jones, S.A. Diddams, J.K. Ranka, et. al., Carrier-envelope phase control off emtosecond mode-locked lasers and direct optical frequency synthesis, Science, 2000, 288(5466):635-639
    [271] S.A. Diddams, D.J. Jones, J. Ye, et. al., Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb, Phy. Rev. Lett., 2000, 84(22): 5102-5105
    [272] B. Povazay, K. Bizheva, A. Unterhuber, et. al., Submicrometer axial resolution optical coherence tomography, Opt. Lett., 2002, 27(20):1800-1802
    [273] Y. Wang, Y. Zhao, J.S. Nelson, et. al., Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber, Opt. Lett., 2003, 28(3):182-184
    [274] B. Pova?ay, K. Bizheva, B. Hermann, et. al., Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm, Opt. Exp., 2003, 11(17): 1980-1986
    [275] Y. Wang, J.S. Nelson, Z. Chen, et. al., Optimal wavelength for ultrahigh-resolution optical coherence tomography, Opt. Exp., 2003, 11(12):1411-1417
    [276] K.L. Corwin, N.R. Newbury, J.M. Dudley, et. al., Fundamental noise limitations to supercontinuum generation in microstructure fiber, Phy. Rev. Lett., 2003, 90(11): 113904-1-113904-4
    [277] N.R. Newbury, B.R. Washburn, K.L. Corwin, et. al., Noise amplification during supercontinuum generation in microstructure fiber, Opt. Lett., 2003, 28(11): 944-946
    [278] B.R. Washburn, N.R. Newbury, Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber, Opt. Exp., 2004, 12(10): 2166-2175
    [279] J.M. Dudley, S. Coen, Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers, Opt. Lett., 2002, 27(13):1180-1182
    [280] J.M. Dudley, S. Coen, Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers, IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(3): 651-659
    [281] T.M. Fortier, J.Ye, S.T. Cundiff, et. al., Nonlinear phase noise generated in air-ilica microstructure fiber and its effect on carrier-envelope phase, Opt. Lett., 2002, 27(6):445-447
    [282] J.M. Dudley, S. Coen, Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber, Opt. Exp., 2004, 12(11):2423-2428
    [283] C.-Y. Wang, W.L.Zhang, K.F. Lee, et.al. Pulses splitting in a self-mode-locked Ti:sapphire laser, Opt. Comm., 1997,137:89-92
    [284] G. Millot, A. Sauter, J. M. Dudley, et. al., Polarization mode dispersion and vectorial modulational instability in air-silica microstructure fiber, Opt. Lett., 2002, 27(9): 695-697
    [285] J.D. Harvey, R.Leonhardt, S. Coen, et. al., Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber, Opt. Lett., 2003, 28(22):2225-2227
    [286] K.S. Abedin, J.T. Gopinath, E.P. Ippen, et. al., Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber, Appl. Phy. Lett., 2002, 81(8):1384-1386
    [287] S.O. Konorov, A.B. Fedotov, A.M. Zheltikov, Enhanced four-wave mixing in a hollow-core photonic-crystal fiber, Opt. Lett., 2003, 28(16):1448-1450
    [288] A.B. Fedotov, I. Bugar, D.A. Sidorov-Biryukov, et. al., Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers, Appl. Phy. B, 2003, 77(2-3): 313-317
    [289] N.I. Nikolov, T. S?rensen, O. Bang, et.al., Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing, J. Opt. Soc. Am. B, 2003, 20(11): 2329-2337
    [290] J.E. Sharping, M. Fiorentino, A. Coker, et. al., Four-wave mixing in Microstructure fiber, Opt. Lett., 2001, 26(14):1048-1050
    [291] Fiorenzo G. Omenetto, A. J. Taylor, Mark D. Moores, Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber, Opt. Lett., 2001, 26(15):1158-1160
    [292] F. G.. Omenetto, A. Efimov, A. J. Taylor, Polarization dependent harmonic generation in microstructured fibers,Opt. Exp., 2003, 11(1): 61-67
    [293] A. Efimov, A. J. Taylor, F. G. Omenetto, Nonlinear generation of very high-order UV modes in microstructured fibers, Opt. Exp., 2003, 11(8): 910-918
    [294] A. Efimov, A. J. Taylor, F. G. Omenetto, Phase-matched third harmonic generation in microstructured fibers, Opt. Exp., 2003, 11(20): 2567-2575
    [295] S. O. Konorov, E.E. Serebryannikov, A. M. Zheltikov, Mode-controlled colors from microstructure fibers, Opt. Exp., 2004, 12(5): 730-735
    [296] D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov, Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber, Opt. Lett. ,2003,28(20):1948-1950
    [297] S. O. Konorov, E. E. Serebryannikov, A. M. Zheltikov, Generation of femtosecond anti-Stokes pulses through phase-matched parametric four-wave mixing in a photonic crystal fiber, Opt. Lett. , 2004, 29(13):1545-1547
    [298] M.L. Hu, C.Y. Wang, L. Chai, et. al., Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber, Opt. Exp., 2004, 12(9):1932-1937
    [299] M. Hu, C.-y. Wang, Y. Li, et.al. An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field, Appl. Phy. B: Lasers and Optics, 2004, 79(7): 805-809
    [300] M. Hu, C.-y. Wang, Y. Li, et.al. Polarization-and mode-dependent anti-Stokes emission in a birefringent microstructure fiber, IEEE Photon. Tech. Lett. , 2005, 17(3): (in print)
    [301] 胡明列, 王清月, 栗岩锋,等,飞秒激光在微结构光纤中频率变换的研究, 中国激光, 2005, 32(5) :(in print)
    [302] M.Lehtonen, G.genty, H.Ludvigsen, Supercontinuum generation in a highly birefrigent microstructured fiber, App. Phy. Lett. 2003,82(14): 2197-2199
    [303] Z. Zhu, T.G. Brown, Stress-induced birefringence in microstructured optical fibers, Opt. Lett., 2003, 28(23):2306-2308
    [304] K. Suzuki, H. Kubota, S. Kawanishi, et. al., Optical properties of a low-loss polarization-maintaining photonic crystal fiber, Opt. Exp., 2001, 9(13):676-680
    [305] I. Hwang, Y. Lee, Y. Lee, Birefringence induced by irregular structure in photonic crystal fiber, Opt. Exp., 2003, 11(22):2799-2806
    [306] M. Szpulak, T. Martynkien, W. Urbanczyk, Birefringent photonic crystal holey fibers based on hexagonal lattice, Proceedings of the 5th International Conference on Transparent Optical Networks (ICTON), 2003, 1:333-336
    [307] A. Peyrilloux, T. Chartier, A. Hideur, et. al., Theoretical and experimental study of the birefringence of a photonic crystal fiber, J. Lightwave Tech., 2003, 21(2):536-539
    [308] T.P. Hansen, J.Broeng, S.E.B. Libori, et. al., Highly birefringent index-guiding photonic crystal fibers, IEEE Photon. Tech. Lett., 2001, 13(6):588-560
    [309] K. Saitoh, M. Koshiba, Photonic bandgap fibers with high birefringence, IEEE Photon. Tech. Lett., 2002, 14(9):1291-1293
    [310] J. Ju, W. Jin, M.S. Demokan, Properties of a highly birefringent photonic crystal fiber, IEEE Photon. Tech. Lett., 2003, 15(10):1375-1377
    [311] P.R. Chaudhuri, V. Paulose, C. Zhao, et. al., Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization, IEEE Photon. Tech. Lett., 2004, 16(5):1301-1303
    [312] J.R. Folkenberg, M.D. Nielsen, N.A. Mortensen, et. al., Polarization maintaining large mode area photonic crystal fiber, Opt. Exp., 2004, 12(5):956-960
    [313] W. Zhi, R. Guobin, L. Shuqin, Mode disorder in elliptical hole PCFs, Optical Fiber Technology, 2004, 10(1):124-132
    [314] D. Mogilevtsev, J. Broeng, S.E. Barkou, et. al., Design of polarization-preserving photonic crystal fibres with elliptical pores, Journal of Optics A, 2001, 3(6): S141-S143
    [315] M.J. Steel, R.M. Osgood, Elliptical-hole photonic crystal fibers, Opt. Lett., 2001, 26(4):229-231
    [316] W. Zhi, R. Guobin, L. Shuqin, et. al., Dependence of mode characteristics on the central defect in elliptical hole photonic crystal fibers, Opt. Exp., 2003, 11(17):1966-1979
    [317] M.J. Steel, R.M. Osgood, Jr., Polarization and dispersive properties of elliptical-hole photonic crystal fibers, J. Lightwave Tech., 2001, 19(4):495-503
    [318] T. Wu, C. Chao, Photonic crystal fiber analysis through the vector boundary-element method: effect of elliptical air hole, IEEE Photon. Tech. Lett., 2004, 16(1):126-128
    [319] M. Chen, R. Yu, Polarization properties of elliptical-hole rectangular lattice photonic crystal fibres, Journal of Optics A, 2004, 6(6):512-515
    [320] C. Kerbage, P. Steinvurzel, P. Reyes, et. al., Highly tunable birefringent microstructured optical fiber, Opt. Lett., 2002, 27(10):842-844
    [321] C. Kerbage, B.J. Eggleton, Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber, Opt. Exp., 2002, 0(5):246-255
    [322] A. Ferrando, J.J. Miret, Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers, Appl. Phy. Lett., 2001,78(21): 3184-3186
    [323] A. Argyros, N. Issa, I. Bassett, et. al., Microstructured optical fiber for single polarization air guidance, Opt. Lett., 2004, 29(1):20-22
    [324] H. Kubota, S. Kawanishi, S. Koyanagi, et. al., Absolutely single polarization photonic crystal fiber, IEEE Photon. Tech. Lett., 2004, 16(1): 182-184
    [325] K. Saitoh, M. Koshiba, Single-polarization single-mode photonic crystal fibers, IEEE Photon. Tech. Lett., 2003, 15(10):1384-1386
    [326] M.Lehtonen,G. Genty, and H. Ludvigsen M. Kaivola.,Supercontinuum generation in a highly birefringent microstructured fiber,App. Phy. Lett. 2003,82(7):2197-2200
    [327] Z. Zhu, T.G. Brown, Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers, J. Opt. Soc. Am. B, 2004, 21(2): 249-257
    [328] 胡明列, 王清月, 栗岩锋,等, 非均匀微结构光纤中双折射现象的研究, 物理学报, 2004, 53(12): 4248-4252
    [329] A. Proulx, J. Ménard, N. H?, et. al., Intensity and polarization dependences of the supercontinuum generation in birefringent and highly nonlinear microstructured fibers, Opt. Exp., 2003, 11(25):3338-3345
    [330] Z. Zhu, T.G. Brown, Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber, Opt. Exp., 2004, 12(5):791-796