水牛性别控制相关问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国拥有超过两千万头沼泽型水牛,但绝大多数只能作为役用,若能通过性别控制技术将其快速改良成乳用或乳肉兼用的杂交水牛,将能带来巨大的经济和社会效益。本论文利用流式细胞仪分离水牛X和Y精子法进行水牛性别控制研究,以期建立和完善水牛性别控制技术体系,并应用到水牛繁殖、育种的研究和生产实践,加速水牛品种改良工作进展。具体研究内容分为如下五个部分:
     研究一,分析和鉴定水牛X精子和Y精子DNA含量的差异,为进行分离水牛XY精子性别控制研究提供理论基础。
     研究结果显示,摩拉水牛的X精子和Y精子的DNA含量差别为3.59±0.11%,尼里—拉菲水牛X精子和Y精子的DNA含量差别为3.55±0.14%,两个品种之间没有显著差异(P>0.05),但是品种内的牛个体之间有差异(P<0.05)。本研究结果揭示了水牛XY精子DNA含量差异,同时表明了分离的可行性。
     研究二,对水牛精子分离之后的体外存活能力、顶体完整情况及微生物污染等精液品质相关参数进行系统分析,以了解影响水牛分离精子活率和受精能力的因素,为改进水牛精子分离方法及提高其在IVF和AI应用效率提供参考。
     研究结果表明,流式细胞仪法、荧光显微镜法与精子图像分析仪法检测所得精子活率的相关系数大于0.85,相关性非常显著,表明均能有效评定精子活率。对分离精子品质分析结果表明,新鲜水牛精子经过分离后,死亡精子被去除,活精子率从分离前的72.4%提高到了86.4%(P<0.05)。经过冷冻解冻后,分离精子的活率高于未分离精子的活率(44.1%vs 33.9%,P<0.05);体外孵育3h、6h后,分离精子活精子率分别为24.2%、15.6%,未分离精子活精子率分别为9.0%、6.7%,二者均下降明显(P<0.05),而同一孵育时间的分离精子活率均高于未分离精子活率(P<0.05)。在顶体反应方面,新鲜水牛精子经过分离后,顶体损坏的精子也被去除,发生顶体反应精子的比例从分离前的22.9%减少到分离后3.9%(P<0.05),但是经过冷冻解冻后增加到30.0%,与未分离冷冻精子的26.8%没有显著差异(P>0.05),表明分离精子受冷冻损伤更严重。解冻并体外孵育3h、6h后,分离精子顶体反应比例分别为33.9%、38.3%,未分离精子顶体反应比例分别为32.8%、35.6%,同一孵育时间的分离精子顶体反应率稍微高于未分离精子,但无统计差异(P>0.05)。
     精液微生物分析试验结果表明,新鲜采集的水牛精液平均菌落密度10619个/毫升,常规冻精平均菌落密度为293个/毫升,而分离冷冻精液平均菌落密度达到18935个/毫升,三者差异显著(P<0.05)。新鲜精液检测到的菌落中,革兰氏阳性球菌占48%,阴性杆菌占41%,阳性杆菌占9%,霉菌占2%;而分离精子冷冻精液中的菌落100%为革兰氏阴性杆菌,经检测确定为阴沟肠杆菌和产酸克雷伯氏菌,对妥布霉素和庆大霉素呈耐药性,而对丁胺卡那霉素以及环丙氟哌酸药物敏感性较强。
     研究三,通过制作奶牛性染色体涂染探针,检测水牛分离精子的纯度,以期建立一种独立评估水牛分离精子纯度的手段。
     研究结果表明,运用显微操作仪能够有效分离荷斯坦奶牛的性染色体并制作探针。应用荷斯坦奶牛Y染色体探针杂交水牛正常精子显示,Y精子比例为47.7%;应用荷斯坦奶牛X染色体探针杂交水牛正常精子显示,X精子比例为48.9%,二者均接近50%理论值(P>0.05),表明所制备染色体探针用于鉴定XY精子比例的有效性。在杂交水牛分离精子中,应用Y染色体探针杂交水牛分离Y精子样本表明,Y精子所占的比率为82.2%;应用X染色体探针杂交水牛分离Y精子样本表明,X精子所占比例为9.6%,也即Y精子所占的比率为90.4%。两种探针检测分离Y精子的综合纯度为86.2%,与流式细胞仪重分析87%的结果接近(P>0.05)。
     研究四,将水牛分离精子应用于活体采卵(OPU)和体外受精(IVF)技术体系,以提高水牛分离精子生产优良性控胚胎和后代的效率。
     试验结果表明,在水牛卵母细胞体外成熟培养中添加瘦素不但能有效促进水牛卵母细胞成熟,而且提高其体外成熟的质量及受精后的胚胎发育潜能,其中以成熟培养液中添加10ng/mL的效果最为明显,卵母细胞成熟后极体排出率达到61.2%,IVF囊胚发育率达到22.4%,与不添加瘦素的对照组51.9%的极体排出率和13.0%的囊胚率均有显著差异(P<0.05)。研究还发现,在胚胎培养液中添加瘦素有助于促进水牛IVF胚胎的发育,其中以10ng/mL的效果最为明显,囊胚发育率达到26.1%,与不添加瘦素的对照组17.5%的囊胚率有显著差异(P<0.05)。此外,在成熟液和胚胎培养液中同时添加10ng/mL的瘦素,IVF囊胚发育达到27.0%,与对照组19.7%的囊胚率差异显著(P<0.05)。但在分离精子IVF时,在成熟液和胚胎培养液中同时添加10ng/mL的瘦素,虽然IVF后卵母细胞的分裂率和囊胚率都有一定提高,但是与对照组没有统计差异(P>0.05)。
     在OPU-IVF研究中,OPU得到的水牛卵母细胞与分离精子和未分离精子IVF后的分裂率分别为50.5%和50.9%,二者没有显著差异(P>0.05);而分离精子IVF后的囊胚率为15.3%,稍微低于未分离精子19.1%,但二者也没有显著差异(P>0.05)。分离和未分离精子与OPU来源卵母细胞IVF生产的鲜胚移植受胎率分别为26.5%和26.9%,二者没有显著差异(P>0.05);分离和未分离精子与OPU来源卵母细胞IVF生产的冻胚移植受胎率分别为11.6%和15.4%,二者也没有显著差异(P>0.05)。将分离精子和未分离精子生产的胚胎移植数据合并分析显示,冻胚的总体受胎率(13.4%)显著低于鲜胚受胎率(26.7%,P<0.05)。未分离常规精子与OPU来源卵母细胞生产的体外胚胎移植后,产下10例正常水牛犊(6母,4公),流产3例(3公);分离X精子与OPU卵母细胞生产的体外性控胚胎移植后,产下11例正常水牛犊(10母,1公),流产3例(2母,1公),雌性率为85.7%,远高于未分离精子46.1%(6/13)的雌性率(P<0.05)。
     研究五,通过将水牛分离精子应用于AI,并与荷斯坦牛分离精子AI相比较,探讨和分析水牛分离精子在AI中应用的问题,以提高其利用效率,为利用分离精子性别控制技术加快水牛品种改良奠定基础。
     研究结果表明,在荷斯坦奶牛方面,分离和未分离的常规精子配种处女牛的受胎率分别为61.4%和61.3%(P>0.05),配种经产母牛的受胎率分别为42.9%和46.2%(P>0.05);无论是分离精子还是常规精子,配种经产母牛的受胎率均显著低于处女牛(P<0.01)。在水牛方面,分离精子和常规精子配种水牛情期受胎率分别为69.7%和66.5%,二者无显著差异(P>0.05);分离精子配种处女牛受胎率为77.8%,比配种经产母牛67.6%的受胎率高,但没有统计差异(P>0.05);在流产率方面,水牛分离精子和常规精子配种妊娠后流产率都很低,二者没有显著差异(P>0.05)。而分离精子配种杂交水牛受胎率(85.7%)高于本地沼泽型水牛(62.1%),但二者没有统计差异(P>0.05)。
     此外,本研究还表明,无论是荷斯坦奶牛还是水牛,不同公牛来源的分离精子配种后受胎率差异显著(P<0.05);在不同管理条件下的母牛群进行分离精子配种的受胎率差异明显(P<0.05)。
     本研究中,利用分离精子总共配种荷斯坦奶牛306头,受胎179头,情期受胎率58.5%,流产7头,产犊172头,其中产母犊153头,产犊性别准确率89.0%;利用分离精子总共配种水牛65头,妊娠35头,情期受胎率53.8%,流产2头,经产下牛犊33头,其中母犊28头,产母犊性别准确率84.8%。奶牛和水牛分离精子母犊率与常规精子配种后50%的理论值差异显著(P<0.01)。
China is a habitat for more than twenty million swamp buffalo.Thus,if the procedures of sex-preselection by flow-cytometric sorting of X-and Y-chromosome bearing spermatozoa is established and applied in buffalo breeding,great improvement in terms of genetics and economics would be possible.Therefore,a series experiments assorted in 5 parts were carried out in this study and the issues relating to the sperm sexing and its subsequent use in IVF and AI were investigated.
     PartⅠ,the difference in DNA content characterizing the X-and Y-chromosome bearing sperm of buffalo,which indicates the feasibility of sex sorting,was to be identified in this study.
     Two symmetrical,separate but overlapping peaks presumed to be X-and Y-chromosome bearing sperm were detected in this study.The difference in fluorescence intensity,which related to the DNA content,between the X-and Y-sperm was 3.59±0.11%for Murrah buffalo and 3.55±0.14%for Nili-Ravi buffalo,respectively.Significant differences were observed among males within each breed,but there were no differences between the averages of the two breeds.The results indicate that flow cytometric sorting of X- and Y-sperm of buffalo is feasible.
     PartⅡ,viability,acrosome integrity and microbe contamination in sexed and unsexed buffalo semen was to be analyzed in this study,which would provide the needed information of semen quality to facilitate the sexing procedures and the AI and IVF protocols by using sexed sperm.
     The results revealed that there was a tight correlation among the sperm motility examined by flow cytometry,fluorescent microscopy and computer assisted sperm analysis(r>0.85).Results of analysis for the semen quality revealed that the sperm sexing procedure appeared to be helpful in removing the dead sperm.An increase in sperm motility from 72.4%before sexing to 86.4% after sexing was observed.Moreover,the post-thawed motility of sexed sperm was higher than unsexed sperm(44.1%vs 33.9%,P<0.05).And the motility of sexed and unsexed sperm dropped to 24.2%and 9.0%(P<0.05)respectively after incubation in 38℃for 3h,and to 15.6%and 6.7%(P<0.05)respectively for 6h.The sperm sexing procedure also appeared to be helpful in removing the sperm with damaged acrosome.The percentage of sperm with acrosome damaged decreased from 22.9%before sexing down to 3.9%after sexing.After frozen-thawed,percentage of sperm with damaged acrosome in sexed and unsexed semen was similar(30.0%vs 26.8,P>0.05),which indicated a higher damaged effect of cryopreservation on the acrosome of sexed sperm than on unsexed sperm.Following incubation in 38℃for 3h and 6h,percentage of sexed sperm with damaged acrosome was 33.9%and 38.3%respectively,and 32.8% and 35.6%respectively for unsexed semen(P>0.05).
     Analysis of microbe in the semen revealed that the average number of microbe clonies presented in 1.0 mL fresh and frozen buffalo semen was 10619 and 299 repectively,while 18935 clonies was found in 1.0 mL sexed frozen semen(P<0.05).Classification of the microbes from the fresh buffalo semen revealed that Gram-positive cocci accounted for 48%,Gram-negtive bacilli accounted for 41%,Gram-positive bacilli accounted for 9%and fungi accounted for 2%.However,all the microbes from the sexed frozen semen were Gram-negtive bacilli,which were subsequently identified as Enterobacter cloacae and Klebsiella oxytoca.The results of antimicrobial susceptibility test indicated that,the microbes derived from sexed frozen semen appeared resistant to Tobramycin and Gentamicin,but showed high susceptibility to Amikacin and Ciprofloxacin.
     PartⅢ,the sex chromosome of Holstein was to be microdissected in this study,followed by preparation of the X- and Y-chromosome probes for identification of the purity of the sexed buffalo sperm by FISH.
     The metaphase karyotype of Holstein sex chromosome was clearly identified on the slide and successfully dissected by using micromanipulator,from which the probes for X- and Y-chromosome were prepared.The results of FISH using Y-chromosome probe suggested that the Y-sperm accounted for 47.7%in the unsexed buffalo semen samples.The X sperm accounted for 48.9%in the unsexed buffalo semen samples while using X-chromosome probe.Both of the results were in concord with the theoretical distribution of X-and Y-sperm(50% for each)in unsexed semen(P>0.05),which indicated the feasibility of FISH procedures by using sex chromosome probes.Sexed Y-semen samples were used in the FISH for verification of the sexing purity.Y-sperm accounted for 82.2%while hybridized by Y-chromosome probe and X-sperm accounted for 9.6%while hybridized by X-chromosome probe.In average,the percentage of Y-sperm in the sexed Y-semen was 86.2%,which was similar to that of 87% previously identified by flow cytometer(P>0.05).
     PartⅣ,sexed buffalo sperm was to be used in the IVEP in this study to establish a system for efficient production of sex-preselected embryos and offspring with superior genetic metrit.
     The results of the study indicated that leptin supplemented in the IVM and IVC medium could significantly boost the oocyte maturation and its subsequent embryo development following IVF with unsexed buffalo sperm.The percentage of polar extrusion and blastocyst developed from oocytes matured in 10ng/mL was 61.2%and 22.4%respectively,significantly higher than those matured in 0ng/mL(51.9%and 13.0%,respectively,P<0.05).Blastocyst development rate was 26.1%while supplementing 10ng/mL leptin in the IVC medium,higher than that of the control group(17.5%,P<0.05).Simultaneously supplementation of 10ng/mL leptin in IVM and IVC resulted in a further increase in blastcyst development comparing to control group(27.0%vs 19.7%, P<0.05).However,when the oocyte was fertilized by sexed sperm, supplementation of 10ng/mL leptin in IVM and IVC resulted in little improvement over control group in terms of cleavage and blastocyst development rate(P>0.05).
     Sexed buffalo sperm and OPU-derived oocytes were used in this study to produce sex-preselected embryos,which were subsequently transferred into recipients to produce calves.The results revealed that OPU-derived oocytes fertilized by sexed sperm had similar developmental competence to those fertilized by unsexed sperm in terms of cleavage rate(50.5 vs 50.9%,P>0.05) and blastocyst development rate(15.3 vs 19.1%,P>0.05).Of the embryos produced in OPU-IVF system,9 of 34 sexed fresh embryos(26.5%)and 5 of 43 sexed frozen embryos(11.6%)transferred to recipients established pregnancies, whereas 7 of 26 unsexed fresh embryos(26.9%)and 6 of 39 unsexed frozen embryos(15.4%)transferred to recipients established pregnancies.No significant difference in pregnant rate was found following transfer of fresh embryos produced by sexed and unsexed sperm,nor frozen embryos produced by sexed and unsexed sperm.While the data from sexed and unsexed embryos were combined,difference in pregnancy rate was observed between fresh and frozen embryos.Transfer of embryos produced by unsexed sperm resulted in birth of 10 buffalo calves(6 females and 4 males)and 3 abortions(3 males), whereas transfer of sex-preselected embryos resulted in birth of 10 buffalo calves(10 females and 1 male)and 3 abortions(2 females and 1 male). Deviation of sex ratio from 1:1(male:female)in calves produced by sexed sperm was significant(P<0.05).This study provided the proof of concept for further research and wider field application of these technologies in buffalo.
     PartⅤ,sexed sperm from buffalo and Holstein was to be used in AI in this study and the factors playing on conception rate were investigated to refine the AI procedures for more efficient production of sexed calves.
     The results revealed that the conception in Holstein heifers and parous cows was 61.4%and 42.9%(P<0.05)respectively while bred by sexed sperm,and 61.3%and 46.2%(P<0.05)respectively while bred by unsexed sperm.More pregnancies were obtained in Holstein heifers than parous cows bred by either sexed or unsexed sperm(P<0.05).But no significant difference was found between the conception rate following AI by sexed and unsexed sperm(P>0.05).
     Similar conception rate after AI by using sexed and unsexed sperm was also observed in buffalo(69.7%vs 66.5%,P>0.05).And low abortion rate was found in both pregnancies established by using sexed and unsexed sperm(3.3% vs 0.5%,P>0.05).A slight increase in conception rate in heifer over parous buffaloes bred by sexed sperm was also observed(77.8%vs 67.6%),but not statistical different(P=0.699).The conception rate in cross breed(river type×swamp type,F1)bred by sexed sperm was slightly higher than native swamp buffalo(85.7%vs 62.1%,P=0.114).The results in this study also revealed that, whatever Holstein or buffalo,sexed sperm derived from different bulls significantly affected the conception rate,and different management conditions (housing,feeding,breeding et al.)played an important role in the efficiency of pregnancy establishment.
     A total of 306 Holsteins were bred by sexed sperm in this study and 179 of which got pregnant,accounting for 58.5%.Seven abortions were observed and 172 sex-preselected calves were successfully delivered,in which heifers accounted for 89.0%(153/172).A total of 65 buffaloes were bred by sexed sperm and 35 of which got pregnant,accounting for 53.8%.Two abortions were observed and 33 sex-preselected buffalo calves were successfully delivered,in which heifers accounted for 84.8%(28/33).Deviation of sex ratio from 1:1 (male:female)in calves produced by AI using sexed sperm was significant (P<0.01).This study suggested the feasibility for a wider field application of AI by using sexed sperm to accelerate the improvement in genetics and economics in native buffalo.
引文
1.岳文斌.动物繁殖新技术,北京:中国农业出版社.2003.
    2.Levinson G,Keyvanfar K,Wu JC,et al.DNA-based X-enriched sperm separation as an adjunct to preimplantation genetic testing for the prevention of X-linked disease.Hum Reprod 1995;10(4):979-82.
    3.Guyer MF.Accessory Chromosomes of Man.Science 1914;39(1017):941-942.
    4.李明,李江源.性别决定的分子机制.当代医学 2001;2(7):53-56.
    5.王建武,丁家桐,刘春玲,et al.哺乳动物性别决定的基因调控.动物科学与动物医学 2003;20(4):56-58.
    6.Jacobs PA,Ross A.Structural abnormalities of the Y chromosome in man.Nature 1966;210(5034):352-4.
    7.Sinclair AH,Berta P,Palmer MS,et al.A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif Nature 1990;346(6281):240-4.
    8.Koopman P,Gubbay J,Vivian N,et al.Male development of chromosomally female mice transgenic for Sry.Nature 1991;351(6322):117-21.
    9.Lovell-Badge R.Sex determining gene expression during embryogenesis.Philos Trans R Soc Lond B Biol Sci 1993;339(1288):159-64.
    10.付强,张明,秦文松,et al.水牛SRY基因的克隆及序列分析.中国生物工程杂志 2006;26(7):69-73.
    11.周荣家,程汉华,余其兴.SRY基因与性别决定.中华医学遗传学杂志 1995;5(2):287-289.
    12.Zanaria E,Muscatelli F,Bardoni B,et al.An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita.Nature 1994;372(6507):635-41.
    13.Bardoni B,Zanaria E,Guioli S,et al.A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal.Nat Genet 1994;7(4):497-501.
    14.贾世全,王杏龙.哺乳动物性别决定因子研究.畜牧兽医杂志 2006;25(6):41-44.
    15.张秀华,吴登俊.性别决定机理与性别鉴定的研究进展.中国畜牧兽医 2004;31(17):23-26.
    16.Foster JW,Dominguez-Steglich MA,Guioli S,et al.Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene.Nature 1994;372(6506):525-30.
    17.徐耀先,解梦霞,马琦,et al.人类性别决定基因的研究进展.解剖科学进展 1999;1(5):21-26.
    18.Capel B.New bedfellows in the mammalian sex-determination affair.Trends Genet 1995;11(5):161-3.
    19.Kent J,Coriat AM,Sharpe PT,et al.The evolution of WT1 sequence and expression pattern in the vertebrates.Oncogene 1995;11(9):1781-92.
    20.王丽云,吕善潮,王金玉.哺乳动物性别决定机理研究进展.中国畜牧兽医 2006;33(10):52-54.
    21.McElreavey K,Vilain E,Abbas N,et al.A regulatory cascade hypothesis for mammalian sex determination:SRY represses a negative regulator of male development.Proc Natl Acad Sci U S A 1993;90(8):3368-72.
    22.Giuili G,Shen WH,Ingraham HA.The nuclear receptor SF-1 mediates sexually dimorphic expression of Mullerian Inhibiting Substance,in vivo.Development 1997;124(9):1799-807.
    23.张勇,陈淳,顾建新,et al.哺乳动物性别决定的研究进展.生物工程进展 2001;21(3):26-29.
    24.桑润滋.动物繁殖生物技术,北京:中国农业出版社.2002.
    25.Dym M,Fawcett DW.Further observations on the numbers of spermatogonia,spermatocytes,and spermatids connected by intercellular bridges in the mammalian testis.Biol Reprod 1971;4(2):195-215.
    26.Miyazaki WY,Orr-Weaver TL.Sister-chromatid cohesion in mitosis and meiosis.Annu Rev Genet 1994;28:167-87.
    27.Morales CR,Hecht NB.Poly(A)+ ribonucleic acids are enriched in spermatocyte nuclei but not in chromatoid bodies in the rat testis.Biol Reprod 1994;50(2):309-19.
    28.Hendriksen PJ,Hoogerbrugge JW,Baarends WM,et al.Testis-specific expression of a functional retroposon encoding glucose-6-phosphate dehydrogenase in the mouse.Genomics 1997;41(3):350-9.
    29.Monesi V.Differential rate of ribonucleic acid synthesis in the autosomes and sex chromosomes during male meiosis in the mouse.Chromosoma 1965;17(1):11-21.
    30.McKee BD,Handel MA.Sex chromosomes,recombination,and chromatin conformation.Chromosoma 1993;102(2):71-80.
    31.Hendriksen PJ,Hoogerbrugge JW,Themmen AP,et al.Postmeiotic transcription of X and Y chromosomal genes during spermatogenesis in the mouse.Dev Biol 1995;170(2):730-3.
    32.Hendriksen PJ,Welch GR,Grootegoed JA,et al.Comparison of detergent-solubilized membrane and soluble proteins from flow cytometrically sorted X-and Y-chromosome bearing porcine spermatozoa by high resolution 2-D electrophoresis.Mol Reprod Dev 1996;45(3):342-50.
    33.Braun RE,Behringer RR,Peschon JJ,et al.Genetically haploid spermatids are phenotypically diploid.Nature 1989;337(6205):373-6.
    34.Willison K,Marsh M,Lyon M.Biochemical evidence for sharing of gene products in spermatogenesis.Genet Res 1988;52:63.
    35.de Boer P,Redi CA,Garagna S,et al.Protamine amount and cross linking in mouse teratospermatozoa and aneuploid spermatozoa.Mol Reprod Dev 1990;25(3):297-301.
    36.Caldwell KA,Handel MA.Protamine transcript sharing among postmeiotic spermatids.Proc Natl Acad Sci U S A 1991;88(6):2407-11.
    37.Hammer MF,Schimenti J,Silver LM.Evolution of mouse chromosome 17 and the origin of inversions associated with t haplotypes.Proc Natl Acad Sci U S A 1989;86(9):3261-5.
    38.Lyon MF.Search for differences among t haplotypes in distorter and responder genes.Genet Res 1990;55(1):13-9.
    39.Zheng Y,Martin-Deleon PA.The murine Spaml gene:RNA expression pattern and lower steady-state levels associated with the Rb(6.16)translocation.Mol Reprod Dev 1997;46(3):252-7.
    40.Cran DG,Gender preselection in mammals,in:Embryo manipulation andgenetic engineering A.Lauria and F.Gandolfi,Editors.,Springer press 1992 p.125-134.
    41.Lush JL.The possibility of sex control by artificial insemination with centrifuged spermatozoa.J Agric Res 1925;30(10):893-913.
    42.Hendriksen PJ.Do X and Y spermatozoa differ in proteins? Theriogenology 1999;52(8):1295-307.
    43.Hoppe PC,Koo GC.Reacting mouse sperm with monoclonal H-Y antibodies does not influence sex ratio of eggs fertilized in vitro.J Reprod Immunol 1984;6(1):1-9.
    44.Eichwald EJ,Silmser CR.Untitled communication(Skin).Transplant Bull 1955;2:148-149.
    45.Goldberg EH,Boyse EA,Bennett D,et al.Serological demonstration of H-Y(male)antigen on mouse sperm.Nature 1971;232(5311):478-80.
    46.Wiberg UH.Facts and considerations about sex-specific antigens.Hum Genet 1987;76(3):207-19.
    47.Veerhuis R,Hendriksen PJ,Hengst AM,et al.The production of anti-H-Y monoclonal antibodies:their potential use in a sex test for bovine embryos.Vet Immunol Immunopathol 1994;42(3-4):317-30.
    48.Zavos PM.Preconception sex determination via intra-vaginal administration of H-Y antisera in rabbits.Theriogenology 1983;20(2):235-240.
    49.Ali JI,Eldridge FE,Koo GC,et al.Enrichment of bovine X- and Y-chromosome-bearing sperm with monoclonal H-Y antibody-fluorescence-activated cell sorter.Arch Androl 1990;24(3):235-45.
    50.罗承浩.精子性别化对乳牛性别控制的试验.华南农业大学学报 1992;13(4):142-145.
    51.Hendriksen PJ,Tieman M,Van der Lende T,et al.Binding of anti-H-Y monoclonal antibodies to separated X and Y chromosome-bearing porcine and bovine sperm.Mol Reprod Dev 1993;35(2):189-96.
    52.Howes EA,Miller NG,Dolby C,et al.A search for sex-specific antigens on bovine spermatozoa using immunological and biochemical techniques to compare the protein profiles of X and Y chromosome-bearing sperm populations separated by fluorescence-activated cell sorting.J Reprod Fertil 1997;110(2):195-204.
    53.Blecher SR,Howie R,Li S,et al.A new approach to immunological sexing of sperm.Theriogenology 1999;52(8):1309-21.
    54.Seidel GE,Jr.,Garner DL.Current status of sexing mammalian spermatozoa.Reproduction 2002;124(6):733-43.
    55.Caspersson T,Farber S,Foley GE,et al.Chemical differentiation along metaphase chromosomes.Exp Cell Res 1968;49(1):219-22.
    56.Barlow P,Vosa CG.The Y chromosome in human spermatozoa.Nature 1970;226(5249):961-2.
    57.Ericsson RJ,Langevin CN,Nishino M.Isolation of fractions rich in human Y sperm.Nature 1973;246(5433):421-4.
    58.Beernink FJ,Dmowski WP,Ericsson RJ.Sex preselection through albumin separation of sperm.Fertil Steril 1993;59(2):382-6.
    59.Ericsson RJ,Ericsson SA,Sex ratios,in:Encyclopedia of Reproduction,E.Knobil and J.D.Neill,EditorsLondon.Academic Press 1999 p.431-437.
    60.Evans JM,Douglas TA,Renton JP.An attempt to separate fractions rich in human Y sperm.Nature 1975;253(5490):352-4.
    61.Beal WE,White LM,Garner DL.Sex ratio after insemination of bovine spermatozoa isolated using a bovine serum albumin gradient.J Anim Sci 1984;58(6):1432-6.
    62.Kaneko S,Oshio S,Kobayashi T,et al.Human X- and Y-bearing sperm differ in cell surface sialic acid content.Biochem Biophys Res Commun 1984;124(3):950-5.
    63.Engelmann U,Krassnigg F,Schatz H,et al.Separation of human X and Y spermatozoa by free-flow electrophoresis.Gamete Res 1988;19(2):151-60.
    64.Blottner S,Bostedt H,Mewes K,et al.Enrichment of bovine X and Y spermatozoa by free-flow electrophoresis.Zentralbl Veterinarmed A 1994;41(6):466-74.
    65.Manger M,Bostedt H,Schill WB,et al.Effect of sperm motility on separation of bovine X-and Y-bearing spermatozoa by means of free-flow electrophoresis.Andrologia 1997;29(1):9-15.
    66.Yanagimachi R,Mechanisms of fertilization in mammals,in:Fertilization and Embryo Development in Vitro,L.Mastroiani and J.D.Biggers,EditorsNew York.Plenum Pub.Corp.1981p.181-182.
    67.Kaneko S,Yamaguchi J,Kobayashi T,et al.Separation of human X- and Y-bearing sperm using percoll density gradient centrifugation.Fertil Steril 1983;40(5):661-5.
    68.Iizuka R,Kaneko S,Aoki R,et al.Sexing of human sperm by discontinuous Percoll density gradient and its clinical application.Hum Reprod 1987;2(7):573-5.
    69.曹世祯,韩建林,陈亮.用Percoll不连续密度梯度分离奶牛精液对控制性别比率的研究.中国奶牛 2000:1:19-20.
    70.Meistrich ML,Potential and limitation of physical methods for separation of sperm bearing X- or Y-chromosome.In:.(Eds.).PP,1982:143-168.,in:Prospect for Sexing Mammalian Sperm,R.P.Amann and G.E.Seidel,EditorsBoulder.Colorado Assoc.Unv.Press.1982 p.143-168.
    71.Kobayashi J,Oguro H,Uchida H,et al.Assessment of bovine X- and Y-bearing spermatozoa in fractions by discontinuous percoll gradients with rapid fluorescence in situ hybridization.J Reprod Dev 2004;50(4):463-9.
    72.Upreti GC,Riches PC,Johnson LA.Attempted sexing of bovine spermatozoa by fractionation on a Percoll density gradient.Gamete Res 1988;20(1):83-92.
    73.van Munster EB,Stap J,Hoebe RA,et al.Difference in volume of X- and Y-chromosome-bearing bovine sperm heads matches difference in DNA content.Cytometry 1999;35(2):125-8.
    74.van Munster EB.Interferometry in flow to sort unstained X- and Y-chromosome-bearing bull spermatozoa.Cytometry 2002;47(3):192-9.
    75.van Munster EB,Stap J,Hoebe RA,et al.Difference in sperm head volume as a theoretical basis for sorting X- and Y-bearing spermatozoa:potentials and limitations.Theriogenology 1999;52(8):1281-93.
    76.Sills ES,Kirman I,Thatcher SS,3rd,et al.Sex-selection of human spermatozoa:evolution of current techniques and applications.Arch Gynecol Obstet 1998;261(3):109-15.
    77.Gledhill BL,Lake S,Steinmetz LL,et al.Flow microfluorometric analysis of sperm DNA content:effect of cell shape on the fluorescence distribution,J Cell Physiol 1976;87(3):367-75.
    78.Moruzzi JF.Selecting a mammalian species for the separation of X- and Y-chromosome-bearing spermatozoa.J Reprod Fertil 1979;57(2):319-23.
    79.Pinkel D,Lake S,Gledhiil BL,et al.High resolution DNA content measurements of mammalian sperm.Cytometry 1982;3(1):1-9.
    80.Johnson LA,Pinkel D.Modification of a laser-based flow cytometer for high-resolution DNA analysis of mammalian spermatozoa.Cytometry 1986;7(3):268-73.
    81.Johnson LA,Flook JP,Look MV,et al.Flow sorting of X and Y chromosome-bearing spermatozoa into two populations.Gamete Res 1987;16(1):1-9.
    82.Johnson LA,Flook JP,Hawk HW.Sex preselection in rabbits:live births from X and Y sperm separated by DNA and cell sorting.Biol Reprod 1989;41(2):199-203.
    83.Hamano K.Sex preselection in bovine by separation of X- and Y-chromosome bearing spermatozoa.J Reprod Dev 2007;53(1):27-38.
    84.Schenk JL,Suh TK,Cran DG,et al.Cryopreservation of flow-sorted bovine spermatozoa.Theriogenology 1999;52(8):1375-91.
    85.Seidei GEJ,Cran DG,Herickhoff LA,et al.Insemination of heifers with sexed frozen or sexed liquid semen.Theriogenology 1999;51:400.
    86.Seidel JGE,Allen CH,Johnson LA,et al.Uterine horn insemination of heifers with very low numbers of nonfrozen and sexed spermatozoa Theriogenology 1997; 48(8): 1255-1264.
    87. Cran DG, Johnson LA, Miller NG, et al. Production of bovine calves following separation of X-and Y-chromosome bearing sperm and in vitro fertilisation. Vet Rec 1993; 132(2):40-1.
    88. Lu KH, Cran DG, Seidel GE, Jr. In vitro fertilization with flow-cytometrically-sorted bovine sperm. Theriogenology 1999; 52(8):1393-405.
    89. Lu YQ, Liang XW, Zhang M, et al. Birth of twins after in vitro fertilization with flow-cytometric sorted buffalo (Bubalus bubalis) sperm. Anim Reprod Sci 2007; 100(1-2): 192-6.
    90. Fugger EF, Black SH, Keyvanfar K, et al. Births of normal daughters after MicroSort sperm separation and intrauterine insemination, in-vitro fertilization, or intracytoplasmic sperm injection. Hum Reprod 1998; 13(9):2367-70.
    91. Garner DL. Flow cytometric sexing of mammalian sperm. Theriogenology 2006; 65(5):943-57.
    92. Kamentsky LA, Melamed MR. Spectrophotometric cell sorter. Science 1967; 156(780): 1364-5.
    93. Dean PN, Pinkel D, Mendelsohn ML. Hydrodynamic orientation of sperm heads for flow cytometry. Biophys J 1978; 23(1):7-13.
    94. Garner DL, Gledhill BL, Pinkel D, et al. Quantification of the X- and Y-chromosome-bearing spermatozoa of domestic animals by flow cytometry. Biol Reprod 1983; 28(2):312-21.
    95. Welch GR, Johnson LA. Sex preselection: laboratory validation of the sperm sex ratio of flow sorted X- and Y-sperm by sort reanalysis for DNA. Theriogenology 1999; 52(8): 1343-52.
    96. Johnson LA, Flook JP, Look MV. Flow cytometry of X and Y chromosome-bearing sperm for DNA using an improved preparation method and staining with Hoechst 33342. Gamete Res 1987; 17(3):203-12.
    97. Johnson LA, Clarke RN. Flow sorting of X and Y chromosome-bearing mammalian sperm: activation and pronuclear development of sorted bull, boar, and ram sperm microinjected into hamster oocytes. Gamete Res 1988; 21(4):335-43.
    98. Catt SL, Cart JW, Gomez MC, et al. Birth of a male lamb derived from an in vitro matured oocyte fertilised by intracytoplasmic injection of a single presumptive male sperm. Vet Rec 1996; 139(20):494-5.
    99. Rath D, Johnson LA, Dobrinsky JR, et al. Production of piglets preselected for sex following in vitro fertilization with X and Y chromosome-bearing spermatozoa sorted by flow cytometry. Theriogenology 1997; 47(4):795-800.
    100. Morrell JM, Keeler KD, Noakes DE, et al. Sexing of sperm by flow cytometry. Vet Rec 1988; 122(14):322-4.
    101. Johnson LA. Sex preselection in swine: altered sex ratios in offspring following surgical insemination of flow sorted X- and Y-bearing Sperm. Reprod Dometic Anim 1991; 26(6):309-314.
    102. Cran DG, Cochrane DJ, Johnson DJ, et al. Separation of X- and Y-chromosome bearing bovine sperm by flow cytometry for use in IVF. Theriogenology 1994; 41:183.
    103. Cran DG, McKelvey WAC, King ME, et al. Production of lambs by low dose intrauterine insemination with flow cytometrically sorted and unsorted sperm Theriogenology 1997; 47:267.
    104. Maxwell WM, Evans G, Hollinshead FK, et al. Integration of sperm sexing technology into the ART toolbox. Anim Reprod Sci 2004; 82-83:79-95.
    105. Peters D, Branscomb E, Dean P, et al. The LLNL high-speed sorter: design features, operational characteristics, and biological utility. Cytometry 1985; 6(4):290-301.
    106. Rens W, Welch GR, Johnson LA. A novel nozzle for more efficient sperm orientation to improve sorting efficiency of X and Y chromosome-bearing sperm. Cytometry 1998; 33(4):476-8l.
    107. Seidel GE, Jr., Schenk JL, Herickhoff LA, et al. Insemination of heifers with sexed sperm. Theriogenology 1999; 52(8): 1407-20.
    108. Doyle SP, Seidel GE, Schenk JL, et al. Artificial insemination of lactating Angus cows with sexed semen. Proc Western Section Am Soc Anim Sci 1999; 50:203-205.
    109. Johnson LA, Guthrie HD, Fiser P, et al. Cryopreservation of flow cytometrically sorted boar sperm: effects on in vivo embryo development. J Anim Sci 2000; 78(Suppl 1):198.
    110. Hollinshead FK, O'Brien JK, He L, et al. Pregnancies after insemination of ewes with sorted, cryopreserved ram spermatozoa Proc Soc Reprod Biol 2001; 32:20.
    111. Buchanan BR, Seidel GE, Jr., McCue PM, et al. Insemination of mares with low numbers of either unsexed or sexed spermatozoa Theriogenology 2000; 53(6): 1333-44.
    112. Lindsey AC, Morris LH, Allen WR, et al. Hysteroscopic insemination of mares with low numbers of nonsorted or flow sorted spermatozoa Equine Vet J 2002; 34(2): 128-32.
    113. Vazquez JM, Martinez EA, Parrilla I, et al. Birth of piglets after deep intrauterine insemination with flow cytometrically sorted boar spermatozoa Theriogenology 2003; 59(7):1605-14.
    114. Schenk JL, DeGrofft DL. Insemination of cow elk with sexed frozen semen. Theriogenology 2003; 59:514.
    115. Otto FJ, Hacker U, Zante J, et al. Flow cytometry of human spermatozoa Histochemistry 1979; 61(3):249-54.
    116. Lu YQ, Zhang M, Meng B, et al. Identification of X- and Y-chromosome bearing buffalo (Bubalus bubalis) sperm. Anim Reprod Sci 2006; 95(1-2):158-64.
    117. Johnson LA. Gender preselection in domestic animals using flowcytometrically sorted sperm. Anim Sci 1992; 70(Suppl 2):8-18.
    118. Rath D, Long CR, Dobrinsky JR, et al. In vitro production of sexed embryos for gender preselection: high-speed sorting of X-chromosome-bearing sperm to produce pigs after embryo transfer. J Anim Sci 1999; 77(12):3346-52.
    119. Johnson LA, Welch GR, Keyvanfar K, et al. Gender preselection in humans? Flow cytometric separation of X and Y spermatozoa for the prevention of X-linked diseases. Hum Reprod 1993; 8(10): 1733-9.
    120. Garner DL. Hoechst 33342: A vital nucleic acid fluorophore. Unpublished.
    121. Catt SL, Sakkas D, Bizzaro D, et al. Hoechst staining and exposure to UV laser during flow cytometric sorting does not affect the frequency of detected endogenous DNA nicks in abnormal and normal human spermatozoa Mol Hum Reprod 1997; 3(9):821-5.
    122. Tubman LM, Brink Z, Suh TK, et al. Characteristics of calves produced with sperm sexed by flow cytometry/cell sorting. J Anim Sci 2004; 82(4): 1029-36.
    123. Zhang M, Lu KH, Seidel GE. Development of bovine embryos after in vitro fertilization of oocytes with flow cytometrically sorted, stained and unsorted sperm from different bulls. Theriogenology 2003; 60(9): 1657-63.
    124. Maxwell WM, Long CR, Johnson LA, et al. The relationship between membrane status and fertility of boar spermatozoa after flow cytometric sorting in the presence or absence of seminal plasma Reprod Fertil Dev 1998; 10(5):433-40.
    125. Johnson LA. Isolation of X and Y bearing sperm for sex preselection. Oxford review of reproductive biology 1994; 16:303-326.
    126. Lindsey AC, Schenk JL, Graham JK, et al. Hysteroscopic insemination of low numbers of flow sorted fresh and frozen/thawed stallion spermatozoa Equine Vet J 2002; 34(2): 121-7.
    127. Lindsey AC, Varner DD, Seidel GE, Jr., et al. Hysteroscopic or rectally guided, deep-uterine insemination of mares with spermatozoa stored 18h at either 5 degrees C or 15 degrees C prior to flow-cytometric sorting. Anim Reprod Sci 2005; 85(1-2):125-30.
    128. Morris LHA, Hollinshead FK, Evans G, et al. The longevity and acrosome status of stallion flow sorted spermatozoa Theriogenology 2003; 59:512.
    129. Hollinshead FK, Maxwell WMC, Evans G, et al. Flow cytometric sorting of frozen-thawed ram spermatozoa Reprod Fertil Dev 2002; 14:53.
    130. O'Brien JK, Hollinshead FK, Evans KM, et al. Flow cytometric sorting of frozen-thawed spermatozoa in sheep and non-human primates. Reprod Fertil Dev 2004; 15(7):367-75.
    131. Johnson LA, Welch GR. Sex preselection: high-speed flow cytometric sorting of X and Y sperm for maximum efficiency. Theriogenology 1999; 52(8): 1323-41.
    132. Hollinshead FK, Evans G, Maxwell WMC, et al. Sex-sorting and re-cryopreservation of frozen-thawed ram sperm for in vitro embryo production. Theriogenology 2003; 59:209.
    133. Hollinshead FK, Gillan L, O'Brien JK, et al. In vitro and in vivo assessment of functional capacity of flow cytometrically sorted ram spermatozoa after freezing and thawing. Reprod Fertil Dev 2003; 15(6):351-9.
    134. de Graaf SP, Evans G, Maxwell WM, et al In vitro characteristics of fresh and frozen-thawed ram spermatozoa after sex sorting and re-freezing. Reprod Fertil Dev 2006; 18(8):867-74.
    135. Garner DL. Sex-Sorting mammalian sperm: concept to application in animals. J Androl 2001; 22(4):519-26.
    136. Maxwell WM, Johnson LA. Physiology of spermatozoa at high dilution rates: the influence of seminal plasma Theriogenology 1999; 52(8): 1353-62.
    137. Johnson LA. Sex preselection by flow cytometric separation of X and Y chromosome-bearing sperm based on DNA difference: a review. Reprod Fertil Dev 1995; 7(4):893-903.
    138. Hollinshead FK, O'Brien JK, Gillan L, et al. Liquid storage of flow cytometrically sorted ram spermatozoa Theriogenology 2004; 62(3-4):587-605.
    139. Catt SL, O'Brien JK, Maxwell WMC, et al. Assessment of ram and boar spermatozoa during cell-sorting by flow cytometry. Reprod Dom Anim 1997; 32(5):251-258.
    140. Maxwell WM, Johnson LA. Chlortetracycline analysis of boar spermatozoa after incubation, flow cytometric sorting, cooling, or cryopreservation. Mol Reprod Dev 1997; 46(3):408-18.
    141. Pursel VG, Johnson LA. Freezing of boar spermatozoa: fertilizing capacity with concentrated semen and a new thawing procedure. J Anim Sci 1975; 40(1):99-102.
    142. Westendorf P, Richter L, Treu H. [Deep freezing of boar sperma. Laboratory and insemination results using the Hulsenberger paillete method]. Dtsch Tierarztl Wochenschr 1975; 82(7):261-7.
    143. Evans G, Hollinshead FK, Maxwell WM. Preservation and artificial insemination of sexed semen in sheep. Reprod Fertil Dev 2004; 16(4):455-64.
    144. Fry RC, Ear 1CR, Hollinshead FK, et al. Pregnancies from frozen IVF cattle embryos using sex-sorted and unsorted sperm. Reprod Fertil Dev 2004; 16:254.
    145. Appa Rao KB, Totey SM. Cloning and sequencing of buffalo male-specific repetitive DNA: sexing of in-vitro developed buffalo embryos using multiplex and nested polymerase chain reaction. Theriogenology 1999; 51(4):785-97.
    146. Park JH, Lee JH, Choi KM, et al. Rapid sexing of preimplantation bovine embryo using consecutive and multiplex polymerase chain reaction (PCR) with biopsied single blastomere. Theriogenology 2001; 55(9): 1843-53.
    147.Kobayashi J,Kohsaka T,Sasada H,et al.Fluorescence in situ hybridization with Y chromosome-specific probe in decondensed bovine spermatozoa.Theriogenology 1999;52(6):1043-54.
    148.Rens W,Yang F,Welch G,et al.An X-Y paint set and sperm FISH protocol that can be used for validation of cattle sperm separation procedures.Reproduction 2001;121(4):541-6.
    149.Welch GR,Waldbieser GG,Wall RJ,et al.Flow cytometric sperm sorting and PCR to confirm separation of X-and Y-chromosome beating bovine sperm.Animal Biotechnology 1995;6:131-139.
    150.Parati K,Bongioni G,Aleandri R,et al.Sex ratio determination in bovine semen:a new approach by quantitative real time PCR.Theriogenology 2006;66(9):2202-9.
    151.Kawarasaki T,Welch GR,Long CR,et al.Verification of flow cytometorically-sorted X-and Y-bearing porcine spermatozoa and reanalysis of spermatozoa for DNA content using the fluorescence in situ hybridization(FISH)technique.Theriogenology 1998;50(4):625-35.
    152.Libbus BL,Perreault SD,Johnson LA,et al.Incidence of chromosome aberrations in mammalian sperm stained with Hoechst 33342 and UV-laser irradiated during flow sorting.Mutat Res 1987;182(5):265-74.
    153.Durand RE,Olive PL.Cytotoxicity,Mutagenicity and DNA damage by Hoechst 33342.J Histochem Cytochem 1982;30(2):111-6.
    154.Garner DL,Schenk J,Seidel JG.Chromatin stability in sexsorted sperm,in:Andrology in the Twenty-first Century.Proceedings of the Ⅶth International Congress of Andrology.Montreal,Canada.2001.p,3-7
    155.De Ambrogi M,Spinaci M,Galeati G,et al.Viability and DNA fragmentation in differently sorted boar spermatozoa.Theriogenology 2006;66(8):1994-2000.
    156.Parrilla I,Vazquez JM,Cuello C,et al.Hoechst 33342 stain and u.v.laser exposure do not induce genotoxic effects in flow-sorted boar spermatozoa.Reproduction 2004;128(5):615-21.
    157.徐艳文,庄广伦.人类精子分离研究进展.生殖医学杂志 2000;9(2):116-118.
    158.Silva PF,Gadella BM.Detection of damage in mammalian sperm cells.Theriogenology 2006;65(5):958-78.
    159.Merton JS,Hating RM,Stap J,et al.Effect of flow cytometrically sorted frozen/thawed semen on success rate of in vitro bovine embryo production.Theriogenology 1997;47:295.
    160.Guthrie HD,Johnson LA,Garrett WM,et al.Flow cytometric sperm sorting:effects of varying laser power on embryo development in swine.Mol Reprod Dev 2002;61(1):87-92.
    161.Johnson LA,Rath D,Vazquez JM,et al.Preselection of sex of offspring in swine for production:current status of the process and its application.Theriogenology 2005;63(2):615-24.
    162.Seidel GE,Jr.,Johnson LA.Sexing mammalian sperm-overview.Theriogenology 1999;52(8):1267-72.
    163.Maxwell WMC,Hollinshead FK,Rath D,et al.Effect of dose of sperm processed for sex-sorting and cryopreservation on fertility in ewes.Theriogenology 2003;59:511.
    164.Hollinshead FK,O'Brien JK,Maxwell WM,et al.Production of lambs of predetermined sex after the insemination of ewes with low numbers of frozen-thawed sorted X- or Y-chromosome-bearing spermatozoa.Reprod Fertil Dev 2002;14(7-8):503-8.
    165.Hollinshead FK,Rath D,O'Brien JK,et al.Effect of time of insemination and dose of sorted cryopreserved ram sperm on fertility in ewes.Reprod Fertil Dev 2002;14:53.
    166.Suh TK,Schenk JL.Pressure during flow sorting of bull sperm affects post-thaw motility characteristics. Theriogenology 2003; 59:516.
    167. Suh TK, Schenk JL, Seidel GE, Jr. High pressure flow cytometric sorting damages sperm. Theriogenology 2005; 64(5): 1035-48.
    168. Campos-Chillon LF, de la Torre JF. Effect on concentration of sexed bovine sperm sorted at 40 and 50 psi on developmental capacity of in vitro produced embryos. Theriogenology 2003; 59:506.
    169. Gillan L, Evans G, Maxwell WM. Capacitation status and fertility of fresh and frozen-thawed ram spermatozoa Reprod Fertil Dev 1997; 9(5):481-7.
    170. Watson PF. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod Fertil Dev 1995; 7(4):871-91.
    171. Centurion F, Vazquez JM, Calvete JJ, et al. Influence of porcine spermadhesins on the susceptibility of boar spermatozoa to high dilution. Biol Reprod 2003; 69(2):640-6.
    172. Mortimer ST, Maxwell WM. Effect of medium on the kinematics of frozen-thawed ram spermatozoa Reproduction 2004; 127(2):285-91.
    173. de Graaf SP, Gillan L, Evans G, et al. The effect of sheath fluid on the quality of sex-sorted ram spermatozoa Reprod Fertil Dev 2004; 16:248.
    174. Rath D, Sieg B, Leigh J, et al. Current perspectives of sperm sorting in domestic farm animals. in: Proceedings of the 19th Meeting Association Europeenne de Transfert Embryonnaire. Rostock, Germany. 2003. p, 125-128
    175. Brackett BG, Bousquet D, Boice ML, et al. Normal development following in vitro fertilization in the cow. Biol Reprod 1982; 27(1):147-58.
    176. Lu KH, Gordon I, Chen HB, et al. Birth of twins after transfer of cattle embryos produced by in vitro techniques. Vet Rec 1988; 122(22):539-40.
    177. Rhodes SL, Maxwell WMC, Evans G. DNA analysis and sorting of ram spermatozoa by flow cytometry and subsequent fertilization of in vitro matured sheep oocytes. in: Proceedings of the 7th International Symposium of Spermatology. Cairns, Australia. 1994. p, 26
    178. Morton KM, Catt SL, Hollinshead FK, et al. Lambs born after in vitro embryo production from prepubertal lamb oocytes and frozen-thawed unsorted and sex-sorted spermatozoa Reprod Fertil Dev 2004; 16:260.
    179. Abeydeera LR, Johnson LA, Welch GR, et al. Birth of piglets preselected for gender following in vitro fertilization of in vitro matured pig oocytes by X and Y chromosome bearing spermatozoa sorted by high speed flow cytometry. Theriogenology 1998; 50(7):981-8.
    180. Spinaci M, Merlo B, Zannoni A, et al. In vitro production of cat blastocysts of predetermined sex using flow cytometrically sorted semen. Theriogenology 2007; 67(4):872-7.
    181. Cran DG, Johnson LA, Polge C. Sex preselection in cattle: a field trial. Vet Rec 1995; 136(19):495-6.
    182. Lu KH, Cran DG, Seidel GEJ. Effect of hormones and insulin on in vitro development of bovine oocytes fertilized with flow-sorted sperm, in: Proceedings 14th International Congress on Animal Reproduction Stockholm. 2000. p, 187
    183. Hamano K, Li X, Qian XQ, et al. Gender preselection in cattle with intracytoplasmically injected, flow cytometrically sorted sperm heads. Biol Reprod 1999; 60(5): 1194-7.
    184. Probst S, Rath D. Production of piglets using intracytoplasmic sperm injection (ICSI) with flowcytometrically sorted boar semen and artificially activated oocytes. Theriogenology 2003; 59(3-4):961-73.
    185. Fugger EF. Clinical experience with flow cytometric separation of human X- and Y-chromosome bearing sperm.Theriogenology 1999;52(8):1435-40.
    186.卢克焕.哺乳动物性别控制研究进展.中国兽医学报 2002;22(4):411-414.
    187.Seidel GE,Jr.Economics of selecting for sex:the most important genetic trait.Theriogenology 2003;59(2):585-98.
    188.Paranace M,Medina M,Cattaneo L,et al.Embryo production using sexed semen in superovulated cows and heifers.Theriogenology 2003;59:513.
    189.Rath D,Ruiz S,Sieg B.Birth of female piglets following intrauterine insemination of a sow using flow cytometrically sexed boar semen.Vet Rec 2003;152(13):400-1.
    190.Bathgate R,Eriksson G,Maxwell WMC,et al.Low dose deep intrauterine insemination of sows with fresh and frozen-thawed spermatozoa.Theriogenology 2005;63:553-554.
    191.Martinez EA,Vazquez JM,Roca J,et al.Successful non-surgical deep intrauterine insemination with small numbers of spermatozoa in sows.Reproduction 2001;122(2):289-96.
    192.de Graaf SP,Beilby K,O'Brien JK,et al.Embryo production from superovulated sheep inseminated with sex-sorted ram spermatozoa.Theriogenology 2007;67(3):550-5.
    193.Brinsko SP,Rigby SL,Lindsey AC,et al.Pregnancy rates in mares following hysteroscopic or transrectally-guided insemination with low sperm numbers at the utero-tubal papilla.Theriogenology 2003;59(3-4):1001-9.
    194.O'Brien JK,Crichton EG,Evans KM,et al.Sex ratio modification using sperm sorting and assisted reproductive technology-a population management strategy,in:Proceedings of the 2nd International Symposium on Assisted Reproductive Technology for the Conservation and Genetic Management of Wildlife.Henry Doorly Zoo,Omaha 2002.p,224-231
    195.O'Brien JK,Robeck TR.Development of sperm sexing and associated assisted reproductive technology for sex preselection of captive bottlenose dolphins(Tursiops truncatus).Reprod Fertil Dev 2006;18(3):319-29.
    196.Garner DL,Seidel JG.Past,present and future perspectives on sexing sperm.Can J Anim Sci 2003;87(3):375-384.
    197.O'Brien JK,He L,Stojanov T,et al.Preliminary.developments of sperm sorting echnology in non-human primates.Biol Reprod 2001;64(Suppl 1):158.
    198.Johnson LA.Sexing mammalian sperm for production of offspring:the state-of-the-art.Anim Reprod Sci 2000;60-61:93-107.
    199.O'Brien JK,Stojanov T,Heffernan SJ,et al.Flow cytometric sorting of non-human primate sperm nuclei.Theriogenology 2005;63(1):246-59.
    200.Parrilla I,Vazquez JM,Roca J,et al.Flow cytometry identification of X-and Y-chromosome-bearing goat spermatozoa.Reprod Domest Anim 2004;39(1):58-60.
    201.Zhang CX,Buffalo Breeds and Varieties,in:Science and Technologies in Chinese Buffaloes,C.X.Zhang,W.C.Wu,and R.S.Zhou,EditorsNanning,China.Guangxi Science & Technology Publishing House 2002 p.155-173.
    202.Setchell BP,Maddocks SS,Brooks DE,Anatomy,vasculature,innervation and fluids of the male reproductive tract,in:The Physiology of Reproduction,Second Edition,K.E.a.N.J.D.,EditorNew York.Raven Press,Ltd.1993 p.1063-1175.
    203.Gordon I.Controlled Reproduction in Cattles and Buffaloes,ed.I.Gordon,Wallingford,UK.:CABI Iternational.1996.
    204.Shivaji S,Scheit KH,Bhargava PM.Proteins of Seminal Plasmam,New York:John Wiley & Son,Inc.1990.
    205.Therien I,Bleau G,Manjunath P.Phosphatidylcholine-binding proteins of bovine seminal plasma modulate capacitation of spermatozoa by heparin.Biol Reprod 1995;52(6):1372-9.
    206.Sartori R,Souza AH,Guenther JN,et al.Fertilization rate and embryo quality in superovulated Holstein heifers artificially inseminated with X-sorted or unsorted sperm.Anim Reprod Sci 2004;1(1):86-90.
    207.Xu J,Guo Z,Su L,et al.Developmental potential of vitrified holstein cattle embryos fertilized in vitro with sex-sorted sperm.J Dairy Sci 2006;89(7):2510-8.
    208.Wilson RD,Fricke PM,Leibfried-Rutledge ML,et al.In vitro production of bovine embryos using sex-sorted sperm.Theriogenology 2006;65(6):1007-15.
    209.Moce E,Graham JK,Schenk JL.Effect of sex-sorting on the ability of fresh and cryopreserved bull sperm to undergo an acrosome reaction.Theriogenology 2006;66(4):929-36.
    210.Grossfeld R,Klinc P,Sieg B,et al.Production of piglets with sexed semen employing a non-surgical insemination technique.Theriogenology 2005;63(8):2269-77.
    211.Klinc P,Sieg B,Rath D.Flow cytometrical sorting for gender affects velocity of frozen-thawed bull spermatozoa.Reprod Domest Anita 2004;39:264.
    212.Parrilla I,Vazquez JM,Gil MA,et al.Influence of storage time on functional capacity of flow cytometrically sex-sorted boar spermatozoa.Theriogenology 2005;64(1):86-98.
    213.Andersson M,Taponen J,Kommeri M,et al.Pregnancy rates in lactating Holstein-Friesian cows after artificial insemination with sexed sperm.Reprod Domest Anita 2006;41(2):95-7.
    214.Presicee GA,Verberckmoes S,Senatore EM,et al.First established pregnancies in Mediterranean Italian buffaloes(Bubalus bubalis)following deposition of sexed spermatozoa near the utero tubal junction.Reprod Domest Anim 2005;40(1):73-5.
    215.WHO.WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction.4th editioin,Cambridge,uk:Cambridge University Press.1999.
    216.Clements S,Cooke ID,Barratt CL.Implementing comprehensive quality control in the andrology laboratory.Hum Reprod 1995;10(8):2096-106.
    217.Cai K,Yang J,Guan M,et al.Single UV excitation of Hoechst 33342 and propidium iodide for viability assessment of rhesus monkey spermatozoa using flow cytometry.Arch Androl 2005;51(5):371-83.
    218.采克俊,司维,李亚辉,et al.流式细胞术在哺乳动物精液质量检测中的应用.动物学研究2003;24(4):311-317.
    219.Bailey JL,Bilodeau JF,Cormier N.Semen cryopreservation in domestic animals:a damaging and capacitating phenomenon.J Androl 2000;21(1):1-7.
    220.翟桂玉.公牛精液中的微生物及其对繁殖力的影响.黄牛杂志 1996;22(3):48-49.
    221.Kim IH,Son DS,Lee HJ,et al.Bacteria in semen used for IVF affect embryo viability but can be removed by stripping cumulus cells by vortexing.Theriogenology 1998;50(2):293-300.
    222.Iannuzzi L,Di Meo GP,Perucatti A,et al.Comparative FISH mapping of bovid X chromosomes reveals homologies and divergences between the subfamilies bovinae and caprinae.Cytogenet Cell Genet 2000;89(3-4):171-6.
    223.Di Berardino D,Vozdova M,Kubickova S,et al.Sexing river buffalo(Bubalus bubalis L.),sheep (Ovis aries L.),goat(Capra hircus L.),and cattle spermatozoa by double color FISH using bovine (Bos taurus L.)X-and Y-painting probes.Mol Reprod Dev 2004;67(1):108-15.
    224.李梅,金海国.中国黄牛的染色体研究进展.延边大学农学院学报 2003;25(3):228-232.
    225.王志生,买买提明·巴拉提,决肯·阿努瓦什.新疆荷斯坦牛染色体研究.新疆农业科学 1999; 18(2):180-181.
    226.戢福云,余其兴,郭一清,et al.黄鳝单条染色体的显微分离及特异性检测.动物学报 2002;48(1):114-120.
    227.Scalenghe F,Turco E,Edstrom JE,et al.Microdissection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes.Chromosoma 1981;82(2):205-16.
    228.Ludecke HJ,Senger G,Claussen U,et al.Cloning defined regions of the human genome by microdissection of banded chromosomes and enzymatic amplification.Nature 1989;338(6213):348-50.
    229.Guan XY,Trent JM,Meltzer PS.Generation of band-specific painting probes from a single microdissected chromosome.Hum Mol Genet 1993;2(8):1117-21.
    230.Telenius H,Carter NP,Bebb CE,et al.Degenerate oligonucleotide-primed PCR:general amplification of target DNA by a single degenerate primer.Genomics 1992;13(3):718-25.
    231.刘浩,张昌军,王华,et al.一种快速稳定的人精子核双色荧光原位杂交技术的建立.武汉大学学报(医学版)2005;26(2):207-209.
    232.Van Hummelen P,Lowe XR,Wyrobek AJ.Simultaneous detection of structural and numerical chromosome abnormalities in sperm of healthy men by multicolor fluorescence in situ hybridization.Hum Genet 1996;98(5):608-15.
    233.刘新霞,黄国贤,邓丽霞,et al.多色荧光原位杂交方法同时检测人精子染色体数目畸变和结构畸变.癌变.畸变.突变.2004;16(1):9-10.
    234.Cotinot C,Kirszenbaum M,Leonard M,et al.Isolation of bovine Y-derived sequence:potential use in embryo sexing.Genomics 1991;10(3):646-53.
    235.Kunieda T,Kumagai T,Tsuji T,et al.A mutation in endothelin-B receptor gene causes myenteric aganglionosis and coat color spotting in rats.DNA Res 1996;3(2):101-5.
    236.Gimenez C,Egozcue J,Vidal F.Sexing sibling mouse blastomeres by polymerase chain reaction and fluorescent in-situ hybridization.Hum Reprod 1994;9(11):2145-9.
    237.章纯熙.中国水牛科学,南宁:广西科学技术出版社.2002.346-60.
    238.Gasparrini B.In vitro embryo production in buffalo species:state of the art.Theriogenology 2002;57(1):237-56.
    239.Drost M.Advanced reproductive technology in the water buffalo.Theriogenology 2007;68(3):450-3.
    240.Craig J,Zhu H,Dyce PW,et al.Leptin enhances oocyte nuclear and cytoplasmic maturation via the mitogen-activated protein kinase pathway.Endocrinology 2004;145(11):5355-63.
    241.Ryan NK,Woodhouse CM,Van der Hock KH,et al.Expression of leptin and its receptor in the murine ovary:possible role in the regulation of oocyte maturation.Biol Reprod 2002;66(5):1548-54.
    242.Almog B,Gold R,Tajima K,et al.Leptin attenuates follicular apoptosis and accelerates the onset of puberty in immature rats.Mol Cell Endocrinol 2001;183(1-2):179-91.
    243.Boelhauve M,Sinowatz F,Wolf E,et al.Maturation of bovine oocytes in the presence of leptin improves development and reduces apoptosis of in vitro-produced blastocysts.Biol Reprod 2005;73(4):737-44.
    244.Craig JA,Zhu H,Dyce PW,et al.Leptin enhances porcine preimplantation embryo development in vitro.Mol Cell Endocrinol 2005;229(1-2):141-7.
    245.Herrid M,Nguyen VL,Hinch G,et al.Leptin has concentration and stage-dependent effects on embryonic development in vitro.Reproduction 2006;132(2):247-56.
    246.Gasparrini B.Advance on in vitro embryo production in water buffalo,in:Proceedings of the 5th Asian Buffalo Congress.Nanning,China:Central Compilation and Translation Press.2006.p,15-21
    247.Neglia G,Gasparrini B,Caracciolo di Brienza V,et al.Bovine and buffalo in vitro embryo production using oocytes derived from abattoir ovaries or collected by transvaginal follicle aspiration.Theriogenology 2003;59(5-6):1123-30.
    248.黄右军,Presicce GA,Gasparrini B,et al.水牛活体采卵及体外受精研究.中国畜牧兽医 2004;31(11):22-24.
    249.Zhang Y,Proenca R,Maffei M,et al.Positional cloning of the mouse obese gene and its human homologue.Nature 1994;372(6505):425-32.
    250.Caro JF,Sinha MK,Kolaczynski JW,et al.Leptin:the tale of an obesity gene.Diabetes 1996;45(11):1455-62.
    251.Malik NM,Carter ND,Murray JF,et al.Leptin requirement for conception,implantation,and gestation in the mouse.Endocrinology 2001;142(12):5198-202.
    252.Greewald GS,Roy SK,Follicular development and its control,in:The Physiology of Reproduction,E.Knobil and J.D.Neill,EditorsNew York.Raven Press 1994 p.629-724.
    253.Paula-Lopes FF,Boelhauve M,Habermann FA,et al.Leptin promotes meiotic progression and developmental capacity of bovine oocytes via cumulus cell-independent and -dependent mechanisms.Biol Reprod 2007;76(3):532-41.
    254.Shin MR,Kim NH.Maternal gamma(gamma)-tubulin is involved in microtubule reorganization during bovine fertilization and parthenogenesis.Mol Reprod Dev 2003;64(4):438-45.
    255.Brunet S,Maro B.Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte:integrating time and space.Reproduction 2005;130(6):801-11.
    256.Gallicano GI.Composition,regulation,and function of the cytoskeleton in mammalian eggs and embryos.Front Biosci 2001;6:D1089-108.
    257.Lonergan P,Khatir H,Carolan C,et al.Bovine blastocyst production in vitro after inhibition of oocyte meiotic resumption for 24 h.J Reprod Fertil 1997;109(2):355-65.
    258.Kawamura K,Sato N,Fukuda J,et al..Leptin promotes the development of mouse preimplantation embryos in vitro.Endocrinology 2002;143(5):1922-31.
    259.高立芳,何明忠,谭毅.瘦素(Leptin)在胚胎围着床期的作用.生殖与避孕 2005;25(4):233-236.
    260.Kawamura K,Sato N,Fukuda J,et al.The role of leptin during the development of mouse preimplantation embryos.Mol Cell Endocrinol 2003;202(1-2):185-9.
    261.Soliman M,Ishioka K,Yoshida R,et al.Serum leptin levels during the periparturient period in cows.J Vet Med Sci 2002;64(11):1053-6.
    262.Garcia MR,Amstalden M,Williams SW,et al.Serum leptin and its adipose gene expression during pubertal development,the estrous cycle,and different seasons in cattle.J Anim Sci 2002;80(8):2158-67.
    263.Di Palo R,Campanile G,Prandi A,et al.Plasma leptin levels in Murrah buffalo heifers fed diet with two different energy levels.Ital J Anita Sci.2005;4(SUPPL.2):301-303.
    264.Hegyi K,Fulop K,Kovacs K,et al.Leptin-induced signal transduction pathways.Cell Biol Int 2004;28(3):159-69.
    265.Takeda K,Noguchi K,Shi W,et al.Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality.Proc Natl Acad Sci U S A 1997;94(8):3801-4.
    266.Fedorcsak P,Storeng R.Effects of leptin and leukemia inhibitory factor on preimplantation development and STAT3 signaling of mouse embryos in vitro.Biol Reprod 2003;69(5):1531-8.
    267.Techakumph M,Sukavong Y,Yienvisavakul V,et al.The transfer of fresh and frozen embryos in an elite swamp buffalo herd.J Vet Med Sci 2001;63(8):849-52.
    268.Hufana-Duran D,Pedro PB,Venturina HV,et al.Post-warming hatching and birth of live calves following transfer of in vitro-derived vitrified water buffalo(Bubalus bubalis)embryos.Theriogenology 2004;61(7-8):1429-39.
    269.Kasiraj R,Misra AK,Mutha Rao M,et al.Successful culmination of pregnancy and live birth following the transfer of frozen-thawed buffalo embryos.Theriogenology 1993;39(5):1187-92.
    270.Bodmer M,Janett F,Hassig M,et al.Fertility in heifers and cows after low dose insemination with sex-sorted and non-sorted sperm under field conditions.Theriogenology 2005;64(7):1647-55.
    271.孙树春,桑润滋,孙国庆,et al.性控精液对奶牛人工授精情期受胎率及性比例的影响.黑龙江动物繁殖 2007;15(1):6-8.
    272.Lopez-Gatius F.Site of semen deposition in cattle:a review.Theriogenology 2000;53(7):1407-14.
    273.Gwazdauskas FC,Lineweaver JA,Vinson WE.Rates of conception by artificial insemination of dairy cattle.J Dairy Sci 1981;64(2):358-62.
    274.Shearer JK,Beede DK.Effects of high environmental temperature on production,reproduction,and health of dairy cattle.Agri-Practice 1990;11(5):6-17.
    275.李忠权.水牛繁殖季节及情期适时输精的研究.广西畜牧兽医 2007;23(3):116-117.
    276.Badinga L,Collier RJ,Thatcher WW,et al.Effects of climatic and management factors on conception rate of dairy cattle in subtropical environment.J Dairy Sci 1985;68(1):78-85.
    277.Nebel RL,McGilliard ML.Interactions of high milk yield and reproductive performance in dairy cows.J Dairy Sci 1993;76(10):3257-68.
    278.王喆,王安奎,杨国荣,et al.青年母水牛的发情周期观察及人工授精.中国畜牧杂志 2006;42(5):21-22.
    279.Collins WE,Inskeep EK,Tyler W J,et al.Variation in Conception Rates of Guemsey Cattle.J Dairy Sci 1962;45:1234-1236.
    280.Davidson JN,Farver TB.Conception rates of Holstein bulls for artificial insemination on a California dairy.J Dairy Sci 1980;63(4):621-6.
    281.Islam MA,Islam MS,Mazed MA,et al.Some reproductive performances of Nili-Ravi and crossbred(Nili-Ravi×local)buffaloes at the government buffalo farm,Bagerhat,Bangladesh.Journal of Animal and Veterinary Advances 2005;4(1):10-13.
    282.黄右军,尚江华,梁梦玫,et al.河流型水牛与沼泽型水牛杂交后代(2n=49)染色体遗传与繁殖力的研究.遗传 2003;25(2):155-159.
    283.Sanh MV.Buffalo production for beef in Vietnam.in:Proceedings of the Seventh World Buffalo Congress.Manila,Philippines.2004.p,519-523
    284.伍丽仙.提高牛人工授精受胎率技术.中国牛业科学 2006;32(6):74-76.