光子晶体光纤色散特性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤是近年来出现的一种新型光纤,其特点是包层排列有规则或随机分布的波长量级的空气孔。包层中的微结构使得光子晶体光纤能够呈现出许多传统光纤不具备的特性,其中之一就是在可见光和近红外波段能够呈现反常色散。具有这种色散特性的光子晶体光纤在飞秒激光领域具有极大的应用前景。本论文从理论上对光子晶体光纤的色散特性进行了研究。论文的主要内容包括:
    1、采用全矢量有效折射率模型研究了光子晶体光纤的色散特性。首次提出了研究光子晶体光纤色散特性的全矢量有效折射率模型,并研究了光子晶体光纤包层基模的分类。研究发现,类比于传统光纤的模式分类方法,光子晶体光纤包层基模也可以归于HE1 1模。通过优化相关参数,全矢量有效折射率模型的计算结果与测量结果以及其他数值方法的计算结果吻合得很好,而标量有效折射率模型则带来较大的误差。
    2、采用半矢量有限差分法研究了光子晶体光纤的色散特性。数值计算表明,半矢量有限差分法与测量结果以及其他方法的计算结果吻合得很好。采用半矢量有限差分法研究了光子晶体光纤色散受某一层空气孔尺寸单独变化的影响,结果表明第一、二层空气孔因为靠近纤芯,因而对色散的影响最大。研究了空气孔在角向和径向偏离理想位置对色散的影响,发现空气孔在径向偏离理想位置比在角向偏离理想位置对色散的影响更显著。最后,研究了一类光子晶体光纤-孔助光纤(hole-assisted lightguide fiber)的色散受空气孔参数的影响,结果表明增加包层空气孔的数目、大小以及使空气孔靠近纤芯都有助于零色散波长向短波长移动。
    3、设计了在800 nm附近具有零色散和平坦色散的光子晶体光纤。首次考查了在不同比例系数下采用色散无量纲化方法计算光子晶体光纤色散时的准确性,并结合全矢量有效折射率模型进行了在800 nm附近具有零色散和平坦色散的光子晶体光纤的设计。
A new type of fiber, known as photonic crystal fiber, has emerged in the past several years. These fibers are characterized by wavelength-scale air holes running along the entire fiber length in the cladding region, which have resulted in some unusual properties unattainable with conventional optical fibers. In particular, photonic crystal fibers can display anomalous dispersion in the visible and near-infrared wavelength range, and, therefore, have great potential in the field of femtosecond laser technology. The dispersion properties of photonic crystal fibers are investigated theoretically in the present dissertation. The main results are summarized as follows.
     1 The dispersion properties of photonic crystal fibers are investigated using a fully vectorial effective index method (FVEIM) that we proposed. In analogy to conventional mode classification, the fundamental space filling mode of photonic crystal fibers is classified as HE1 1mode. With optimized fiber parameters, FVEIM yields results in agreement with experimental data and other numerical values, while the scalar effective index method causes considerable discrepancies.
     2 A semi-vectorial finite difference method (SFDM) is used to characterize the dispersion of photonic crystal fibers. Numerical results by SFDM agree well with those measured and by other methods. The influence on photonic crystal fiber dispersion of the size of air holes in different rings within the cladding is studied. It is demonstrated that photonic crystal fiber dispersion is most sensitive to the air hole size variation in the first two rings. In addition, the angular and radial deviations of the air holes from their ideal positions are investigated separately, revealing that the former has less influence on fiber dispersion than the latter. Finally, the dispersion characteristics of hole-assisted lightguide fibers are analyzed. It is found that more air holes, larger air holes, and air holes closer to the fiber core all help to reduce the zero dispersion wavelength.
     3 Photonic crystal fibers with zero dispersion and flattened dispersion around 800 nmare designed. The normalized dispersion technique is shown for the first time to our knowledge to be applicable under different scaling parameters, and then used in combination with FVEIM to design photonic crystal fibers with zero dispersion and flattened dispersion around 800 nm.
引文
[1] A. Bjarklev, J. Broeng, A.S. Bjarklev, Photonic Crystal Fibres, Boston: Kluwer Academic Publishers, 2003
    [2] J.C. Knight, T.A. Birks, P.St.J. Russell, et. al., All-silica single-mode optical fiber with photonic crystal cladding, Optics Letters, 1996, 21(19):1547~1549
    [3] J.C. Knight, T.A. Birks, R.F. Cregan, et. al., Photonic crystals as optical fibres -physics and applications, Optical Materials, 1999, 11(2-3):143~151
    [4] J. Broeng, D. Mogilevstev, S.E. Barkou, et. al., Photonic crystal fibers: a new class of optical waveguides, Optical Fiber Technology, 1999, 5(3):305~330
    [5] A.M. Zheltikov, Holey fibers, Physics Uspekhi, 2000, 43(11):1125~1136
    [6] T.A. Birks, J.C. Knight, B.J. Mangan, et. al., Photonic crystal fibers: an endless variety, IEICE Transactions on Electronics, 2001, E84-C(5):585~592
    [7] T.A. Birks, J.C. Knight, B.J. Mangan, et. al., Seeing things in a hole new light-photonic crystal fibres, Proceedings of SPIE, 2001, 4532:206~219
    [8] P. Russell, R. Dettmer, A neat idea, IEE Review, 2001, 47(5):19~23
    [9] 关铁梁, 光子晶体光纤,激光与光电子学进展, 2002, 39(10):41~48
    [10] P. Russell, Photonic crystal fibers, Science, 2003, 299(5605):358~362
    [11] J.C. Knight, Photonic crystal fibres, Nature, 2003, 424(6950):847~851
    [12] T.M. Monro, D.J. Richardson, Holey optical fibres: Fundamental properties and device applications, Comptes Rendus Physique, 2003, 4(1):175~186
    [13] T.A. Birks, G. Kakarantzas, P.St.J. Russell, et. al., Photonic crystal fibre devices, Proceedings of SPIE, 2003, 4943:142~151
    [14] M.A. van Eijkelenborg, A. Argyros, G. Barton, et. al., Recent progress in microstructured polymer optical fibre fabrication and characterization, Optical Fiber Technology, 2003, 9(4):199~209
    [15] D.A. Neamen, Semiconductor Physics and Devices: Basic Principles (3rd Edition), 北京:清华大学出版社,2003
    [16] J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton: Princeton University Press, 1995
    [17] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics andelectronics, Physical Review Letters, 1987, 58(20):2059~2062
    [18] S. John, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters, 1987, 58(23):2486~2489
    [19] J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Photonic crystals: putting a new twist on light, Nature, 1997, 386(6621):143~149
    [20] E. Yablonovitch, Photonic crystals: semiconductors of light, ScientificAmerican, 2001, 285(6):47~55
    [21] C. Kittel, Introduction to Solid State Physics (5th Edition), New York: John Wiley & Sons, 1976
    [22] J.C. Knight, P.St.J. Russell, New ways to guide light, Science, 2002, 296 (5566):276~277
    [23] C.M. Bowden, J.P. Dowling, H.O. Everitt (Eds.), Feature issue: development and applications of materials exhibiting photonic band gaps, Journal of the Optical Society of America B, 1993, 10(2):279~413
    [24] D. Kurizki, J.W. Haus (Eds.), Special issue: photonic band structures, Journal of Modern Optics, 1994, 41(2):171~404
    [25] T.F. Krauss, R.M. De La Rue, Photonic crystals in the optical regime-past,present and future, Progress in Quantum Electronics, 1999, 23(2):51~96
    [26] C.M. Bowden, A.M. Zheltikov (Eds.), Feature issue: nonlinear optics of photonic crystals, Journal of the Optical Society of America B, 2002, 19(9):2045~2296
    [27] P.R. Villeneuve, M. Piché, Photonic band gaps in two-dimensional square and hexagonal lattices, Physical Review B, 1992, 46(8):4969~4972
    [28] T.A. Birks, P.J. Roberts, P.St.J. Russell, et. al., Full 2-D photonic bandgaps in silica/air structures, Electronics Letters, 1995, 31(22):1941~1943
    [29] T.A. Birks, J.C. Knight, P.St.J. Russell, Endlessly single-mode photonic crystal fiber, Optics Letters, 1997, 22(13):961~963
    [30] J.C. Knight, T.A. Birks, P.St.J. Russell, et. al., Properties of photonic crystal fiber and the effective index model, Journal of the Optical Society of America A, 1998, 15(3):748~752
    [31] J. Broeng, S.E. Barkou, A. Bjarklev, et. al., Highly increased photonic band gaps in silica/air structures, Optics Communications, 1998, 156(4-6):240~244
    [32] S.E. Barkou, J. Broeng, A. Bjarklev, Silica–air photonic crystal fiber design thatpermits waveguiding by a true photonic bandgap effect, Optics Letters, 1999, 24(1):46~48
    [33] J. Broeng, T. S?ndergaard, S.E. Barkou, et. al., Waveguidance by the photonicbandgap effect in optical fibres, Journal of Optics A, 1999, 1(4):477~482
    [34] J.C. Knight, J. Broeng, T.A. Birks, et. al., Photonic band gap guidance in optical fibers, Science, 1998, 282(5393):1476~1478
    [35] R.F. Cregan, B.J. Mangan, J.C. Knight, et. al., Single-mode photonic band gap guidance of light in air, Science, 1999, 285(5433):1537~1539
    [36] J. Broeng, S.E. Barkou, T. S?ndergaard, et. al., Analysis of air-guiding photonicbandgap fibers, Optics Letters, 2000, 25(2):96~98
    [37] S. Kawanishi, Holey fibers and their application to optical communications,Proceedings of SPIE, 2002, 4870:327~333
    [38] S. Kawanishi, T. Yamamoto, H. Kubota, et. al., Dispersion controlled andpolarization maintaining photonic crystal fibers for high performance networksystems, IEICE Transactions on Electronics, 2004, E87-C(3): 336~342
    [39] A.W. Snyder, J.D. Love, Optical Waveguide Theory, London: Chapman and Hall, 1983
    [40] 李玉权,崔敏,光波导理论与技术,北京:人民邮电出版社,2002
    [41] J. Hecht, Understanding Fiber Optics (4th Edition), 北京:电子工业出版社,2003
    [42] P. Nouchi, L. de Montmorillon, P. Sillard, et. al., Optical fiber design forwavelength-multiplexed transmission, Comptes Rendus Physique, 2003, 4(1): 29~39
    [43] T.A. Birks, D. Mogilevtsev, J.C. Knight, et. al., The analogy between photoniccrystal fibres and step index fibres, Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communication (OFC/IOOC), 1999, 4:114~116
    [44] N.A. Mortensen, Effective area of photonic crystal fibers, Optics Express, 2002, 10(7):341~348
    [45] B.T. Kuhlmey, R.C. McPhedran, C.M. de Sterke, Modal cutoff in microstructured optical fibers, Optics Letters, 2002, 27(19):1684~1686
    [46] J.R. Folkenberg, N.A. Mortensen, K.P. Hansen, et. al., Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers, Optics Letters, 2003, 28(20):1882~1884
    [47] J.C. Knight, T.A. Birks, R.F. Cregan, et. al., Large mode area photonic crystal fibre, Electronics Letters, 1998, 34 (13):1347~1348
    [48] N. A. Mortensen, M.D. Nielsen, J.R. Folkenberg, et. al., Improved large-mode-area endlessly single-mode photonic crystal fibers, Optics Letters, 2003, 28(6):393~395
    [49] X. Feng, A.K. Mairaj, D.W. Hewak, et. al., Towards high-index glass based monomode holey fibre with large mode area, Electronics Letters, 2004,40(3):167 ~168
    [50] D.G. Ouzounov, K.D. Moll, M.A. Foster, et. al., Delivery of nanojoule femtosecond pulses through large-core microstructured fibers, Optics Letters,2002, 27(17):1513~1515
    [51] T. Südmeyer, F. Brunner, E. Innerhofer, et. al., Nonlinear femtosecond pulsecompression at high average power levels by use of a large-mode-area holey fiber, Optics Letters, 2003, 28(20):1951~1953
    [52] P. Glas, D. Fischer, Cladding pumped large-mode-area Nd-doped holey fiber laser, Optics Express, 2002, 10(6):286~290
    [53] J. Limpert, T. Schreiber, S. Nolte, et. al., High-power air-clad large-mode-area photonic crystal fiber laser, Optics Express, 2003, 11(7):818~823
    [54] J. Limpert, A. Liem, M. Reich, et. al., Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier, Optics Express, 2004, 12(7):1313~1319
    [55] G. Keiser, Optical Fiber Communications (3rd Edition), 北京:高等教育 出版社,2002
    [56] G.P. Agrawal, Fiber-Optic Communication Systems (3rd Edition),北京:清华大学出版社,2004
    [57] D. Mogilevtsev, T.A. Birks, P.St.J. Russell, Group-velocity dispersion in photonic crystal fibers, Optics Letters, 1998, 23(21):1662~1664
    [58] J.C. Knight, J. Arriaga, T.A. Birks, et. al., Anomalous dispersion in photoniccrystal fiber, IEEE Photonics Technology Letters, 2000, 12(7):807~809
    [59] J.K. Ranka, R.S. Windeler, A.J. Stentz, Optical properties of high-delta air-silicamicrostructure optical fibers, Optics Letters, 2000, 25(11):796~798
    [60] A. Ferrando, E. Silvestre, P. Andrés, et. al., Designing the properties ofdispersion-flattened photonic crystal fibers, Optics Express, 2001, 9(13): 687~ 697
    [61] W.H. Reeves, J.C. Knight, P.St.J. Russell, et. al., Demonstration of ultra-flattened dispersion in photonic crystal fibers, Optics Express, 2002, 10 (14): 609~613.
    [62] T.A. Birks, D. Mogilevtsev, J.C. Knight, et. al., Dispersion compensation using single-material fibers, IEEE Photonics Technology Letters, 1999, 11(6):674~676
    [63] C.M. Bowden, A.M. Zheltikov (Eds.), Feature issue: nonlinear optics of photonic crystals-photonic-crystal fibers, Journal of the Optical Society of America B, 2002, 19(9):2148~2190
    [64] A. Zheltikov (Ed.), Special issue on supercontinuum generation. Applied Physics B, 2003, 77(2-3):143~376
    [65] N.G.R. Broderick, T.M. Monro, P.J. Bennett, et. al., Nonlinearity in holey optical fibers: measurement and future opportunities, Optics Letters, 1999, 24 (20):1395~1397
    [66] A.B. Fedotov, A.M. Zheltikov, L.A. Mel’nikov, et. al., Spectral broadening offemtosecond laser pulses in fibers with a photonic-crystal cladding, JETP Letters, 2000, 71(7):281~284
    [67] J.K. Ranka, R.S. Windeler, A.J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm, Optics Letters, 2000, 25(1):25~27
    [68] 栗岩锋,胡明列,王清月,光子晶体光纤的超连续光谱及其应用, 光电子·激光,2003, 14(11):1240~1243
    [69] W.J. Wadsworth, J.C. Knight, A. Ortigosa-Blanch, et. al., Soliton effects inphotonic crystal fibres at 850 nm, Electronics Letters, 2000, 36 (1):53~55
    [70] B.R. Washburn, S.E. Ralph, P.A. Lacourt, et. al., Tunable near-infraredfemtosecond soliton generation in photonic crystal fibres, Electronics Letters, 2001, 37 (25):1510~1512
    [71] F.G. Omenetto, A.J. Taylor, M.D. Moores, et. al., Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber, Optics Letters, 2001, 26(15):1158~1160
    [72] A.M. Zheltikov, Microstructure-fiber frequency converters, Laser Physics Letters, 2004, 1(5):220~233
    [73] M. Hu, C.-y. Wang, Y. Li, et. al., An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field, Applied Physics B, 2004, 79(7):805~809
    [74] 王清月,栗岩锋,胡明列等,光子晶体光纤非线性特性的研究,物理,2004(待发表)
    [75] G. P. Agrawal, Nonlinear Fiber Optics (2nd Edition), San Diego: Academic Press, 1995
    [76] G. P. Agrawal(贾东方,余震虹等译),非线性光纤光学原理及应用,北京:电子工业出版社,2002
    [77] M. Szpulak, T. Martynkien, W. Urbanczyk, Birefringent photonic crystal holeyfibers based on hexagonal lattice, the 5th International Conference on Transparent Optical Networks (ICTON), 2003, 1:333~336
    [78] K. Suzuki, H. Kubota, S. Kawanishi, et. al., Optical properties of a low-loss polarization-maintaining photonic crystal fiber, Optics Express, 2001, 9(13): 676~680
    [79] A. Ortigosa-Blanch, J.C. Knight, W.J. Wadsworth, et. al., Highly birefringentphotonic crystal fibers, Optics Letters, 2000, 25(18):1325~ 1327
    [80] T.P. Hansen, J.Broeng, S.E.B. Libori, et. al., Highly birefringent index-guiding photonic crystal fibers, IEEE Photonics Technology Letters, 2001, 13(6):588~ 560
    [81] M.J. Steel, R.M. Osgood, Jr., Elliptical-hole photonic crystal fibers, Optics Letters, 2001, 26(4):229~231
    [82] D. Mogilevtsev, J. Broeng, S.E. Barkou, et. al., Design of polarization-preserving photonic crystal fibres with elliptical pores, Journal of Optics A, 2001, 3(6):S141~S143
    [83] M.J. Steel, R.M. Osgood, Jr., Polarization and dispersive properties of elliptical-hole photonic crystal fibers, Journal of Lightwave Technology, 2001, 19(4):495~503
    [84] Z. Zhu, T.G. Brown, Stress-induced birefringence in microstructured optical fibers, Optics Letters, 2003, 28(23):2306~2308
    [85] J.R. Folkenberg, M.D. Nielsen, N.A. Mortensen, et. al., Polarization maintaining large mode area photonic crystal fiber, Optics Express, 2004, 12(5): 956~960
    [86] T.M. Monro, Y.D. West, D.W. Hewak, et. al., Chalcogenide holey fibres,Electronics Letters, 2000, 36(24):1998~2000
    [87] A. Argyros, I.M. Bassett, M.A. van Eijkelenborg, et. al., Ring structures inmicrostructured polymer optical fibres, Optics Express, 2001, 9(13):813~ 820
    [88] G. Barton, M.A. van Eijkelenborg, G. Henry, et. al., Fabrication ofmicrostructured polymer optical fibres, Optical Fiber Technology, 2004, 10(4): 325~335
    [89] K.M. Kiang, K. Frampton, T.M. Monro, et. al., Extruded singlemode non-silicaglass holey optical fibres, Electronics Letters, 2002, 38(12):546~547
    [90] P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, et. al., Highly nonlinear and anomalously dispersive lead silicate glass holey fibers, Optics Express, 2003, 11(26):3568~3573
    [91] V.V. Ravi Kanth Kumar, A.K. George, W.H. Reeves, et. al., Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation, Optics Express, 2002, 10(25):1520~1525
    [92] V.L. Kalashnikov, E. Sorokin, S. Naumov, et. al., Low-threshold supercontinuum generation from an extruded SF6 PCF using a compact Cr4+: YAG laser, Applied Physics B, 2004, 79(5):591~596
    [93] H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, et. al., Bismuth glass holey fibers with high nonlinearity, Optics Express, 2004, 12(21): 5082~5087
    [94] H. Han, H. Park, M. Cho, et. al., Terahertz pulse propagation in a plastic photonic crystal fiber, Applied Physics Letters, 2002, 80(15):2634~2636
    [95] H. Park, M. Cho, J. Kim, et. al., Terahertz pulse transmission in plastic photonic crystal fibres, Physics in Medicine and Biology, 2002, 47(21):3765~ 3769
    [96] V.V. Ravi Kanth Kumar, A.K. George, J.C. Knight, et. al., Tellurite photoniccrystal fiber, Optics Express, 2003, 11(20):2641~2645
    [97] K. Furusawa, T. Kogure, T. M. Monro, et. al., High gain efficiency amplifier based on an erbium doped aluminosilicate holey fiber, Optics Express, 2004, 12(15):3452~3458
    [98] E. Rave, K. Roodenko, A. Katzir, Infrared photonic crystal fiber, Applied Physics Letters, 2003, 83(10):1912~1914
    [99] E. Rave, P. Ephrat, M. Goldberg, et. al., Silver halide photonic crystal fibers for the middle infrared, Applied Optics, 2004, 43 (11):2236~2241
    [100] A.V. Husakou, J. Herrmann. Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses, Applied Physics B, 2003,77(2-3):227 ~234
    [101] Ren Guobin, Wang Zhi, Lou Shuqin, et. al., Full-vectorial analysis of complex refractive-index photonic crystal fibers, Optics Express, 2004, 12(6):1126~1135
    [102] X. Feng, T.M. Monro, P. Petropoulos, et. al., Solid microstructured optical fiber,Optics Express, 2003, 11(18):2225~2230
    [103] N.A. Mortensen, M.D. Nielsen, J.R. Folkenberg, et. al., Photonic crystal fiber with a hybrid honeycomb cladding, Optics Express, 2004, 12(3):468~472
    [104] J. L?gsgaard, A. Bjarklev, Doped photonic bandgap fibers for short-wavelength nonlinear devices, Optics Letters, 2003, 28(10):783~785
    [105] F. Luan, A. K. George, T. D. Hedley, et. al., All-solid photonic bandgap fiber, Optics Letters, 2004, 29(20):2369~2371
    [106] A.A. Abramov, B.J. Eggleton, J.A. Rogers, et. al., Electrically tunable efficient broad-band fiber filter, IEEE Photonics Technology Letters, 1999, 11(4):445~ 447
    [107] C. Kerbage, A. Hale, A. Yablon, et. al., Integrated all-fiber variable attenuator based on hybrid microstructure fiber, Applied Physics Letters, 2001, 79(19):3191~3193
    [108] T.T. Larsen, A. Bjarklev, D.S. Hermann, et. al., Optical devices based on liquidcrystal photonic bandgap fibres, Optics Express, 2003, 11(20):2589~2596
    [109] T.T. Larsen, J. Broeng, D.S. Hermann, et. al., Thermo-optic switching in liquidcrystal infiltrated photonic bandgap fibres, Electronics Letters, 2003, 39 (24): 1719~1720
    [110] C. Kerbage, R.S. Windeler, B.J. Eggleton, et. al., Tunable devices based ondynamic positioning of micro-fluids in micro-structured optical fiber, Optics Communications, 2002, 204(1-6):179~184
    [111] C. Kerbage, B.J. Eggleton, Manipulating light by microfluidic motion inmicrostructured optical fibers, Optical Fiber Technology, 2004, 10(2):133~149
    [112] B.J. Eggleton, A.K. Ahuja, K.S. Feder, et. al., Novel waveguide structures forenhanced fiber grating devices, IEEE Journal on Selected Topics in Quantum Electronics, 2001, 7(3):409~424
    [113] C. Kerbage, Tunable Photonic Devices Using Microstructured Optical Fibers, Ph.D Dissertation, New York: Columbia University, 2003
    [114] F. Benabid, J.C. Knight, G. Antonopoulos, et. al., Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber, Science, 2002, 298(5592): 399~402
    [115] M. Chen, R. Yu, Analysis of photonic bandgaps in modified honeycomb structures, IEEE Photonics Technology Letters, 2004, 16(3):819~821
    [116] L. Zhang, C. Yang, Photonic crystal fibers with squeezed hexagonal lattice, Optics Express, 2004, 12(11):2371~2376
    [117] M. Chen, R. Yu, Square-structured photonic bandgap fibers, Optics Communications, 2004, 235 (1-3):63~67
    [118] M. Chen, R. Yu, Polarization properties of elliptical-hole rectangular lattice photonic crystal fibres, Journal of Optics A, 2004, 6(6):512~515
    [119] Ni Yi, Zhang Lei, Jia Shu, et. al., Dispersion of square solid-core photonicbandgap fibers, Optics Express, 2004, 12(13):2825~2830
    [120] J. Xu, J. Song, C. Li, et. al., Cylindrically symmetrical hollow fiber, Optics Communications, 2000, 182(4-6):343~348
    [121] M.A. van Eijkelenborg, A. Argyros, A. Bachmann, et. al., Bandwidth and loss measurements of graded-index microstructured polymer optical fibre, Electronics Letters, 2004, 40(10):592~593
    [122] G. Vienne, Y. Xu, C. Jakobsen, et. al., First demonstration of air-silica Bragg fiber, Optical Fiber Communication Conference(OFC), 2004, PDP25-1 ~PDP25-3
    [123] G. Vienne, Y. Xu, C. Jakobsen, et. al., Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports, Optics Express, 2004, 12(15):3500~3508
    [124] B.J. Mangan, J.C. Knight, T.A. Birks, et. al., Experimental study of dual-core photonic crystal fibre, Electronics Letters, 2000, 36 (16):1358~1359
    [125] P.M. Blanchard, J.G. Burnett, G.R.G. Erry, et. al., Two-dimensional bend sensingwith a single, multi-core optical fibre, Smart Materials and Structures, 2000, 9(2):132~140
    [126] K. Furusawa, A. Malinowski, J.H. V. Price, et. al., Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding, Optics Express, 2001, 9 (13):714~720
    [127] J.J. Larsen, G. Vienne, Side pumping of double-clad photonic crystal fibers, Optics Letters, 2004, 29(5):436~438
    [128] T.M. Monro, P.J. Bennett, N.G.R. Broderick, et. al., Holey fibers with randomcladding distributions, Optics Letters, 2000, 25(4):206~208
    [129] G. Pickrell, D. Kominsky, R. Stolen, et. al., Microstructural analysis of randomhole optical fibers, IEEE Photonics Technology Letters, 2004, 16(2):491~493
    [130] T.M. Monro, D.J. Richardson, N.G.R. Broderick, et. al., Holey optical fibers: an efficient modal model, Journal of Lightwave Technology, 1999,17(6):1093~1102
    [131] B.J. Eggleton, P.S. Westbrook, R.S. Windeler, et. al., Grating resonances in air-silica microstructured optical fibers, Optics Letters, 1999, 24(21): 1460~1462
    [132] T. Hasegawa, E. Sasaoka, M. Onishi, et. al., Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss, Optics Express, 2001, 9(13): 681~686
    [133] Z. Zhu, T.G. Brown, Multipole analysis of hole-assisted optical fibers, Optics Communications, 2002, 206(4-6):333~339
    [134] M. Yan, P. Shum, C. Lu, et. al., Hole-assisted multiring fiber with low dispersion around 1550 nm, IEEE Photonics Technology Letters, 2004, 16(1): 123~125
    [135] 栗岩锋,王清月,刘博文等,孔助光纤(Hole-assisted lightguide fiber)色散和双折射特性的研究,光子学报,2004, 33(11):1313~1316
    [136] A.B. Fedotov, A.N. Naumov, I. Bugar, et. al., Supercontinuum generation inphotonic-molecule modes of microstructure fibers, IEEE Journal on SelectedTopics in Quantum Electronics, 2002, 8(3):665~674
    [137] B.J. Mangan, L. Farr, A. Langford, et. al., Low loss (1.7 dB/km) hollow corephotonic bandgap fiber, Optical Fiber Communication Conference(OFC), 2004,PDP24-1~PDP24-3
    [138] K. Tajima, J. Zhou, Y. Nakajima, et. al., Ultralow loss and long length photoniccrystal fiber, Journal of Lightwave Technology, 2004, 22(1):7~10
    [139] A. Ferrando, E. Silvestre, J.J. Miret, et. al., Donor and acceptor guided modes in photonic crystal fibers, Optics Letters, 2000, 25(18):1328~1330
    [140] T.P. White, R C. McPhedran, C.M. de Sterke, et. al., Resonance and scattering in microstructured optical fibers, Optics Letters, 2002, 27(22): 1977~1979
    [141] M. Yan, P. Shum, Antiguiding in microstructured optical fibers, Optics Express,2004, 12(1):104~116
    [142] S.O. Konorov, O.A. Kolevatova, A.B. Fedotov, et. al., Waveguide modes of electromagnetic radiation in hollow-core microstructure and photonic-crystal fibers, Journal of Experimental and Theoretical Physics, 2003, 96(5):857~869
    [143] Wang Zhi, Ren Guobin, Lou Shuqin, Mode disorder in elliptical hole PCFs, Optical Fiber Technology, 2004, 10(1):124~132
    [144] 王智,任国斌,娄淑琴等,光子晶体光纤模式特征的研究,光学学报,2004,24(3):324~329
    [145] M.J. Steel, T.P. White, C.M. de Sterke, et. al., Symmetry and degeneracy inmicrostructured optical fibers, Optics Letters, 2001, 26(8):488~450
    [146] Ren Guobin, Wang Zhi, Lou Shuqin, et. al., Mode classification and degeneracy in photonic crystal fibers, Optics Express, 2003, 11(11):1310~1321
    [147] A. Ferrando, E. Silvestre, J.J. Miret, et. al., Vector description of higher-ordermodes in photonic crystal fibers, Journal of the Optical Society of America A,2000, 17(7):1333~1340
    [148] M.D. Nielson, N.A. Mortensen, J.R. Folkenberg, et. al., Mode-field radius ofphotonic crystal fibers expressed by the V parameter, Optics Letters, 2003, 28 (23):2309~2311
    [149] M. Koshiba, K. Saitoh, Structural dependence of effective area and mode field diameter for holey fibers, Optics Express, 2003, 11(15):1746~1756
    [150] T. Hirooka, Y. Hori, M. Nakazawa, Gaussian and sech approximations of mode field profiles in photonic crystal fibers, IEEE Photonics Technology Letters, 2004, 16(4):1071~1073
    [151] N.A. Mortensen, J.R. Folken, P.M.W. Skovgaard, et. al., Numerical aperture ofsingle-mode photonic crystal fibers, IEEE Photonics Technology Letters, 2002,14(8):1094~1096
    [152] W.J. Wadsworth, R.M. Percival, G. Bouwmans, et. al., Very high numerical aperture fibers, IEEE Photonics Technology Letters, 2004, 16(3):843~845
    [153] T. S?rensen, J. Broeng, A. Bjarklev, et. al., Spectral macro-bending lossconsiderations for photonic crystal fibres, IEE Proceedings-Optoelectronics, 2002, 149(5-6):206~210
    [154] J.C. Baggett, T.M. Monro, K. Furusawa, et. al., Understanding bending losses inholey optical fibers, Optics Communications, 2003, 227(4-6):317~335
    [155] T.P. White, R.C. McPhedran, C.M. de Sterke, Confinement losses in microstructured optical fibers, Optics Letters, 2001, 26(21):1660~1662
    [156] V. Finazzi, T.M. Monro, D.J. Richardson, The role of confinement loss in highly nonlinear silica holey fibers, IEEE Photonics Technology Letters, 2003, 15(9):1246~1248
    [157] M.H. Frosz, K. Hougaard, S.E.B. Libori, et. al., Radial deformation losses inphotonic crystal fibres, Journal of Optics A, 2003, 5(3):268~271
    [158] M.D. Nielsen, N.A. Mortensen, J.R. Folkenberg, Reduced microdeformation attenuation in large-mode-area photonic crystal fibers for visible applications,Optics Letters, 2003, 28(18):1645~1647
    [159] J.T. Lizier, G.E. Town, Splice losses in holey optical fibers, IEEE Photonics Technology Letters, 2001, 13(8):794~796
    [160] J. Ju, W. Jin, Y. L. Hoo, et. al., A simple method for estimating the splice loss of photonic-crystal fiber/single-mode fiber, Microwave and Optical TechnologyLetters, 2004, 42(2):171~173
    [161] R.K. Sinha, S.K. Varshney, Dispersion properties of photonic crystal fibers, Microwave and Optical Technology Letters, 2003, 37(2):129~132
    [162] L. Shen, W. Huang, S. Jian, Design of photonic crystal fibers for dispersion-related applications, Journal of Lightwave Technology, 2003, 21(7):1644~1651
    [163] F. Poli, A. Cucinotta, M. Fuochi, et. al., Characterization of microstructured optical fibers for wideband dispersion compensation, Journal of the Optical Society of America B, 2003, 20(10):1958~1962
    [164] L.P. Shen, W.-P. Huang, G.X. Chen, et. al., Design and optimization of photoniccrystal fibers for broad-band dispersion compensation, IEEE Photonics Technology Letters, 2003, 15(4):540~542
    [165] 李曙光,刘晓东,侯蓝田,光子晶体光纤色散补偿特性的数值研究,物理学报,2004,53(6):1880~1886
    [166] 栗岩锋,胡明列,王清月, 800 nm 处为零色散的光子晶体光纤的计算与 设计, 中国激光,2003, 30(5):427~430
    [167] R.S. Jacobsen, J. L?gsgaard, A. Bjarklev, et. al., Very low zero-dispersionwavelength predicted for single-mode modified-total-internal-reflection crystal fibre, Journal of Optics A, 2004, 6(6):604~607
    [168] K. Saitoh, M. Koshiba, T. Hasegawa, et. al., Chromatic dispersion control inphotonic crystal fibers: application to ultra-flattened dispersion, Optics Express,2003, 11(8):843~852
    [169] G. Renversez, B. Kuhlmey, R. McPhedran, Dispersion management withmicrostructured optical fibers: ultraflattened chromatic dispersion with low losses, Optics Letters, 2003, 28(12):989~991
    [170] F. Poli, A. Cucinotta, S. Selleri, et. al., Tailoring of flattened dispersion in highlynonlinear photonic crystal fibers, IEEE Photonics Technology Letters, 2004, 16(4):1065~1067
    [171] G. Millot, A. Sauter, J. M. Dudley, et. al., Polarization mode dispersion and vectorial modulational instability in air-silica microstructure fiber, Optics Letters,2002, 27(9):695~697
    [172] T. Ritari, T. Niemi, H. Ludvigsen, et. al., Polarization-mode dispersion of largemode-area photonic crystal fibers, Optics Communications, 2003, 226(1-6): 233~239
    [173] M.J. Gander, R. McBride, J.D.C. Jones, et. al., Experimental measurement ofgroup velocity dispersion in photonic crystal fibre, Electronics Letters, 1999, 35(1):63~64
    [174] D. Ouzounov, D. Homoelle, W. Zipfel, et. al., Dispersion measurements ofmicrostructured fibers using femtosecond laser pulses, Optics Communications, 2001, 192(3-6):219~223
    [175] Q. Ye, C. Xu, X. Liu, et. al., Dispersion measurement of tapered air–silicamicrostructure fiber by white-light interferometry, Applied Optics, 2002, 41(22): 4467~4470
    [176] W.N. MacPherson, J.D.C. Jones, B.J. Mangan, et. al., Two-core photonic crystal fibre for Doppler difference velocimetry, Optics Communications, 2003, 223(4-6):375~380
    [177] Y. Li, Q. Wang, M. Hu, Numerical analysis of multicore photonic crystal fibers, Chinese Optics Letters, 2003, 1(10):570~572
    [178] A. Mafi, J.V. Moloney, Phase locking in a passive multicore photonic crystal fiber, Journal of the Optical Society of America B, 2004, 21(5):897~902
    [179] D.C. Allan, N.F. Borrelli, M.T. Gallagher, et. al., Surface modes and loss in air-core photonic band-gap fibers, Proceedings of SPIE, 2003, 5000:161~174
    [180] H.K. Kim, J. Shin, S. Fan, et. al., Designing air-core photonic-bandgap fibers free of surface modes, IEEE Journal of Quantum Electronics, 2004, 40(5):551~ 556
    [181] K. Saitoh, N.A. Mortensen, M. Koshiba, Air-core photonic band-gap fibers:the impact of surface modes, Optics Express, 2004, 12(3):394~ 400
    [182] P.J. Bennett, T.M. Monro, D.J. Richardson, Toward practical holey fibertechnology: fabrication, splicing, modeling, and characterization, Optics Letters, 1999, 24(17):1203~1205
    [183] B. Bourliaguet, C. Paré, F. émond, et. al., Microstructured fiber splicing, Optics Express, 2003, 11(25):3412~3417
    [184] J.H. Chong, M.K. Rao, Y. Zhu, et. al., An effective splicing method on photonic crystal fiber using CO2 laser, IEEE Photonics Technology Letters, 2003, 15(7):942~944
    [185] P. Petropoulos, T.M. Monro, W. Belardi, et. al., 2R-regenerative all-optical switch based on a highly nonlinear holey fiber, Optics Letters, 2001, 26(16): 1233~1235
    [186] J.E. Sharping, M. Fiorentino, P. Kumar, et. al., All-optical switching based on cross-phase modulation in microstructure fiber, IEEE Photonics TechnologyLetters, 2002, 14(1):77~79
    [187] G. Kakarantzas, T.A. Birks, P.St.J. Russell, Structural long-period gratings inphotonic crystal fibers, Optics Letters, 2002, 27(12):1013~1015
    [188] M.A. van Eijkelenborg W. Padden, J.A. Besley, Mechanically induced long-period gratings in microstructured polymer fibre, Optics Communications, 2004, 236(1-3):75~78
    [189] K. Morishita, Y. Miyake, Fabrication and resonance wavelengths of long-periodgratings written in a pure-silica photonic crystal fiber by the glass structure change, Journal of Lightwave Technology, 2004, 22(2):625~630
    [190] K. Saitoh, Y. Sato, M. Koshiba, Polarization splitter in three-core photonic crystal fibers, Optics Express, 2004, 12(17):3940~3946
    [191] L. Zhang, C.Yang, A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores, IEEE Photonics Technology Letters, 2004, 16(7):1670~1672
    [192] J.H. Lee, Z. Yusoff, W. Belardi, et. al., A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber, IEEEPhotonics Technology Letters, 2003, 15(3):437~439
    [193] J.H. Lee, W. Belardi, K. Furusawa, et. al., Four-wave mixing based 10-Gb/stunable wavelength conversion using a holey fiber with a high SBS threshold, IEEE Photonics Technology Letters, 2003, 15(3):440~442
    [194] B.H. Lee, J.B. Eom, J. Kim, et. al., Photonic crystal fiber coupler, Optics Letters,2002, 27(10):812~814
    [195] L. Zhang, C. Yang, Polarization-dependent coupling in twin-core photonic crystal fibers, Journal of Lightwave Technology, 2004, 22(5):1367~1373
    [196] K. Furusawa, T.M. Monro, P. Petropoulos, et. al., Modelocked laser based onytterbium doped holey fibre, Electronics Letters, 2001, 37 (9):560~561
    [197] M. Moenster, P. Glas, G. Steinmeyer, et. al., Mode-locked Nd-doped microstructured fiber laser, Optics Express, 2004, 12(19):4523~4528
    [198] D.A. Chestnut, J.R. Taylor, Gain-flattened fiber Raman amplifiers withnonlinearity-broadened pumps, Optics Letters, 2003, 28(23):2294~2296
    [199] J.E. Sharping, M. Fiorentino, P. Kumar, et. al., Optical parametric oscillator based on four-wave mixing in microstructure fiber, Optics Letters, 2002, 27(19): 1675~1677
    [200] J. Lasri, P. Devgan, R. Tang, et. al., A microstructure-fiber-based 10-GHzsynchronized tunable optical parametric oscillator in the 1550-nm regime, IEEEPhotonics Technology Letters, 2003, 15(8):1058~1060
    [201] R. Tang, J. Lasri, P. Devgan, et. al., Microstructure-fibre-based optical parametric amplifier with gain slope of ~200 dB/W/km in the telecom range, Electronics Letters, 2003, 39 (2):195~196
    [202] 胡明列,飞秒激光脉冲在光子晶体光纤中传输特性的研究,博士学位论文, 天津:天津大学,2004
    [203] G. Genty, M. Lehtonen, H. Ludvigsen, et. al., Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers, Optics Express, 2002, 10(20):1083~1098
    [204] K.M. Hilligs?e, T.V. Andersen, H.N. Paulsen, et. al., Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths, Optics Express, 2004, 12(6):1045~1054
    [205] G. Genty, M. Lehtonen, H. Ludvigsen, et. al., Enhanced bandwidth ofsupercontinuum generated in microstructured fibers, Optics Express, 2004, 12 (15):3471~3480
    [206] A. Husakou, Nonlinear Phenomena of Ultrabroadband Radiation in Photonic Crystal Fibers and Hollow Waveguides, Ph.D Dissertation, Berlin: Freie Universit?t Berlin, 2002
    [207] B.R. Wahsburn, Dispersion and Nonlinearities Associated with Supercontinuum Generation in Microstructure Fibers, Ph.D Thesis, Atlanta: Georgia Institute of Technology, 2002
    [208] 李曙光,微结构光纤中超短激光脉冲传输及色散特性研究,博士学位论文,秦皇岛:燕山大学,2004
    [209] D.J. Jones, S.A. Diddams, J.K. Ranka, et. al., Carrier-envelope phase control offemtosecond mode-locked lasers and direct optical frequency synthesis, Science, 2000, 288(5466):635~639
    [210] R. Holzwarth, Th. Udem, T.W. H?nsch, et. al., Optical frequency synthesizer forprecision spectroscopy, Physical Review Letters, 2000, 85(11):2264~2267
    [211] S.T. Cundiff, J. Ye, Colloquium: femtosecond optical frequency combs, Reviewsof Modern Physics, 2003, 75(1):325~342
    [212] T.M. Fortier, D.J. Jones, J. Ye, et. al., Highly phase stable mode-locked lasers, IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(4):1002~1010
    [213] I. Hartl, X.D. Li, C. Chudoba, et. al., Ultrahigh-resolution optical coherencetomography using continuum generation in an air-silica microstructure optical fiber, Optics Letters, 2001, 26(9):608~610
    [214] B. Povazay, K. Bizheva, A. Unterhuber, et. al., Submicrometer axia resolution optical coherence tomography, Optics Letters, 2002, 27(20):1800~1802
    [215] Y. Wang, Y. Zhao, J.S. Nelson, et. al., Ultrahigh-resolution optical coherencetomography by broadband continuum generation from a photonic crystal fiber, Optics Letters, 2003, 28(3):182~184
    [216] S. Lakó, J. Seres, P. Apai, et. al., Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation, Applied Physics B, 2003, 76(6-7):267~275
    [217] F. Druon, P. Georges, Pulse-compression down to 20 fs using a photonic crystal fiber seeded by a diode-pumped Yb:SYS laser at 1070 nm, Optics Express, 2004, 12(15):3383~3396
    [218] M. Adachi, K.Yamane, R. Morita, et. al., Pulse compression using direct feedback of the spectral phase from photonic crystal fiber output without the need for the Taylor expansion method, IEEE Photonics Technology Letters, 2004, 16(8):1951~1953
    [219] A.B. Fedotov, P. Zhou, A.P. Tarasevitch, et. al., Microstructure-fiber sources of mode-separable supercontinuum emission for wave-mixing spectroscopy, Journal of Raman Spectroscopy, 2002, 33(11-12):888~895
    [220] H.N. Paulsen, K.M. Hilligs?e, J. Th?gersen, et. al., Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source, Optics Letters, 2003, 28(13):1123~1125
    [221] D.T. Reid, I.G. Cormack, W.J. Wadsworth, et. al., Soliton self-frequency shift effects in photonic crystal fibre, Journal of Modern Optics, 2002, 49(5-6):757~ 767
    [222] N. Nishizawa, Y. Ito, T. Goto, Wavelength-tunable femtosecond soliton pulsegeneration for wavelengths of 0.78-1.0 μm using photonic crystal fibers and aultrashort fiber laser, Japanese Journal of Applied Physics, 2003,42(2A):449~ 452
    [223] F. Druon, N. Sanner, G. Lucas-Leclin, et. al., Self-compression and Raman soliton generation in a photonic crystal fiber of 100-fs pulses produced by a diode-pumped Yb-doped oscillator, Applied Optics, 2003, 42(33):6768~6770
    [224] A. Ferrando, M. Zacarés, P.F. de Córdoba, et. al., Spatial soliton formation inphotonic crystal fibers, Optics Express, 2003, 11(5):452~459
    [225] D.V. Skryabin, Coupled core-surface solitons in photonic crystal fibers, Optics Express, 2004, 12(20):4841~4846
    [226] L. Tartara, I. Cristiani, V.J. Degiorgio, Nonlinear propagation of ultrashort laserpulses in a microstructured fiber, Journal of Nonlinear Optical Physics &Materials, 2002, 11(4):409~419
    [227] A. Efimov, A.J. Taylor, F.G. Omenetto, et. al., Nonlinear generation of very high-order UV modes in microstructured fibers, Optics Express, 2003, 11(8): 910~918
    [228] K. Suzuki, H. Kubota, S. Kawanishi, et. al., High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarisation-maintaining photonic crystal fibre, Electronics Letters, 2001, 37 (23):1399~1401
    [229] B. Zsigri, C. Peucheret, M.D. Nielsen, et. al., Transmission over 5.6 km large effective area and low-loss (1.7 dB/km) photonic crystal fibre, Electronics Letters, 2003, 39 (10):796~798
    [230] F. Luan, J.C. Knight, P.St.J. Russell, et. al., Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers, Optics Express, 2004, 12(5):835~840
    [231] W. G?bel, A. Nimmerjahn, F. Helmchen, Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber, Optics Letters, 2004, 29(11):1285~1287
    [232] S.O. Konorov, D.A. Sidorov-Biryukov, I. Bugar, et. al., Limiting of microjoulefemtosecond pulses in air-guided modes of a hollow photonic-crystal fiber, Physical Review A, 2004, 70(2):023807-1~023807-6
    [233] F. Benabid, J.C. Knight, P.St.J. Russell, Particle levitation and guidance in hollow-core photonic crystal fiber, Optics Express, 2002, 10(21):1195~1203
    [234] T.M. Monro, W. Belardi, K. Furusawa, et. al., Sensing with microstructured optical fibres, Measurement Science and Technology, 2001, 12(7):854~858
    [235] Y.L. Hoo, W. Jin, H.L. Ho, et. al., Measurement of gas diffusion coefficient using photonic crystal fiber, IEEE Photonics Technology Letters, 2003, 15(10): 1434~1436
    [236] J.B. Jensen, L.H. Pedersen, P.E. Hoiby, et. al., Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions, Optics Letters, 2004, 29(17):1974~1976
    [237] S. Lorenz, Ch. Silberhorn, N. Korolkova, et. al., Squeezed light frommicrostructured fibres: towards free-space quantum cryptography, Applied Physics B, 2001, 73(8):855~859
    [238] Ni Yi, Wang Qing, Zhang Lei, et. al., Entangled photon-pair source based onphotonic crystal fiber, Optics Communications, 2004, 238(1-3):45~49
    [239] J.E. Sharping, J. Chen, X. Li, et. al., Quantum-correlated twin photons frommicrostructure fiber, Optics Express, 2004, 12(14):3086~3094
    [240] S.O. Konorov, V.P. Mitrokhin, A.B. Fedotov, et. al., Hollow-core photonic-crystal fibres for laser dentistry, Physics in Medicine and Biology, 2004, 49(7): 1359~1368
    [241] S.O. Konorov, V.P. Mitrokhin, A.B. Fedotov, et. al., Laser ablation of dental tissues with picosecond pulses of 1.06-μm radiation transmitted through a hollow-core photonic-crystal fiber, Applied Optics, 2004, 43(11): 2251~2256
    [242] S.O. Konorov, D.A. Sidorov-Biryukov, I. Bugar, et. al., Experimentaldemonstration of a photonic-crystal-fiber optical diode, Applied Physics B, 2004,78(5):547~550
    [243] X.E. Lin, Photonic band gap fiber accelerator, Physical Review Special Topics -Accelerators and Beams, 2001, 4(5):051301-1~051301-7
    [244] I.V. Mel’nikova, J.W. Haus, P.G. Kazansky, Vecksler-Macmillan phase stabilityfor neutral atoms accelerated by a laser beam, Optics Communications, 2003, 220(1-3):143~150
    [245] M.A. van Eijkelenborg, Imaging with microstructured polymer fibre, Optics Express, 2004, 12(2):342~346
    [246] K. Shi, P. Li, S. Yin, et. al., Chromatic confocal microscopy using supercontinuum light, Optics Express, 2004, 12(10):2096~2101
    [247] C.J.S. de Matos, S.V. Popov, J.R. Taylor, Short-pulse, all-fiber, Raman laser with dispersion compensation in a holey fiber, Optics Letters, 2003, 28(20): 1891~1893
    [248] J. Limpert, T. Schreiber, S. Nolte, et. al., All fiber chirped-pulse amplificationsystem based on compression in air-guiding photonic bandgap fiber, Optics Express, 2003, 11(24):3332~3337
    [249] C.J.S. de Matos, S.V. Popov, A.B. Rulkov, et. al., All-fiber format compression of frequency chirped pulses in air-guiding photonic crystal fibers, Physical Review Letters, 2004, 93(10):103901-1~103901-4
    [250] J. Arriaga, J.C. Knight, P.St.J. Russell, Modeling the propagation of light inphotonic crystal fibers, Physica D, 2004, 189(1-2):100~106
    [251] D.V. Skryabin, F. Luan, J.C. Knight, et. al., Soliton self-frequency shiftcancellation in photonic crystal fibers, Science, 2003, 301(5640):1705~1708
    [252] F. Biancalana, D.V. Skryabin, A.V. Yulin, Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers, PhysicalReview E, 2004, 70(1):016615-1~016615-9
    [253] A. Ferrando, E. Silvestre, J.J. Miret, et. al., Full-vector analysis of a realisticphotonic crystal fiber, Optics Letters, 1999, 24(5):276~278
    [254] S.G. Johnson, J.D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis, Optics Express, 2001, 8(3):173~190
    [255] J. Kim, Y. Chung, U. Paek, et. al., A new numerical design tool for holey optical fibers, Optoelectronics and Communications Conference(OECC), 2000, Paper 12B3-3
    [256] T.M. Monro, D.J. Richardson, N.G.R. Broderick, et. al., Modeling large air fraction holey optical fibers, Journal of Lightwave Technology, 2000, 18(1):50~ 56
    [257] E. Knudsen, A. Bjarklev, Modelling photonic crystal fibres with Hermite-Gaussian functions, Optics Communications, 2003, 222(1-6):155~160
    [258] Wang Zhi, Ren Guobin, Lou Shuqin, A novel supercell overlapping method fordifferent photonic crystal fibers, Journal of Lightwave Technology, 2004, 22(3):903~916
    [259] Z. Wang, G. Ren, S. Lou, et. al., Investigation of the supercell based orthonormal basis function method for different kinds of fibers, Optical Fiber Technology, 2004, 10(4):296~311
    [260] J.W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, 北京:世界图书出版公司,1997
    [261] 胡建伟,汤怀民,微分方程数值方法,北京:科学出版社,1999
    [262] K. Kawano, T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schr?dinger Equation, New York: John Wiley & Sons, 2001
    [263] M.N.O. Sadiku, Numerical Techniques in Electromagnetics (2nd Edition), Boca Raton: CRC Press, 2001
    [264] C.A. De Francisco, B.V. Borges, M.A. Romero, A semivectorial iterative finite-difference method to model photonic crystal fibers, SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, 2001, 1:407~409
    [265] C.A. De Francisco, B.V. Borges, M.A. Romero, A semivectorial method for the modeling of photonic crystal fibers, Microwave and Optical Technology Letters,2003, 38(5):418~421
    [266] C. Yu, H. Chang, Applications of the finite difference mode solution method to photonic crystal structures, Optical and Quantum Electronics, 2004, 36(1-3):145 ~163
    [267] 栗岩锋,刘博文,王子涵等,光子晶体光纤色散的有限差分法研究,中国激光,2004,31(10):1257~1260
    [268] C.E. Kerbage, B.J. Eggleton, P.S. Westbrook, et. al., Experimental and scalar beam propagation analysis of an air-silica microstructure fiber, Optics Express, 2000, 7(3):113~122
    [269] F. Fogli, L. Saccomandi, P. Bassi, et. al., Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers, Optics Express, 2002, 10(1):54~59
    [270] Y.Z. He, F.G. Shi, Finite-difference imaginary-distance beam propagationmethod for modeling of the fundamental mode of photonic crystal fibers, Optics Communications, 2003, 225(1-3):151~156
    [271] M. Qiu, Analysis of guided modes in photonic crystal fibers using the finite- difference time-domain method, Microwave and Optical Technology Letters, 2001, 30(5):327~330
    [272] Y. Zhu, Y. Chen, P. Huray, et. al., Application of a 2D-CFDTD algorithm to the analysis of photonic crystal fibers (PCFs), Microwave and Optical TechnologyLetters, 2002, 35(1):10~14
    [273] Z. Zhu, T.G. Brown, Full-vectorial finite-difference analysis of microstructured optical fibers, Optics Express, 2002, 10(17):853~864
    [274] S. Guo, F. Wu, S. Albin, et. al., Loss and dispersion analysis of microstructured fibers by finite-difference method, Optics Express, 2004, 12(15):3341~3352
    [275] 葛德彪,闫玉波,电磁波时域有限差分方法,西安:西安电子科技大学 出版社,2002
    [276] 金建铭(王建国译),电磁场有限元方法,西安:西安电子科技大学出版社,1998
    [277] F. Brechet, J. Marcou, D. Pagnoux, et. al., Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method, Optical Fiber Technology, 2000, 6(2):181~191
    [278] M. Koshiba, Full-vector analysis of photonic crystal fibers using the finite element method, IEICE Transactions on Electronics, 2002, E85-C(4):881~ 888
    [279] S. Guenneau, A. Nicolet, F. Zolla, et. al., Modeling of photonic crystal optical fibers with finite elements, IEEE Transactions on Magnetics, 2002, 38(2): 1261~1264
    [280] S. Guenneu, A. Nicolet, F. Zolla, et. al., Numerical and theoretical study of photonic crystal fibers, Progress In Electromagnetics Research, 2003, PIER 41:271~305
    [281] M. Koshiba, K. Saitoh, Finite-element analysis of birefringence and dispersionproperties in actual and idealized holey-fiber structures, Applied Optics, 2003,42 (31):6267~6275
    [282] T.P. White, B.T. Kuhlmey, R.C. McPhedran, et. al., Multipole method formicrostructured optical fibers. I. Formulation, Journal of the Optical Society of America B, 2002, 19(10):2322~2330
    [283] B.T. Kuhlmey, T.P. White, G.. Renversez, et. al., Multipole method formicrostructured optical fibers. II. Implementation and results, Journal of the Optical Society of America B, 2002, 19(10):2331~2340
    [284] N. Guan, S. Habu, K. Takenaga, et. al., Boundary element method for analysis of holey optical fibers, Journal of Lightwave Technology, 2003, 21(8): 1787~1792
    [285] X. Wang, J. Lou, C. Lu, et. al., Modeling of PCF with multiple reciprocity boundary element method, Optics Express, 2004, 12(5):961~966
    [286] P.J. Roberts, T.J. Shepherd, The guidance properties of multi-core photoniccrystal fibres, Journal of Optics A, 2001, 3(6):S133~S140
    [287] W.S. Mohammed, L. Vaissié, E.G. Johnson, Hybrid mode calculations for novel photonic crystal fibers, Optical Engineering, 2003, 42(8):2311~2317
    [288] E.G. Alivizatos, I.D. Chremmos, N.L. Tsitsas, et. al., Green’s-function method for the analysis of propagation in holey fibers, Journal of the Optical Society of America A, 2004, 21(5):847~857
    [289] E. Kerrinckx, L. Bigot, M. Douay, et. al., Photonic crystal fiber design by means of a genetic algorithm, Optics Express, 2004, 12(9):1990~1995
    [290] B. Stout, S. Stout, M. Nevière, Photonic crystal waveguides: a one-dimensional model theory, Journal of Electromagnetic Waves and Applications, 2001, 15(7):961~988
    [291] G.A. Kriegsmann, Electromagnetic propagation in periodic porous structures,Wave Motion, 2002, 36(4):457~472
    [292] N.A. Issa, L. Poladian, Vector wave expansion method for leaky modes of microstructured optical fibers, Journal of Lightwave Technology, 2003, 21(4): 1005~1012
    [293] M. Albertsen, J. L?gsgaard., S.E.B. Libori, et. al., Coupling reducing k-points for photonic crystal fiber calculations, Photonics and Nanostructures – Fundamentals and Applications, 2003, 1(1):43~53
    [294] S.E. Golowich, M.I. Weinstein, Resonances of microstructured photonicwaveguides and higher order homogenization expansion, Physica B, 2003, 338 (1-4):136~142
    [295] S. Guenneau, C. Poulton, A. Movchan, Conical propagation of electromagnetic waves through an array of cylindrical inclusions, Physica B, 2003, 338(1-4): 149~152
    [296] J.M. Fini, Analysis of microstructure optical fibers by radial scatteringdecomposition, Optics Letters, 2003, 28(12):992~994
    [297] A.B. Sotsky, L.I. Sotskaya, Modes of capillary optical fibers, Optics Communications, 2004, 230(1-3):67~79
    [298] A.Hochman, Y. Leviatan, Analysis of strictly bound modes in photonic crystal fibers by use of a source-model technique, Journal of the Optical Society of America A, 2004, 21(6):1073~1081
    [299] H. Cheng, W.Y. Crutchfield, M. Doery, et. al., Fast, accurate integral equation methods for the analysis of photonic crystal fibers I: Theory, Optics Express, 2004, 12(16):3791~3805
    [300] Y. Li, C. Wang, M. Hu, A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation, Optics Communications, 2004, 238(1-3):29~33
    [301] 栗岩锋,王清月,胡明列,光子晶体光纤的矢量有效折射率分析方法, 中国激光,2004,31(11):1332~1336
    [302] 李曙光,刘晓东,侯蓝田,光子晶体光纤的导波模式与色散特性,物理 学报,2003,52(11):2811~2817
    [303] 任国斌,娄淑琴,王智等,等效折射率模型研究光子晶体光纤的色散特性,光学学报,2004, 24(3):319~323
    [304] M. Koshiba, K. Saitoh, Applicability of classical optical fiber theories to holey fibers, Optics Letters, 2004, 29(15):1739~1741
    [305] M. Midrio, M.P. Singh, C.G. Someda, The space filling mode of holey fibers: an analytical vectorial solution, Journal of Lightwave Technology, 2000, 18(7): 1031~1037
    [306] 李曙光,刘晓东,侯蓝田,一种晶体光纤基模色散特性的矢量法分析, 物理学报,2004,53(6):1873~1879
    [307] A. Yariv, Optical Electronics in Modern Communications (5th Edition), 北京:电子工业出版社,2002,76~120
    [308] D. Zwillinger (Ed.-in-Chief), CRC Standard Mathematical Tables and Formulae (30th Edition), 北京:世界图书出版公司,1998
    [309] 王子涵,栗岩锋,胡明列等,光子晶体光纤包层基模解析解法的研究, 量子电子学报,2005,待发表
    [310] Z. Zhu, T.G. Brown, Analysis of the space filling modes of photonic crystal fibers, Optics Express, 2001, 8(10):547~554
    [311] A.Kapoor, G.S. Singh, Mode classification in cylindrical dielectric waveguides, Journal of Lightwave Technology, 2003, 18(5):849~852
    [312] M. Hu, C. Wang, Y. Li, et. al., Supercontinuum generation and transmission in arandom distributed microstructure fiber, Laser Physics, 2004, 14(5):776~779
    [313] 胡明列,王清月,栗岩锋等,非均匀微结构光纤中超连续光的产生和传输,中国激光,2004, 31(5):567~569
    [314] J.A. Kong, Maxwell Equations, 北京:高等教育出版社,2004
    [315] R.L. Burden, J.D. Faires, Numerical Analysis (7th Edition), 北京:高等教育 出版社,2001
    [316] J.H. Mathews, K.D. Fink, Numerical Methods Using Matlab (3rd Edition), 北京:电子工业出版社,2002
    [317] Y. Li, B. Liu, Z. Wang, et. al., Influence on photonic crystal fiber dispersion of thesize of air holes in different rings within the cladding, Chinese Optics Letters, 2004, 2(2):75~77
    [318] J. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena, San Diego: Academic Press, 1996
    [319] C. Rullière (Ed.), Femtosecond Laser Pulses: Principles and Experiments, Berlin: Springer, 1998
    [320] 张志刚,飞秒激光技术与应用,北京:科学出版社,2004(待出版)
    [321] M. Yamashita, H. Shigekawa, R. Morita (Eds.), Few-Cycle Photonics and Optical Scanning-Tunneling Microscopy—Route to Femtosecond-?ngstrom Technology, Berlin: Springer, 2004(待出版)
    [322] T. Brabec, F. Krausz, Intense few-cycle laser fields: Frontiers of nonlinear optics, Reviews of Modern Physics, 2000, 72(2):545~591
    [323] 倪晓昌,飞秒激光微精细加工理论与实验研究,博士学位论文,天津: 天津大学,2003
    [324] 毛方林,飞秒激光显微操作系统的研究,博士学位论文,天津:天津大学,2004
    [325] W.H. Reeves, D.V. Skryabin, F. Biancalana, et. al., Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres, Nature, 2003, 424(6948):511~515
    [326] I. Walmsley, L. Waxer, C. Dorrer, The role of dispersion in ultrafast optics, Review of Scientific Instruments, 2001, 72(1):1~29
    [327] 栗岩锋,王清月,胡明列等,光子晶体光纤色散的无量纲化计算方法, 物理学报,2004, 53(5):1396~1400
    [328] J. Kim, U. Paek, D.Y. Kim, et. al., Analysis of the dispersion properties of holeyoptical fibers using normalized dispersion, Optical Fiber CommunicationConference (OFC), 2001, WDD86-1~WDD86-3
    [329] M. K. Haldar, J. C. Coetzee, S. F. Gabriel Aw, Validity of separating group-velocity dispersion of photonic-crystal fibers into material and waveguide components, Microwave and Optical Technology Letters, 2004, 43(2):91~93
    [330] 栗岩锋,王子涵,胡明列等,光子晶体光纤色散特性的研究,中国光学学会 2004 年大会光电子集成专题,2004,浙江大学,浙江杭州