MEMS平面微运动测量的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机电系统(MEMS)是指集微型机械、微型执行器以及信号处理和控制电路、接口、通信和电源等于一体的可批量制作的微型器件或系统。由于其体积小、可批量生产、集成度高等优点,近几年得到了快速的发展并已步入产业化阶段。在MEMS的产业化进程中,测试技术越来越得到国内外许多MEMS研究机构的重视,其中MEMS动态特性测试技术在MEMS研发和产业化过程中具有最为重要的意义。本文基于机器微视觉技术,对MEMS动态特性中的平面微运动特性测试技术开展了研究,研究内容主要包括:
    1、系统地调研和分析了微机电系统、微机电系统测试技术及微机电系统平面动态特性测试技术的研究现状、应用领域和发展趋势。
    2、创新性地构建了可以同时满足两种测量原理:模糊图像合成原理和频闪动态成像原理的MEMS动态测试系统。从而可以根据测试要求和目的进行灵活选择。基于虚拟仪器LabVIEW开发软件测试平台,同时集成了MATLAB、VC等应用软件,扩充系统功能。
    3、提出了一种联合运用空域增强、小波域增强和空间灰度矩亚像素定位三种技术的MEMS运动轨迹提取算法,实现了MEMS器件运动轨迹的精确提取。在连续光照明条件下,基于模糊图像合成原理应用该算法对MEMS平面运动特性进行分析。通过扫频测量和扫压测量得到MEMS器件的平面运动特性。
    4、提出了基于块匹配与相位相关的亚像素精度的MEMS二维运动估计新算法,实现了时域测量和频域测量相结合的MEMS平面运动快速、精确估计。基于频闪成像原理,运用自行设计的频闪同步控制系统捕捉MEMS器件瞬间清晰的运动图像序列。利用该算法对MEMS器件的运动历程做分析,得到特定驱动频率下MEMS器件的幅度-相位曲线,还分析了MEMS器件的相频特性。利用扫频测量原理,获得了MEMS器件的幅频特性。
    5、提出了基于标号场和邻域优化法相结合的光流算法分析MEMS器件的运动历程,实现了MEMS平面内平动与旋转的精确测量。通过测量,得到了MEMS器件在特定驱动频率下的幅相特性;同时结合扫频测量,获得了MEMS器件的幅频特性。对两种基于频闪成像原理的二维运动估计方法做了比较和分析,对于不同的测试器件,根据测试要求可以做不同的选择。
    6、根据动态特性测试结果,分析和测量MEMS器件的力学特性参数。通过MEMS器件谐振频率推导MEMS微梁的杨氏模量和残余应力等力学特性。
Micro-Electro Mechanical System (MEMS) is a kind of micro-device thatcombines micro-mechanism, micro-actuator, circuit for signal process and control,interface, communication and power supply. It contains many benefits such as smallvolume, batch process and highly integrated level. It develops very soon and stepsinto industry in recent year. In the course of developing, testing technique becomesmore and more important and many MEMS research departments attach to it. MEMSdynamic testing technique is the most important in all of MEMS testing requirements.This dissertation researches on in-plane micro-motion measurement for MEMS basedon machine micro-vision. The research work includes six aspects as follows.
    1. The application field, current status and development trends of Micro-electromechanical system, testing technique of MEMS and in-plane dynamic testingtechnique of MEMS are fully investigated and analyzed.
    2. MEMS dynamic testing system, which combined blur image synthetictechnique and stroboscopic dynamic image technique, is set up to measure in-planemotion of MEMS. Software testing plane is established based on virtual instrumentLabVIEW and also integrated with MATLAB and VC to extend system function.
    3. MEMS motion tracing extracting algorithm combined with airspaceenhancement, wavelet space enhancement and space gray level matrix sub-pixellocation technique is brought forward. Extracting MEMS motion trace accurately isrealized through it. In the condition of continue lighting, MEMS in-plane motioncharacteristics are analyzed using the algorithm based on blur image syntheticprinciple. The in-plane dynamic parameters are obtained through sweep frequencymeasurement and sweep voltage measurement.
    4. MEMS two-dimension motion estimation algorithm based on block matching,phase correlation and sub-pixel location technique is brought forward. EstimatingMEMS in-plane motion quickly and accurately is realized combined time space andfrequency space measurement. Applying stroboscopic synchronous control systemthat is self-made, MEMS clear motion image sequences are acquired. MEMS motionprocess is analyzed using the algorithm. The amplitude-phase curve of MEMS inspecial driving frequency is got. The phase-frequency character is also analyzed. Andthe amplitude-frequency curve is acquired through sweep frequency measurement.
    5. Optical flow algorithm combination of labeling field and neighborhoodoptimization is proposed to realize precise measurement for MEMS translation androtation. The amplitude-phase curve of MEMS in special driving frequency is got.And the phase-frequency character also analyzed associated with sweep frequencymeasurement. The two motion estimation methods based on stroboscopic imagingprinciple are compared. According to testing requirement it could choose any of themin practical application.6. The mechanical properties of MEMS are analyzed according to the testingresults of dynamic characteristics. The young's modulus and residual stress ofmicro-beam are deduced by natural frequency of MEMS.
引文
[1] 王立鼎,刘冲,微机电系统科学与技术发展趋势,大连理工大学学报,2000,40(5):505~508
    [2] 丁衡高,微系统与微米/纳米技术及其发展,微米/纳米科学与技术,2000,5(1):1~6
    [3] 周兆英,王小浩,叶雄英,等,微型机电系统,中国机械工程,2000,11(1-2):163~168
    [4] Sniegowski J J, de Boer M P. IC-compatible polysilicon surface micromaching. Annu RevMater Sci, 2000, 30: 299~333
    [5] Thielicke E, Okermeier E. Microactuator and their technologies. Mechatronics, 2000, 10:431~455
    [6] Nadim Maluf. An Introduction to Microelectromechanical Systems Engineering, ArtechHouse, 2000
    [7] Isao Shimo Yama et al. Strategy Towards Fusion of Nano and Mciro Systems, The 8thInternational Micromachine / Nanotech Symposium, Tokyo, Noember 14, 2002
    [8] 李炳乾,朱长纯,刘君华,微电子机械系统的研究进展,国外电子元器件,2001,1:4~8
    [9] 李志信,罗小兵,过增元,MEMS 技术的现状及发展趋势,传感器技术,2001,20(9):58~60
    [10] Lang Walter. Reflexions on the future of microsystem. Sensors and Actuators A, 1999, 72:1~15
    [11] Wen H K. The future of sensor and actuator systems. Sensors and Actuators A, 1996, 56:193~197
    [12] Bao M H. Future of microelectromechanical systems (MEMS). Sensors and Actuators A,1996, 56: 135~141
    [13] Benoit J. Mciro and nanothechnologies: a challenge on the way forward to new markets.Materials Science and Engineering B, 1998, 51: 254~257
    [14] Janusz Bryzek. Impact of MEMS technology on society. Sensors and Actuators A, 1996,56: 1~9
    [15] David S E, Douglas R S. Application of MEMS technology in automotive sensors andactuators. Proceeding of the IEEE, 1988, 86 (8): 1747~1755
    [16] Taechung Yi, Lu Li, Chang-Jin Kim, Microscale material testing of single crystallinesilicon: process effects on surface morphology and tensile strength. Sensors and Actuators,2000:172~178
    [17] Brian D. Jensen, Maarten P. de Boer, and Samuel L. Miller, IMaP: Interferometry forMaterial Property Measurement in MEMS. MSM'1999, San Juan, Puerto Rico, 1999:19~21
    [18] Janet C. Marshall, New Optomechanical Technique for Measuring Layer thickness inMEMS Processes. J Microelectromech. Syst, 2001, vol.10
    [19] Takahiro Namazu, Yoshitada Isono, and Takeshi Tanaka, Evaluation of Size Effect onMechanical Properties of Single Crystal Silicon by Nanoscale Bending Test Using AFM.J Microelectromech. Syst, 2001, vol.10:450~459
    [20] Peter M. Osterberg and Stephen D. Senturia, M-TEST: A Test Chip for MEMS materialProperty Measurement Using electrostatically Actuated Test Structures. JMicroelectromech. Syst, 1997, vol.6:107~118
    [21] M. A. Haque and M. T. A. Saif, Microscale Materials Testing Using MEMS Actuators. JMicroelectromech. Syst, 2001, vol.10:146~152
    [22] Raj K. Gupta, Electronically Probed Measurements of MEMS Geometries. JMicroelectromech. Syst, 2000, vol.9:380~389
    [23] R. C. Gutierrez, K. V. Shcheglov and T. K. Tang, 'Pulsed source interferometry forcharacterization of resonant micromachined structures', Digest, Solid State Sensor &Actuator Workshop '98, pp. 324-327. Hilton Head, SC
    [24] C. Q. Davis and D. M. Freeman, Using a light microscope to measure motions withnanometer accuracy, Optical Engineering, 1998, vol.37:1299~1304
    [25] M. R. Hart, R. A. Conant, K. Y. Lau, and R. S. Muller, Time-resolved measurement ofoptical MEMS using stroboscopic interferometry, Sendai, Japan, Transducers '99
    [26] Dong-weon Lee, Takahito Ono, and Masayoshi Esashi, High-Speed Imaging by ElectroMagnetically Actuated Probe with Dual Spring. J Microelectromech. Syst, 2000, vol.9:419~424
    [27] Matthew R. Hart, Robert A. Conant, Kam Y. Lau, and Richard S. Muller, StroboscopicInterferometer System for Dyna mic MEMS Characterization. J Microelectromech. Syst,2000, vol.9:409~418
    [28] Christian Rembe, Lilac Muller, Richard S. Muller, et al., Full three-dimensional motioncharacterization of a gimballed electrostatic microactuator. 39th Annual ReliabilityPhysics Symposium, Orlando, Florida, 2001:91~98
    [29] Christian Rembe and Richard S. Muller, Measurement System for Full Three-Dimensional Motion Characterization of MEMS, Journal ofMicroelectromechanical System, Vol. 11, No.5, October 2002
    [30] Christian Rembe, Harald Aschemann, Stefan Ausder Wiesche et al., Nontactile ReliabilityTesting of a Micro Optical Attenuator. 38th Annual International Reliability PhysicsSymposium, San Jose California, 2000
    [31] Matthew R. Hart, Robert A. Conant, Kam Y. Lau, and Richard S. Muller, StroboscopicInterferometer System for Dynamic MEMS Characterization, Journal ofMicroelectromechanical System, 2000, Vol.9, pp.409~418
    [32] Matthew Hart, Robert Conant, Kam Lau, Richard Muller. Time-resolved Measurement ofOptical MEMS using Stroboscopic Interferometry., Proceedings of Transducers 99,Sendai, Japan, June 1999, pp. 470-473
    [33] W. Hemmert, M. S. Mermelstein, and D. M. Freeman, Nanometer Resolution ofThree-dimensional Motions using Video Interference Microscopy, IEEE InternationalMEMS 99, Orlando FL, USA, February 1999
    [34] D. M. Freeman, A. J. Aranyosi, M. J. Gordon and S. S. Hong, Multidimensional motionanalysis of MEMS using computer microvision, Hilton Head, SC, Dig. Solid State Sensor& Actuator Workshop, 1998:150~155
    [35] S. Petitgrand, R. Yahiaoui, K. Danaie, A. Bosseboeuf, J.P. Gilles, 3D Measurement ofMicromechanical Devices Vibration Mode Shapes with a Stroboscopic InterferometricMicroscope, Optics and Lasers in Engineering 36 (2001) 77–101
    [36] Alain Bosseboeufa, Philippe Nerinb, Pascal Vabreb,Sylvain Petitgranda, Réda Yahiaoui,3D Full Field Dynamical Characterization of Micromechanical Devices by StroboscopicWhite Light Scanning Interferometry, Proc. Lasers in Metrology and art conservation.Conf. Microsystems engineering Metrology and Inspection II, Munich, June 19-21, 2001
    [37] Daniel J. Burns and Herbert F. Helbig, A System for Automatic Electrical and OpticalCharacterization of Microelectromechanical Devices, Journal of MicroelectromechanicalSystem, Vol. 8, No.4, 1999
    [38] S. Kurth, Interference Microscopic Techniques for Dynamic Testing of MEMS, AnnualResearch Report 2002, Chemnitz University of Technology, Germany
    [39] Petra Aswendt, Claus-Dieter Schmidt, Dirk Zielke, Steffen Schubert, ESPI Solution forNon-contacting MEMS-on-wafer Testing, Optics and Lasers in Engineering 40 (2003)501–515
    [40] Petra Aswendt, Claus-Dieter Schmidt, Dirk Zielke, HNDT Solution for MEMS Testing onWafer Level, The 4th International Workshop on Automatic Processing of Fringe Patterns,Bremen, Germany, 17-19 September 2001
    [41] Aswendt P, H.ofling R, Hiller K. Testing Microcomponent by Speckle Interferometry,Proc. SPIE 1999, 3825:165–73
    [42] 孙长库,叶声华,激光测量技术,天津:天津大学出版社,2001
    [43] Christian Rembe, Rishi Kant, Richard S. Muller, Optical Measurement Methods to StudyDynamic Behavior in MEMS, Microsystems Engineering. Proc. SPIE, 2001, Vol. 4400:127-137
    [44] Eric M. Lawrence, Kevin E. Speller, MEMS Characterization using Laser DopplerVibrometry, Reliability, Testing and Characterization of MEMS/MOEMS II, SPIEProceedings, January, 2002, Vol. 4980
    [45] Kevin E. Speller, Howard Goldberg, Jeff Gannon et al, Unique MEMS characterizationsolutions enabled by laser Doppler vibrometer measurements, Proc. SPIE, 2002,Vol.4827:478-485
    [46] Turner and Kimberly, LDV Measurements in MEMS: A sampling of capability,Proceedings of 2002 PSV User's Meeting, San Diego, March 22, 2002
    [47] Lawton and Russell, MEMS Characterization using Scanning Laser Vibrometer, SPIE1999 Symposium on Microelectronics Manufacturing Proceedings, September 1999
    [48] Eric M. Lawrence, Kevin E. Speller, and Duli Yu, Laser Doppler Vibrometry for opticalMEMS, Proceedings of the 5th International Conference on Vibration Measurements byLaser Techniques, Ancona, Italy, June 18-21, 2002
    [49] Eric M. Lawrence and Christian Rembe, MEMS Characterization using New Hybrid Laser Doppler Vibrometer / Strobe Video System, Proc. SPIE, 2004, Vol.5343:45-54
    [50] S. Donati, M. Norgia, V. Annovazzi Lodi, S.Merlo, Measurement of MEMS MechanicalParameters by Injection Interferometry, Proceedings of International Conference onOptical MEMS, 21-24 August 2000, Sheraton Kauai, USA, pp.89-90
    [51] S. Donati, G. Giuliani, and S. Merlo, Laser Diode Feedback Interferometer forMeasurement of Displacement without Ambiguity, IEEE J. Quantum Electron, Vol. 31, pp.113–119, 1995
    [52] S. Donati and S. Merlo, Applications of Diode Laser Feedback Interferometry, J. Optics,Vol. 29, pp. 156–161, 1998
    [53] S. Donati, S. Merlo, and F. Micolano, Feedback Interferometry with Semiconductor Laserfor High Resolution Displacement Sensing, Proceedings of Micro-Optical Technologiesfor Measurement Sensors and Microsystems, Vol. 2783, SPIE Europe Series, 1996, pp.203–210
    [54] S. S. Donati and G. Giuliani, Analysis of the Signal Amplitude Regimes inInjection-detection using Laser Diodes, SPIE Proc., Vol. 3944, 2000, pp. 639–644
    [55] Valerio Annovazzi-Lodi, Sabina Merlo and Michele Norgia, Comparison of Capacitiveand Feedback-interferometric Measurements on MEMS, Journal ofMicroelectromechanical System, Vol. 10, No.3, 2001
    [56] Christian Rembe, Harald Aschemann, Stefan Ausder Wiesche, et al., Nontactile reliabilitytesting of a Micro Optical Attenuator. 38th Annual International Reliability PhysicsSymposium, San Jose Califomia, 2000
    [57] Maarten P., Brian D. Jensen and Fernando Bitsie, A small area in-situ MEMS teststructure to measure fracture strength by electrostatic probing. SPIE MDCM'1999, SantaClara, CA, Vol. 3875
    [58] G.X. Li, F.A. Shemansky Jr., Drop test and analysis on micro-machined structures.Sensors and Actuators, 2000:280~286
    [59] http://www.mdl.sandia.gov/micromachine/
    [60] http://www.etec-inc.com/
    [61] http://www.intersci.com/
    [62] http://www.veeco.com
    [63] Cheng-Hsien Liu, Aaron M. Barzilai, Joseph Kurth Reynolds, et al., Characterization of aHigh-Sensitivity Micromachined Tunneling Accelerometer with Micro-g Resolution. JMicroelectromech. Syst, 1998, vol.7:235~244
    [64] Christian Rembe, Bernd Tibken and Eberhard P. Hofer, Analysis of the Dynamics inMicroactuators using High-speed Cine Photomicrography, Journal ofMicroelectromechanical System,Vol.10, No.1:322~328, 2001
    [65] C. Rembe, S. au derWiesche, M. Beuten, and E. P. Hofer, Investigations ofNonreproducible Phenomena in Thermal Ink Jets with Real High Speed CinePhotomicrography, J. Imaging Sci. , Vol. 43, No. 4, pp. 325–331, 1999
    [66] Alain Bosseboeuf and Sylvain Petitgrand, Characterization of the Static and DynamicBehaviors of M (O) EMS by Optical Techniques: Status and Trends, J. Micromech. Microeng. 13 (2003) S23–S33
    [67] 廖强,周忆,米林,徐宗俊,机器视觉在精密测量中的应用,重庆大学学报,2002,25(6):1~4
    [68] D.马尔.视觉计算理论[M].1998,北京:科学出版社
    [69] 裴忠发,赵敬斌,罗志增,基于 LabIEW 的机器视觉实现,机电工程,2002,19(4):53~55
    [70] 张业鹏,何涛,文昌俊,杨银才,沈邦兴,机器视觉在工业测量中的应用与研究,光学 精密工程,2001,9(4):324~329
    [71] An Overview of Machine Vision, http://www.age.uiuc.edu
    [72] Machine Vision is a distinct entity from Computer Vision, Image Processing, ArtificialIntelligence and Pattern Recognition, http://bruce.cs.cf.ac.uk
    [73] 戴君,赵海洋,机器视觉,机械设计与制造工程,1998,27(4):52~53
    [74] 胡春光,金翠云,胡晓东等,MEMS 动态测试系统中频闪同步控制系统的研究,天津大学学报,已录用
    [75] 胡春光,利用相移显微干涉术和频闪成像技术研究 MEMS 离面运动:[硕士学位论文],天津:天津大学,2004
    [76] AWG2005 user manual, Tektronix Japan Ltd., 2001
    [77] MegaPlus user's manual, Redlake MASD Inc., 2001
    [78] IMAQ PCI/PXI-1422 user manual, NI instruments, 2001
    [79] Luxeon Star technical datasheet, www.luxeon.com
    [80] National Instruments Corporation. LabVIEW User Manual. Austin: National InstrumentCorporation, 2003
    [81] AWG2000 series programmer manual, Tektronix Japan Ltd. 1994
    [82] 刘亚,虚拟仪器的构建技术[J],计算机自动测量与控制,1999(3)
    [83] http://www.ni.com/
    [84] Benneff P. Virtual instrument[J], E1ectronic Products, 1993, (7):37~39
    [85] 林正盛,虚拟仪器技术及其发展,国外电子测量技术,1997,(2):40~44
    [86] 程虎,虚拟仪器的现状和发展趋势,现代科学仪器,1999,(4):6~9
    [87] 李晓维,虚拟仪器技术分析,电子测量与仪器学报,1996,10(3):9~13
    [88] 马嘉,LabVIEW―一种全新的仪器开发系统,电子测量技术,1994,(2):35~40
    [89] 郭彦珍,邱宗明,李信,王吉晖,图像测量技术中一种调焦的判别方法,西安理工大学学报,2001,17(1):40~42
    [90] 章毓晋,图像处理和分析基础,高等教育出版社,2002:181~186
    [91] IMAQ Vision Concepts Manual, National Instrument, 2000
    [92] 马颂德、张正友,计算机视觉—计算理论与算法基础,科学出版社,1998 年
    [93] 夏德深,现代图象处理技术与应用,高等教育出版社,1997:41~60
    [94] 沈庭芝,数字图像处理及模式识别,北京理工大学出版社,1998:34~49
    [95] 贾云得,机器视觉,北京:科学出版社,2000:226~250
    [96] 刘文耀,光电图像处理,北京:电子工业出版社,2002:416~440
    [97] 杨福生,小波变换的工程分析与应用,北京:科学出版社,2001:112~144
    [98] 胡昌华,张军波,夏军等,基于 MATLAB 的系统分析与设计—小波分析,西安电子科技大学出版社,2001:235~250
    [99] 徐飞,施晓红,MATLAB 应用图像处理,西安电子科技大学出版社,2001:140~163
    [100] 王晓丹,吴崇明,基于 MATLAB 的系统分析与设计—图像处理,西安电子科技大学出版社,2001:121~149
    [101] 王建民,浦昭邦,刘国栋,提高图像测量系统精度的细分算法的研究,光学精密工程,1998,6(4):44~50
    [102] 王建民,浦昭邦,尹继学,空间矩亚像素细分算法的研究,光学技术,1999,4(7):3~6
    [103] 侯成刚,赵明涛,屈梁生,基于二次曲面拟合的亚像素图像匹配算法,计量学报,1997,18(3):227~231
    [104] 徐建华,图像处理与分析,北京:科学出版社,1992
    [105] 刘饮圣,最小二乘问题计算方法,北京:北京工业大学出版社,1989
    [106] 贺忠海,王宝光,唐怡白,陈林才,利用曲线拟合方法的亚像素提取算法,仪器仪表学报,2003,24(2):195~197
    [107] 王琛影,何小元,相关识别中的曲面拟合法,实验力学,2000,15(3):280~285
    [108] 阎华,郑晓华,郑兆瑞,子像素精度测量方法及其应用综述,测试技术学报,1998,12(3):183~187
    [109] 李智勇,动态图像分析,北京:国防工业出版社,1999:93~118
    [110] 余冰衷,用频闪法测量转速的方法探讨,计量与测试技术,2001(6):17~20
    [111] A.MURAT TEKALP 著,江春,陈丽鑫译,数字视频处理,北京:电子工业出版社,1998:68~104
    [112] 王明辉,彭立中,一种新的快速块匹配运动估计算法,Vol.37(3),北京大学学报,2001:315~322
    [113] 肖德贵,余胜生,周敬利,快速而有效的块运动估计算法,Vol.38(6),2001:680~683
    [114] 李波,涂亚明,基于自适应搜索的快速运动估计算法,Vol.27(4),北京航空航天大学学报,2001:373~376
    [115] 林耀荣,韦岗,基于三角分块的快速运动补偿算法,华南理工大学学报,1998,26(27):
    [116] 王辉柏,张春田,极低码率视频编码中块自适应分割运动估值,中国图象图形学报,1998,3(6):
    [117] 骆立俊,邹采荣,高西奇,何振亚,视频编码中的块运动估计算法,电视技术,1997,12:
    [118] A.M.Tourapis, O.C.Au and M.L.Liou, Fast Motion Estimation using Circular ZonalSearch, SPIE VCIP'99
    [119] J.Y.Tham, S.Ranganath, M.Ranganth and A.A.Kassim, A Novel UnrestrictedCenter-Biased Diamond Search Algorithm for Block Motion Estimation, IEEE Trans, CASVT, August, 1998, 18(4): 369~377
    [120] J.Jain and A.Jain, Displacement measurement and its application in interframe imagecoding, IEEE Trans. Commun, Dec. 1981, vol. COMM-29: 1799~1808
    [121] Giles J Nelson, The Block Matching Approach to Motion Estimation, M.Sc.Dissertation,Department of Computer Science, University of Warwick, UK. Septerber 1993
    [122] T.Koga, K.linuma, A.Hirano etc. Motion-compensated interframe coding for videoconferenceing, Proceedings NTC'81(IEEE), p G.5.3.1~G.5.3.4
    [123] R.Li, B.Zeng and M.L.Liou, A new three-step search algorithm for block motionestimation. IEEE Trans.Circuits Syst. Video Technol. Aug.1994, vol.4: 438~442
    [124] A.Puri, H.M.Hang, D.L.Schilling, An efficient block-matching algorithm for motioncompensated coding, Proceedings IEEE ICASSP (International Conference on Acoustics,Speech and Signal Processing), 1987: 25.4.1~25.4.4
    [125] M.Ghanbari, The cross-search algorithm for motion estimation, IEEE Trans. Commun,July 1990, vol.38: 950~953
    [126] L.M.Po and W.C.Ma, A novel four-step search algorithm for fast block motionestimation, IEEE Trans. Circuits Syst. Video Technol. June 1996, Vol.6: 313~317
    [127] S.Zhu and K.K.Ma, A new diamond search algorithm for fast block-matching motionestimation, IEEE Trans. Image Processing, Feb.2000, vol.9: 287~290
    [128] A.M.Tourapis, O.C.Au, M.L.Liou etc. Fast and efficient motion estimation usingdiamond zonal based algorithms, to appear in Circuits System and Signal ProcessingJournal.
    [129] L.K.Liu and E.Feig, A block-based gradient descent search algorithm for block motionestimation in video coding, IEEE Trans. Circuits Syst. Video Technol. Aug. 1996, vol.6:419~423
    [130] Yi Liang, Phase-Correlation Motion Estimation, Stanford Final Project, EE392J
    [131] John Watkinson, The Engineer's Guide to Motion Compensation, Snell&Wilcox, 1994
    [132] Kuglin C D, Blumenthal A F, Pearson J J. Map-matching Techniques for TerminalGuidance using Fourier Phase Information, SPIE Digital Processing of Aerial Images,1979, 186:21~22
    [133] J.Watkinson, The Engineer's Guide to Motion Compensation, Snell&Wilcox, 1994
    [134] 陈震,高满屯,沈允文,图像光流计算技术研究进展,中国图像图形学报,2002,7A(5):434~439
    [135] B.K.P. Horn and B.G.Schunk. Determining optical flow, Artificial Intelligence, 1981,17:185~203
    [136] W.Enkelmann, Investigations of multigrid algorithms for the estimation of optical flowfields in image sequences, Comp.Vis. Graph Image Proc. 1998, vol.43: 150~177
    [137] S.V.Fogel, Estimation of velocity vector fields from time-varying images sequences,CVGIP: Image Understanding, 1991, vol.53: 253~287
    [138] E.C.Hildreth, Computations underlying the measurement of visual motion, Arthf.Intel,1984, vol.23: 309~354
    [139] 徐光佑,计算机视觉,北京:科学出版社,2000
    [140] A.Murat Tekalp, Digital Video Processing, Pretice Hall PTR, 1995
    [141] A.Verri and T.Poggio, Motion field and optical flow: Wualitative properties, IEEE, Trans.Patt. Anal. Mach. Intel. 1989, vol.PAMI-11: 942~951
    [142] M.Bertero, T.A.Poggio and V.Torre, Ill-posed problems in early vision, Proc. IEEE,Aug.1988, vol.76: 869~889
    [143] J.K.Aggarwal and N.Nandhakumar, On the computation of motion from sequences ofImages---areview, Proceedings of the IEEE, Aug.1988, 76(8)
    [144] S.S. Bearchemin and J.L.Barron, The computation of optical flow, ACM ComputingSurveys, September 1995, 27(3)
    [145] S.Ullman, Analysis of Vision Motion by Biological and Computer System, IEEECompute, 1981, 14(8): 57~69
    [146] B.Erol, F.Kossentini and H.Alnuweiri, Efficient Coding and Mapping Algorithms forSoftware-Only Real Time Video Coding at Low Bit Rates, IEEE Trans. on Circuits andSystems for Video Technology, Sept.2000, 10: 843~856
    [147] PHILIP H.S.TORR, ANDREW WFITZGIBBON, ANDREW ZISSERMAN, Theproblem of Degeneracy in Structure and Motion Recovery form Uncalibrated ImageSequences, International Journal of Computer Vision, 1999, 32(1): 27~44
    [148] B.D.Lucas and T.Kanade, An Iterative Image Registration Technique with anApplication to Stereo Vision, Proc.DARPA Imag. Under. Group. 1981: 121~130
    [149] A.Rosenfeld, C.K.Avinash, Digital Picture Processing, New York, NY. Academic Press,1976: 263~276
    [150] Verri A, Poggio T, Against quantitative optical flow[A], Proc. Of First Conference onComputer Vision, London, England, IEEE, 1987: 171~180
    [151] Lucas B, Kanade T, An iterative image registration technique with an application tostereo vision, Proc. DARPA IU Workshop, Menlo Park, California, 1981: 121~130
    [152] YE X Y, ZHOU Z Y, ZHANG J H. Detemination of the Mechanical Properties ofMicrostructures, Sensors and Actuators A, 1996, 54: 750~754
    [153] Kiesewetter L, ZHANG J M, Houdear D. Determination of Young's Moduli ofMicromechanical Thin Films Using the Resonance Method, Sensors and Actuators A,1992, 35: 153~159
    [154] James S B, A lun J H, David W.A, System for the Dynamic Characterization ofMicrostructures, Journal of Microelectromechanical Systems, 1997, 6(4): 10~13
    [155] Fan L S, Lane L H, Robertson N, et al. Batch-fabricated milli-actuators. Proc of theIEEE Int Conf on Micro Electro Mechanical Systems(MEMS). Fort Lauderdale, Florida,1993: 179~183
    [156] Bryzek J, Petersen K, Meculley W, et al. Micromachines on the march. IEEE, Spectrum,1994, 31(5): 20~31
    [157] 倪振华,振动力学,西安:西安交通大学出版社,1992
    [158] 胡宗武,振动理论及其应用,北京:煤炭工业出版社,1980