出生前后不同环境对仔鼠恐惧行为的影响及其机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     孕母与胎儿的关系十分密切,任何影响母亲健康的因素都有可能同时影响胎儿发育。近年来社会心理因素在妊娠过程中的作用逐渐被人们所重视。国外学者通过多种方法,制造出多种能够产生负性情绪的动物模型达到类似社会心理应激的效果,发现孕期应激可以使其仔鼠恐惧行为加剧,并有着与人类焦虑症患者相似的行为、生化和解剖学的特点,因此,目前出生前有应激史的仔鼠已经成为研究焦虑症的动物模型。探讨其发病机制以及如何逆转其焦虑的发生将为人类焦虑症的预防和治疗提供重要的理论和实践依据。另外,关于良好的孕期环境是否可减少其仔鼠的恐惧行为,目前尚无研究报道。
     杏仁核是恐惧回路的重要组成部分,条件恐惧的细胞分子生物学机制主要集中于杏仁核中兴奋性谷氨酸通路和抑制性γ-氨基丁酸(GABA)通路的相互作用,涉及细胞电生理的改变、基因的表达和蛋白质的合成。尽管GABA能中间神经元只占了神经元中的一小部分,但这些神经元在兴奋性神经元间起着有力的抑制性的使兴奋性神经元同步化的作用,同时在受到刺激后起着有力的前馈和反馈的抑制性突触后电位的作用。
     胃泌素释放肽(gastrin-releasing peptide,GRP)及其受体(GRPR)被一些研究者认为与恐惧记忆高度相关。体外研究发现,GRPR基因敲除小鼠的杏仁核切片中同步性抑制水平大大降低,并且长时程增强效应(long term potentiation,LTP)增强,这些小鼠在Morris水迷宫中的空间记忆不会受到损害(海马依赖的空间记忆),但却表现出对巴甫洛夫经典条件恐惧中对听觉线索(杏仁核依赖)和情景线索(杏仁核海马均依赖)的长期恐惧记忆的加强和延长,同时表现出与恐惧记忆有关的神经回路皮层LTP效应加强,从而证实GRP对恐惧记忆起抑制性负反馈作用。然而,另有研究显示,无论给予海马CA1区或基底外侧杏仁核注射GRPR拮抗剂均可损害厌恶性条件形成,提示GRP对恐惧记忆起促进性作用。因此,GRP及其受体与条件恐惧记忆的关系尚无肯定结果。
     “丰富环境”(environmental enrichment,EE)被定义为复杂的、无生命物与社会刺激的复合体。环境对大脑功能及行为的影响已得到广泛重视。有研究显示丰富环境不仅可以明显提高动物的记忆和学习能力,还能减少其焦虑行为。但是目前尚无研究显示丰富环境是否影响大脑GRPR的表达。
     目的
     1.运用已被广泛用于评价大鼠恐惧水平的防御退缩实验、旷场实验,研究孕期不同环境对不同日龄仔鼠恐惧行为的影响。
     2.采用经典的孕期应激模型,研究仔鼠的恐惧行为与杏仁核、海马GRPR阳性细胞数量、GRPR信息RNA及蛋白表达水平的关系,试图进一步说明条件恐惧过程中抑制性神经通路所起的作用。
     3.研究丰富环境是否影响仔鼠杏仁核、海马GRPR阳性细胞数量、GRPR信息RNA及蛋白表达,进一步阐明丰富环境作用的分子机制。
     研究方法
     1.孕期不同环境对不同日龄仔鼠恐惧行为的影响:将初次妊娠11天的孕鼠随机分为:应激组、丰富环境组和对照组,每组各4只,1只/箱。应激组:将妊娠11—21天的孕鼠置于透明塑料的固定器(直径7cm,长19cm)中并给予强光照射45分钟/次,3次/天(分别在10:00,13:00和16:00点)。丰富环境组:将孕鼠置于长×宽×高为80×60×40 cm的特制饲养箱中,内设:转笼、掩体、各种颜色的塑料玩具以及其它小装置如秋千、隧道等;其中转笼和掩体是固定的,其他的玩具和小装置则每星期更换。对照组不给予刺激。出生当天将每窝仔鼠调整到10只,生后21天断奶,4只/箱,标准环境喂养,每组16只雄性仔鼠分别于生后25天、45天和60天进行旷场实验和防御退缩实验测试。
     2.丰富环境对孕期应激仔鼠恐惧行为的影响及其机制的研究:断奶后,将孕期应激雄性仔鼠40只随机分为2组,每组20只:应激丰富环境组(SE),置于特制饲养箱中,10只/箱;应激对照组(SC),标准环境喂养,4只/箱。另有对照组雄性仔鼠40只分组方法同上,分别称为标准丰富环境组(CE)和标准对照组(CC)。
     生后60天进行防御退缩实验测试。测试结束后,每组6只过量麻醉后灌注固定取脑,分别进行尼氏染色和GRPR单标免疫荧光染色,计数海马各区、杏仁核各核团以及相应大脑皮层GRPR阳性细胞数;其余仔鼠直接断头取脑,在冰上快速分离双侧海马、杏仁核及相应体积的大脑皮层,应用实时定量RT-PCR法(Real-time Quantitative RT-PCR)检测各部位GRPR信息RNA的表达;应用免疫印记(Western blot)检测各部位GRPR蛋白的表达。
     结果
     1.孕期不同环境对不同日龄仔鼠恐惧行为的影响
     在旷场实验中,各日龄孕期应激仔鼠均较相应对照组中央格停留时间延长,总穿格数及站立次数减少(all p<0.05),提示孕期应激可以减少其仔鼠对陌生环境的探究行为。与之相反,生后25天时丰富环境组仔鼠较对照组总穿格数增加(p<0.05),而中央格停留时间缩短(p<0.05),至生后45天、60天上述差别消失(all p>0.05),说明孕期给予丰富的环境仅可以增加其幼鼠的探究行为。
     在防御退缩试验中,生后25天时,孕期应激仔鼠较对照组潜伏期延长(p<0.05);生后45天时,不仅潜伏期延长(p<0.05),自小室退出次数亦减少(p<0.05);而生后60天时,在上述表现的基础上,给予束缚应激刺激后其在小室内的时间较相应对照组明显延长(p<0.05);提示孕期应激刺激可以导致子代的恐惧行为增加,且随着年龄增长逐渐加剧,给予束缚应激刺激可加剧其恐惧。与之相反,生后25天时,丰富环境组仔鼠较对照组潜伏期缩短,自小室退出次数增加,说明孕期丰富环境可以减少幼年仔鼠的恐惧行为并增加其探究行为。
     2.丰富环境对孕期应激仔鼠恐惧行为的影响
     经给予丰富环境刺激,在生后60天进行的防御退缩试验中,应激丰富环境组(SE)较应激对照组(SC)潜伏期缩短(p<0.05),出小室的次数增多(p<0.05),给予束缚应激不再增加其在小室内的时间(p<0.05),提示丰富环境可以纠正孕期应激仔鼠异常的恐惧行为,并提高其对应激刺激的适应能力。
     3.出生前后不同环境对杏仁核、海马及大脑皮层GRPR阳性细胞数量的影响
     孕期应激仔鼠(SC组)海马CA1、CA3、DG区,杏仁外侧核(LA)、中央核(CE)、基底外侧核(BLA)以及相应大脑皮层GRPR阳性细胞计数较标准对照组无显著性差异(all p>0.05);而应激丰富环境组(SE)及标准丰富环境组(CE)在海马各区及杏仁核各核团GRPR阳性细胞计数均较相应对照组明显增多(all p<0.05)。
     4.出生前后不同环境对杏仁核、海马及大脑皮层GRPR信息RNA表达水平的影响
     孕期应激仔鼠(SC组)海马、杏仁核以及相应大脑皮层GRPR信息RNA表达水平较CC组无显著性差异(all p>0.05);而SE及CE组海马和杏仁核GRPR信息RNA表达水平较SC和CC组明显提高(all p<0.05)。
     5.出生前后不同环境对杏仁核、海马及大脑皮层GRPR蛋白表达水平的影响
     孕期应激仔鼠(SC组)海马、杏仁核以及相应大脑皮层GRPR蛋白表达水平较CC组无显著性差异(all p>0.05);而SE及CE组海马和杏仁核GRPR蛋白表达水平较SC和CC组明显提高(all p<0.05)。
     结论
     1.本研究再次证实,孕期给予制动加强光照射应激刺激可以导致子代的恐惧行为增加,且随着年龄增长逐渐加剧,给予束缚刺激可以加剧其恐惧,这与人类焦虑症常在幼年发病,可持续至青春期及成年,表现为过多的恐惧和对不良刺激的回避基本吻合,说明该动物模型作为焦虑症的实验模型基本合乎要求。
     2.本次研究首次发现,孕期给予丰富的环境可以降低其幼鼠的恐惧水平,增加其探究行为,但是这一优势于生后45天即消失,可能与大鼠的恐惧水平随年龄增长而增加有关,具体机制有待进一步探讨。
     3.本次研究首次发现,孕期应激并不影响仔鼠海马、杏仁核以及相应大脑皮层GRPR阳性细胞数量、GRPR信息RNA和蛋白表达水平,其机制有待进一步研究。
     4.本次研究首次发现,丰富环境可以增加海马CA1、CA3、DG区,杏仁核LA、CE、BLA的GRPR阳性细胞数,并提高海马、杏仁核GRPR信息RNA及蛋白表达,同时伴有恐惧水平的降低,支持GRPR作为一种负反馈来调节恐惧记忆。提示丰富环境可能通过提高杏仁核和海马GRPR表达水平来改善孕期应激仔鼠过度的恐惧行为,从而可能成为一个有效而低风险的早期干预手段。
     5.本次研究结果还提示,先天性GRP及其受体缺陷的人可能具有焦虑症的易患素质,可能是部分病人易患焦虑症的原因。
Background
     It is well known that the relationship between mother and fetus is significant, and many factors during pregnancy can lead to physical malformations or behavioral dysfunctions. In the past few years, the effects of social-psychological factors during pregnancy have gradually aroused the attention of the public. In order to study the effect of prenatal stress on their offspring, many kinds of animal models have been made, and many studies have shown that prenatal stressed (PS) offspring exhibited more fearful behavior in behavioral tests. Furthermore, as showing behavioral, biochemical and anatomical similarities to anxious humans, the PS rat has become an animal model to study pathological anxiety. It is obviously that exploring the pathogenesis and prevention of abnormal fearful behavior of PS rat maybe contribute to the prevention and treatment of human anxiety disorders. Besides, the effects of environmental enrichment during pregnancy on fearful behavior of their offspring have been less documented and remain questionable.
     The amygdala is a key component of the neural circuitry of fear—both innate and learned in humans and in simpler vertebrate experimental animals. Cellular and molecular mechanisms of conditioned fear are focused on the interaction between positive glutamine pathway and inhibitory GABAergic pathway, involving in the electrophysiological changes, gene expression and synthesis of protein. Although GABA interneurons account for a small portion of neurons, they play a crucial role in inhibiting the excitatory neurons and regulating the complex interactions among principal cells, moreover, inhibitory postsynaptic potentials elicited from GABA interneurons has a robust effect of feed-forward and feedback.
     GRP and GRP receptor (GRPR) are distributed throughout the mammalian central nervous system. Gastrin-releasing peptide receptors (GRPR) have an important role in regulating amygdala-dependent, fear-related learning. GRPR-deficient mice showed decreased inhibition of principal neurons by interneurons in slices, enhanced long-term potential (LTP); these mice performed normally in hippocampus-dependent Morris maze, but showed greater and more persistent long-term fear memory in Pavlovian auditory cue fear conditioning, an amygdala-dependent task, and contextual fear conditioning which depend both on the amygdala and the hippocampus, which provide genetic evidence that GRP and its neural circuitry operate as a negative feedback regulating fear memory. However, both intrahippocampal infusion and microinjected into the basolateral amygdala of the bombesin/gastrin-releasing peptide antagonist RC-3095 impair formation of aversive memory, indicating that GRP system(s) can significantly enhance fear memory. In conclusion, the relationship between GRP, GRPR and conditioned fear memory remain questionable.
     Environmental enrichment (EE) is defined as a combination of "complex inanimate objects and social stimulation". The importance of the environment in brain regulation, behavior and physiology has long been recognized in the biological, social and medical sciences. Animals maintained under enriched conditions clearly have better memory, learning abilities and less anxiety-like behavior than those housed under standard conditions. However, the effects of environmental enrichment on the expression of GRPR in the brain have been less documented.
     Objective
     1. To investigate the effects of different stimulation during pregnancy on fearful behavior of offspring at 25, 45 and 60 days of age in the open field test and defensive withdrawal test.
     2. To investigate the relationship between fearful behavior and the number of GRPR positive cells, levels of GRPR mRNA and protein in the amygdala and hippocampus of prenatal stressed offspring.
     3. To investigate the effect of postnatal environmental enrichment on the number of GRPR positive cells, expression of GRPR mRNA and protein in the amygdala and hippocampus of PS offspring, and to explore the molecular mechanisms of environmental enrichment.
     Method
     1. On gestational days 11, primigravid female rats were randomly assigned to three groups: enriched group, stressed group and the control group, n=4 per group. All animals were individually housed. Prenatal treatments were performed daily on gestational days 11-21. The enriched dams were kept in specially designed cages (80 cm long×60 cm wide×40 cm high) that were equipped with a running wheel, a shelter, plastic color toys and small constructions such as chain and swing, tunnels. Throughout the enrichment periods, the shelter and running wheel were kept in the cage, while the toys and constructions were changed once a week. The stressed dams were put into a narrow animal holder and exposed to bright light for 45 min three times a day (starting from 1000, 1300 and 1600 h). The control dams were left undisturbed. At birth, the litters were randomly culled to 10 pups within 24 h post delivery. The offspring were left undisturbed together with their mother in standard cages. Male and female offspring were weaned at postnatal day 21(P21), and only male offspring (n=16 per group) were used in the present study. Open field test and the defensive withdrawal test were performed at P25, P45 and P60.
     2. From P21, 20 pups of control or stressed dams (CC group, SC group) were kept in standard Plexiglas cages (60 cm long×40cm wide×25cm high, n = 4 per cage) and left undisturbed. The same number pups from control or stressed dams (CE group, SE group) were kept in specially designed cages (n = 10 per cage). Throughout the enrichment periods (P21-P60), the shelter and running wheel were kept in the cage, while the toys and constructions were changed once a week. Also once a week, the feeding boxes and water bottles were moved to different cage points to encourage foraging and explorative behaviors. On P60, all pups were tested in the defensive withdrawal and then sacrificed. Six rats per group used in the study of GRPR staining and Nissl staining received an overdose of chloral hydrate (400mg/kg, i.p.) and perfused with different solution. The other part was sacrificed by decapitation and the cortical portion, amygdala and hippocampus were dissected on ice. These brains were used in the study of Western blot and quantitative real-time detection PCR.
     Results
     1. Effects of different stimulation during pregnancy on fearful behavior of their offspring at 25,45 and 60 days of age.
     Open-field test
     PS offspring at any age had greater central grille time, decreased total cross number and stand number than their corresponding controls (all p<0.05) , showing that prenatal stress inhibited exploratory behavior of their offspring in novel circumstance. On the contrary, the prenatal enriched offspring at 25 days of age had increased total cross number (p<0.05) and shorter central grille time (p<0.05) than their controls, however, the difference between enriched and control groups disappeared at postnatal day 45 and 60, indicating enriched environment during pregnancy can only enhanced exploratory behavior of their infancy offspring.
     Defensive-withdrawal test
     When compare to the controls, PS offspring had greater latencies at P25, greater latencies and decreased number of exits from the chamber at P45, and greater latencies, decreased number of exits from the chamber and increased time in the chamber with restraint at P60 (all p <0.05), which indicating that PS offspring had more fearful behavior than their corresponding controls, and the fearful behavior was enhanced with increasing of age. On the contrary, the prenatal enriched offspring at 25 days of age had shorter latencies and increased number of exits from the chamber than their controls(all p <0.05), but the difference between enriched and control groups disappeared at postnatal day 45 and 60, indicating enriched environment during pregnancy decreased fearfulness and enhanced exploratory behavior of their infancy offspring.
     2. Effects of enriched environment treatment on fearful behavior of PS offspring
     PS offspring showed less fearfulness after maintained under enriched conditions, which was measured as a shorter latency and increased number of exits from the chamber without restraint, and was less affected by restraint stress(all p <0.05), which indicate that enriched environment treatment can reverse the abnormal behavior of PS offspring.
     3. Effects of pre and postnatal circumstance on the number of GRPR -positive cells in cortical portion, amygdala and hippocampus
     When compared to the control pups (CC group and SC group) respectively, pups maintained under enriched environment (CE group and SE group) exhibited significantly increase in density of GRPR -positive cells in amygdala nuclei and hippocampus areas (all p <0.001), but there were no significant difference between CE and SE groups or SC and CC groups (all p>0.05). No differences were found in density of GRPR -positive cells in the cortex containing M1, M2, RSA and RsGb areas among all groups [F(3,143)=0.34, p>0.05].
     4. Effects of pre and postnatal circumstance on the expression of GRPR mRNA in cortical portion, amygdala and hippocampus
     GRPR gene expression in the amygdala and hippocampus of CE group were up-regulated 136.47±48.75 and 146.30±37.46 when compared to CC groups (all p <0.001), and GRPR gene expression in the amygdala and hippocampus increased 129.25±39.51 and 151.74±43.38 fold respectively in SE group comparing with that in SC groups (1.22±0.39, 0.98±0.21) (allp<0.001). However, there were no significant difference between CE group and SE group (all p>0.05) or SC group and CC group (all p>0.05), besides, no differences were found in GRPR gene expression in the cortex containing Ml, M2, RSA and RsGb areas among all groups [F(3,39)=1.42, p>0.05].
     5. Effects of pre and postnatal circumstance on GRPR protein in cortical portion, amygdala and hippocampus
     GRPR protein expression in the amygdala and hippocampus of CE groups were up-regulated 1.06±0.12 and 1.29±0.23 when compared to CC groups(0.29±0.04, 0.29±0.04) (all p <0.001), and GRPR protein expression in the amygdala and hippocampus of SE groups (0.97±0.12,1.39±0.29) were increased when compared with that of SC groups (0.28±0.03, 0.28±0.05) (all p<0.001). However, there were no significant difference between CE group and SE group (all p>0.05) or SC group and CC group (all p>0.05), besides, no differences were found in GRPR protein expression in the cortex containing M1, M2, RSA and RsGb areas among all groups [F(3,31)=0.30, p>0.05].
     Conclusions
     1. Our studies provided more evidence that prenatal stress (put into a narrow animal holder and exposed to bright light) enhance fearfulness of their offspring, which can be significantly increased following acute restraint, and with increasing age, the fearful behavior was enhanced. These findings in PS rats are similar to the data from humans showing that the onset of pathological anxiety often manifests at a young age, persists throughout adolescence and continues into adulthood, exhibiting increased fearfulness, manifesting as avoidance of anxiety provoking situations. So this animal model can be used as a model for the study of anxiety disorders.
     2. We found for the first time that environmental enrichment during pregnancy only can decrease fearfulness and enhance exploratory behavior of their infancy offspring. Further research will be needed to elucidate the mechanism.
     3. We found for the first time that prenatal stress has no effect on the number of GRPR -positive cells, the expression of GRPR gene and protein in the cortical, amygdala and hippocampus of their offspring, the mechanism need to be explored.
     4. We found for the first time that enriched environment treatment can reverse the abnormal behavior of PS offspring, and increase the expression of GRPR in the amygdala and hippocampus, indicating GRP and its neural circuitry operate as a negative feedback regulating fear memory.
     5. In conclusion, the present studies provided evidence that GRPR and its neural circuitry operate of GABA interneurons as a negative feedback regulating fear memory. Postnatal environmental enrichment can reverse the enhanced fearfulness in adult PS offspring, which might be in part mediated by modulation of GRPR in the amygdala and hippocampus. Therefore, enriched environment treatment may become a new method to cure anxiety disorders. Besides, our study also suggested congenital defect of GRP and/or GRPR may lead to the onset of anxiety disorders.
引文
1.Kofman O.The role of prenatal stress in the etiology of developmental behavioral disorders.Neurosci Biobehav Rev.2002,26:457-470.
    2.Diego MA,Field T,Hernandez-Reif M,Cullen C,Schanberg S,Kuhn C.Prepartum,postpartum,and chronic depression effects on newborns.Psychiatry.2004,67:63-80.
    3.Ressler KJ,Nemeroff CB.Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders.Depress Anxiety.2000,12Suppl 1:2-19.
    4.Schneider ML,Moore CF,Kraemer GW,Roberts AD,De Jesus OT.The impact of prenatal stress,fetal alcohol exposure,or both on development:perspectives from a primate model.Psychoneuroendocrinology.2002,27(1-2):285-98.
    5.Teixeira JM,Fisk NM,Glover V.Association between,maternal anxiety in pregnancy and increased uterine artery resistance index:cohort based study.BMJ.1999,318(7177):153-7.
    6.张燕,莫艳华.产妇分娩前心理状态与产后抑郁症.山西中医学院学报.2000,1(1):42-44
    7.Monk C,Sloan RP,Myers MM,Ellman L,Wemer E,Jeon J,Tager F,Fifer WP.Fetal heart rate reactivity differs by women's psychiatric status:an early marker for developmental risk? J Am Acad Child Adolesc Psychiatry.2004,43(3):283-90.
    8.Parry BL,Newton RP.Chronobiological basis of female-specific mood disorders.Neuropsychopharmacology.2001,25(5 Suppl):S 102-8.
    9.Valle'e M,Mayo W,Dellu F,Le Moal M,Simon H,Maccari S.Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring:Correlation with stress-induced corticosterone secretion.J Neurosci.1997,(17)2626-2636.
    10.Ward HE,Johnson EA,Salm AK,Birkle DL.Effects of prenatal stress on defensive withdrawal behavior and corticotrophin releasing factor systems in rat brain.Physiol Behav.2000,70:359-366.
    11.Kim H,Lee MH,Chang HK,Lee TH,Lee HH,Shin MC,Shin MS,Won R,Shin HS,Kim CJ Influence of prenatal noise and music on the spatial memory and neurogenesis in the hippocampus of developing rats.Brain Dev.2006,28:109-14.
    12.Koo JW,Park CH.Choi SH,Kim N J,Kim HS,Choe JC,Suh YH.The postnatal environment can counteract prenatal effects on cognitive ability,cell proliferation,and synaptic protein expression.FASEB J.2003,17(11):1556-8
    13.Ward IL,Weisz J.Differential effects of maternal stress on circulating levels of corticosterone,progesterone,and testosterone in male and female rat fetuses and their mothers.Endocrinology.1984,114:1635-1644.
    14.H.G.沃格尔,W.H.沃格尔.药理学实验指南--新药发现和药理学评价.北京:科学出版社,2001.309-310.
    15.De Cabo de la Vega C,Pujol A,Paz ViverosM.Neonatally administered naltrexone affects several behavioral responses in adult rats of both genders.Pharmacol Biochem Behav.1995,50(2):2772286.
    16.Golani I.Homeostatic motor processes in mammalian interactions:a choreography of display.In:Bateson PG,Klopfer PH,eds.Prospectives in Ethology.1 ed.New York:Plenum Press,1976.134-237.
    17.Fentress JC,Bolivar VJ.Measurement of swimming kinematics in small terrestrial mammals.In:Ossenkopp K-P,Kavaliers M,Sanberg.et al,eds.Measuring movement and locomotion:From invertebrates to humans.Austin,Texas:RG Landes,1996.171-184.
    18.Ossenkopp K-P,Kavaliers M,Sanberg PR.Measuring movement and locomotion:From invertebrates to humans.Austin,Texas:RG Landes,1996.20-65.
    19.Smit,J,Rousseau J.B.I,van Lochem.et al.Automatic recognition of behavioral patterns in rodents using digital imaging.Measuring Behavior'96,International Workshop.on Methods and Techniques in Behavioral Research,Utrecht,The Netherlands,16-18 October,1996.142-151.
    20.Eilam D.Open-field behavior withstands drastic changes in arena size.Behav Brain Res.2003,142:53-62.
    21.刘克嘉,吴勤蛾.应激与应激性疾病.北京:人民军医出版社,1991.297-300.
    22.景洪江,程义勇.应激对大鼠行为的影响及谷氨酰胺的调节作用.中国行为医学科学,2000,9:7-8.
    23.Prut L,Belzung C.The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors:a review.Eur J Pharmacol.2003,463:3-33.
    24.Drai D,Benjamini Y,Golani I.Statistical discrimination of natural modes of motion in rat exploratory behavior.J Neurosci Methods.2000,96:119-131.
    25.Dickerson PA,Lally BE,Gunnel E,Birkle DL,Salm AK.Early emergence of increased fearful behavior in prenatally stressed rats.Physiol Behav.2005,86(4):586-93.
    26.Fride E,Dan Y,Feldon J,Halevy G,Weinstock M.Effects of prenatal Stress on vulnerability to stress in prepubertal and adult rats.Physiol Behav.1986,37:681-687.
    27.Angrini M,Leslie JC,Shephard RA.Effects of propranolol,buspirone,pCPA,reserpine,and chlordiazepoxide on open-field behavior.Pharmacol Biochem Behav.1998,59:387-97.
    28.Yang X,Gorman AL,Dunn AJ.The involvement of central noradrenergic systems and corticotropin-releasing factor in defensive-withdrawal behavior in rats.J Pharmacol Exp Ther.1990,255:1064-70.
    29.Takahashi LK,Kalin NH,Vanden Burgt JA,ShermanJE.Corticotropinreleasing factor modulates defensive- withdrawal and exploratory behavior in rats.Behav Neurosci.1989,103:648-54.
    30.Bruijnzeel AW,Stam R,Wiegant VM.Effect of a benzodiazepine receptor agonist and corticotropin-releasing hormone receptor antagonists on longterm foot-shock-induced increase in defensive withdrawal behavior.Psychopharmacology.2001,158:132-9.
    31.Berridge CW,Dunn AJ.Restraint-stress-induced changes in exploratory behavior appear to be mediated by norepinephrine-stimulated release of CRF.J Neurosci.1989,9:3513-21.
    32. Hayashi A, Nagaoka M, Yamada K, Ichitani Y, Miake Y, Okado N. Maternal stress induces synaptic loss and developmental disabilities of offspring. Int J Dev Neurosci. 1998,16: 209-216.
    
    33. Hougaard KS, Andersen MB, Hansen AM, Hass U, Werge T, Lund SP. Prenatal stress may increase vulnerability to life events: Comparison with the effects of prenatal dexamethasone. Neurotoxicol Teratol. 2005,27(1):153—167.
    
    34. Kanitz E, Otten W, Tuchscherer M. Effects of prenatal stress on corticosteroid receptors and monoamine concentrations in limbic areas of suckling piglets( Sus scrofa)at different ages. J Vet Med A Physiol Pathol Clin Med. 2003, 50(3): 132-139.
    
    35. Griffin WC , Skinner HD , Salm A K, Birkle DL. Mild prenatal stress in rats is associated with enhanced conditioned fear. Physiol Behav. 2003, 79:209-215.
    
    36. de Weerth C, van Hees Y, Buitelaar JK. Prenatal maternal cortisol levels and infant behavior during the first 5 months. Early Hum Dev. 2003,7:139-151.
    
    37. Rapee RM. The development and modification of tempera mental risk for anxiety disorders: Prevention of a lifetime of anxiety? Biol Psychiatry. 2002, 52:947- 957.
    
    38. Brown TA. Classification of anxiety disorders. In: Stein J,Hollander E, editors. Textbook of anxiety disorders. Washington: American Psychiatric Publishing. 2002. p13-27.
    
    39. Bremner J, Charney D. Neural circuits in fear and anxiety.In: Stein J, Hollander E, editors. Textbook of anxiety disorders.Washington: American Psychiatric Publishing. 2002. p43-56.
    
    40. Bellis De MD. Neurotoxic effects of childhood trauma. In: Gorman JM, editor. Fear and anxiety: The benefits of translational research. Washington: American Psychiatric Publishing. 2004.pl51-170.
    
    41. Chung S, Son GH, Park SH, Park E, Lee KH, Geum D, Kim K . Differential adaptive responses to chronic stress of maternally stressed male mice offspring. Endocrinology. 2005,146(7):3202-3210.
    
    42. Salm AK, Pavelko M, Krouse EM, Webster W, Kraszpulski M, Birkle DL. Lateral amygdaloid nucleus expansion in adult rats is associated with exposure to prenatal stress. Developmental Brain Research. 2004, 148: 159- 167.
    
    43. Kraszpulski M, Dickerson PA, Birkle DL. Altered developmental trajectory in the amygdala of prenatally stressed offspring, in: Abstract Viewer/Itinerary Planner, Society for Neuroscience,Washington, DC, 2003, Program No. 149.10.
    
    44. Fowler CD, Liu Y, Ouimet C, Wang Z. The effects of social environment on adult neurogenesis in the female prairie vole. Neurobiol. 2002, 51:115—128.
    
    45. Bernier PJ, Bedard A, Vinet J. Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc. Natl. Acad. Sci. 2002, 99:11464— 11469.
    
    46. Kraszpulski M, Dickerson1 PA, Salm AK. Prenatal stress affects the developmental trajectory of the rat amygdala. Stress. 2006, 9(2): 85-95.
    
    47. Kawamura T, Chen J, Takahashi T, Ichitani Y, Nakahara D. Prenatal stress suppresses cell proliferation in the early developing brain. Neuroreport. 2006, 17(14):1515-8.
    
    48.宋维炳,国外研究胎教的概况[M]北京:北京工业大学出版社,1995,10
    
    49. Hebb DO. The effects of early experience on problem solving at maturity Am. Psychol. 1947,2:306-307.
    
    50. Benaroya-Milshtein N, Hollander N, Apter A ,et al .Environmental enrichment in mice decreases anxiety, attenuates stress responses and enhances natural killer cell activity. Eur J Neurosci. 2004, 20(5):1341-1347.
    
    51. Naka F, Shiga T, Yaguchi M. An enriched environment increases noradrenaline concentration in the mouse brain. Brain Res. 2002, 924(1):124-126.
    
    52. Abikoff H, Courtney ME, Szeibel PJ, Koplewicz HS. The effects of auditory stimulation on the arithmetic performance of children with ADHD and nondisabled children. J Learn Disabil. 1996,29: 238-246.
    
    53. Boso M, Politi P, Barale F, Enzo E, Neurophysiology and neurobiology of the musical experience. Funct Neurol. 2006,21:187-191.
    
    54. Takahashi LK, Kalin NH. Early developmental and temporal characteristics of stress induced secretion of pituitary-adrenal hormones in prenatally stressed rat pups. Brain Res. 1991, 558:75-78.
    
    55. Boso M, Politi P, Barale F, Enzo E. Neurophysiology and neurobiology of the musical experience. Funct. Neurol. 2006,21(4): 187-191.
    
    56. Abikoff H, Courtney ME, Szeibel PJ, Koplewicz HS. The effects of auditory stimulation on the arithmetic performance of children with ADHD and nondisabled children. J Learn Disabil. 1996, 29(3):238-246.
    
    57. Angelucci F, Ricci b E, Padua L, Sabino A, Tonali PA. Music exposure differentially alters the levels of brain-derived neurotrophic factor and nerve growth factor in the mouse hypothalamus. Neurosci Lett. 2007, 429(2-3): 152-155.
    1. Weinstock M. Does prenatal stress impair coping and regulation of hypothalamic-pituitary-adrenal axis? Neurosci Biobehav Rev. 1997, 21:1-10.
    
    2. Fride E, Dan Y, Feldon J, Halevy G, Weinstock M. Effects of prenatal stress on vulnerability to stress in prepubertal and adult rats. Physiol Behav. 1986, 37:681-7.
    
    3. Martijena ID, Calvo N, Volosin M, Molina VA. Prior exposure to a brief restraint session facilitates the occurrence of fear in response to a conflict situation: behavioral and neurochemical correlates. Brain Res. 1997, 752:136-42.
    
    4. Valle'e M, Mayo W, Dellu F, Le Moal M, Simon H, Maccari S. Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: Correlation with stress-induced corticosterone secretion. J Neurosci. 1997,17:2626-2636.
    
    5. Ward HE, Johnson EA, Salm AK, Birkle DL. Effects of prenatal stress on defensive withdrawal behavior and corticotrophin releasing factor systems in rat brain. Physiol Behav. 2000, 70:359-366.
    
    6. Peters DAV. Prenatal stress: effects on brain biogenic amine and plasma corticosterone levels. Pharmacol Biochem Behav. 1982,17:721—5.
    
    7. Takahashi LK, Kalin NH. Early developmental and temporal characteristics of stress- induced secretion of pituitary-adrenal hormones in prenatally stressed rat pups. Brain Res. 1991, 558:75-8.
    
    8. Weinstock M, Poltyrev T, Schorer-Apelbaum D, Men D, McCarty R. Effect of prenatal stress on plasma corticosterone and catecholamines in response to footshock in rats. Physiol Behav. 1998, 64:439-44.
    
    9. Maren S, Fanselow MS The amygdala and fear conditioning: has the nut been cracked? Neuron. 1996,16(2):237-40
    
    10. Davis M. The role of the amygdala in fear and anxiety Annu Rev Neurosci. 1992, 15:353-75
    
    11. Adolphs R, Tranel D, Damasio H, Damasio AR. Fear and the human amygdala. Journal of Neuroscience. 1995,15:5879-5891.
    
    12. Adolphs R. Tranel D, Damasio AR. The human amygdala in social judgment. Nature. 1998, 393:470-474.
    
    13. Rauch SL, Shin LM, Wright CI. Neuroimage studies of amygdale function in anxiety disorders. Ann NY Acad Sci. 2003, 985:389-410.
    
    14. Sun N, Yi H, Cassell MD. Evidence for a GABAergic interface between cortical afferents and brainstem projection neurons in the rat central extended amygdala. Journal of Comparative Neurology. 1994, 340:43-64.
    
    15. Davis M. Neurobiology of fear responses: the role of the amygdala. J Neuro Psychiatry Clin Neurosci. 1997, 9:382-402.
    
    16. Quirk GJ, Annony JL, LeDoux, JE. Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron. 1997,19:613-624.
    
    17. Gallagher M, Holland p.C. The amygdala complex: Multiple roles in associative learning and attention. Proceedings of the National Academy of Sciences. 1994, 91:11771-11776.
    
    18. Lindquist DH, Brown TH. Amygdalar NMDA receptors control the expression of associative reflex facilitation and three other conditional responses. Behav Neurosci. 2004,118:36-52.
    
    19. Schafe GE, LeDoux JE. Memory consolidation of auditory pavlovian fear conditioning requires protein synthesis and protein kinase A in the axmygdala. J Neurosci. 2000,20.RC96.
    
    20. Holahan MR, White NM Intra-amygdala musicmol injections impair freezing and place avoidance in aversive contextual conditioning. Learn Mem. 2004, 11:436 -446.
    
    21. Freund TF, Buzsaki G. Interneurons of the hippocampus. Hippocampus. 1996, 6:347-70.
    
    22. Moody TW, Merali Z. Bombesin-like peptides and associated receptors within the brain: distribution and behavioral implications. Peptides. 2004, 25(3):511-20.
    
    23. Zoeller RT, Lebacq-Verheyden AM, Battey JF. Distribution of two distinct messenger ribonucleic acids encoding gastrin-releasing peptide in rat brain. Peptides. 1989,10(2):415-22.
    
    24. Bissette G, Nemeroff CB, Decker MW, Kizer JS, Agid Y, Javoy-Agid F. Alterations in regional brain concentrations of neurotensin and bombesin in Parkinson's disease. Ann Neurol. 1985,17(4):324-8.
    
    25. Merali Z, McIntosh J, Anisman H. Role of bombesin-related peptides in the control of food intake. Neuropeptides. 1999, 33(5):376-86.
    
    26. Frank GK, Kaye WH, Ladenheim EE, McConaha C. Reduced gastrin releasing peptide in cerebrospinal fluid after recovery from bulimia nervosa. Appetite. 2001, 37(1):9-14.
    
    27. Ishikawa-Brush Y, Powell JF, Bolton P, Miller AP, Francis F, Willard HF, Lehrach H, Monaco AP. Autism and multiple exostoses associated with an X;8 translocation occurring within the GRPR gene and 3' to the SDC2 gene. Hum Mol Genet. 1997, 6(8): 1241-50.
    
    28. Marui T, Hashimoto O, Nanba E, Kato C, Tochigi M, Umekage T, Kato N, Sasaki T. Gastrin-releasing peptide receptor (GRPR) locus in Japanese subjects with autism. Brain Dev. 2004, 26(1):5-7.
    
    29. Shumyatsky GP, Tsvetkov E, Malleret G, Vronskaya S, Hatton M, Hampton L Battey JF, Dulac C, Kandel ER, Bolshakov VY. Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Cell. 2002,11:905-918.
    
    30. Dudai Y. Neurobiology: Fear thou not. Nature. 2003,421(6921):325-7
    
    31. Andrews N, Davis B, Gonzalez MI, Oles R, Singh L, McKnight ATEffect of gastrin-releasing peptide on rat hippocampal extracellular GABA levels and seizures in the audiogenic seizure-prone DBA/2 mouse. Brain Res. 2000, 859(2):386-9
    
    32. Lee K, Dixon AK, Gonzalez I, Stevens EB, McNulty S, Oles R, Richardson PJ, Pinnock RD, Singh L. Bombesin-like peptides depolarize rat hippocampal interneurones through interaction with subtype 2 bombesin receptors. J Physiol. 1999, 518 (Pt 3):791-802
    33. Flood JF, Morley JE. Effects of bombesin and gastrin-releasing peptide on memory processing. Brain Research. 1988,460: 314-322.
    
    34. Rashidy-Pour A, Razvani ME. Unilateral reversible inactivations of the nucleus tractus solitarius and amygdala attenuate the effects of bombesin on memory storage. Brain Research. 1998, 814:127-132.
    
    35. Roesler R, Meller CA, Kopschina MI, Souza DO, Henriques JA. Schwartsmann G. Intrahippocampal infusion of the bombesin/gastrin-releasing peptide antagonist RC-3095 impairs inhibitory avoidance retention. Peptides. 2003, 24: 1069-1074.
    
    36. Roesler, R, Lessa, D, Venturella, R, Vianna, MR, Luft, T, Henriques, JA, Izquierdo, I, Schwartsmann, G, Bombesin/gastrin-releasing peptide receptors in the basolateral amygdala regulate memory consolidation. European Journal of Neuroscience. 2004, 19: 1041-1045.
    
    37. Venturella R, Lessa D, Luft T, Roozendaal B, Schwartsmann G, Roesler R. Dexamethasone reverses the memory impairment induced by antagonism of hippocampal gastrin-releasing peptide receptors. Peptides. 2005, 26: 821-825.
    
    38. Rashidy-Pour A, Razvani ME. Unilateral reversible inactivations of the nucleus tractus solitarius and amygdala attenuate the effects of bombesin on memory storage. Brain Res. 1998, 14:127-32.
    
    39. Borelli KG, Nobre MJ, Brandao ML, Coimbra NC. Effects of acute and chronic fluoxetine and diazepam on freezing behavior induced by electrical stimulation of dorsolateral and lateral columns of the periaqueductal gray matter. Pharmacol Biochem Behav. 2004, 77 (3):557-66
    
    40. Ward IL, Weisz J. Differential effects of maternal stress on circulating levels of corticosterone, progesterone, and testosterone in male and female rat fetuses and their mothers. Endocrinology. 1984,114:1635-1644.
    
    41. Paxinos G, Watson C.1998. The rat brain in stereotaxic coordinates. San Diego: Academic Press. P50-55.
    
    42. Livak KJ, Schmittqen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25(4):402-408.
    
    43. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001,29(9):45.
    
    44. Fox RJ, Sorenson CA.. Bilateral lesions of the amygdala attenuate analgesia induced by diverse environmental challenges. Brain Res. 1994, 648:215-221.
    
    45. Kapp BS, Frysinger RC, Gallagher M, Haselton JR. Amygdala central nucleus lesions:effect on heart rate conditioning in the rabbit. Physiology& Behaviour. 1979,23:1109-1117.
    
    46. McCabe PM, Gentile, CG, Maxkgraf CG, Teich AH, Schneiderman N. Ibotenic acid lesions in the amygdaloid central nucleus but not in the lateral subthalarmic area prevent the acquisition of diferential Pvlovian conditioning of bradycardia in rabbits. Brain Res. 1992, 580:155-163.
    
    47.Gale GD, Anagnostaras SG, Godsil BP, Mitchell S, Nozawa T, Sage JR, Wiltgen B, Fanselow MS. Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J Neurosci. 2004, 24(15):3810-5.
    
    48. Amaral DG. The Primate amygdala and the neurobiology of social behavior: implications for understanding social anxiety. Biol Psychiatry. 2002, 51:11-17.
    
    49. Kalin NH, Shelton SE, Davidson RJ. The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J Neurosci. 2004, 24:5506-15.
    
    50. Winslow JT, Parr LA, Davis M. Acoustic startle, prepulse inhibition, and fear-potentiated startle measured in rhesus monkeys. Biol Psychiatry. 2002, 51:859-66.
    
    51. Tellioglu T, Asian N, Goren Z, Onat F, Oktay S. Role of the AV3V region in the pressor responses induced by amygdala stimulation. Eur J Pharmacol. 1997, 336:163-8
    
    52. Kapp BS, Supple WF Jr, Whalen PJ. Effects of electrical stimulation of the amygdaloid central nucleus on neocortical arousal in the rabbit. Behav Neurosci. 1994,108:81-93.
    
    53. Dringenberg HC, Vanderwolf CH. Cholinergic activation of the electrocorticogram: an amygdaloid activating system. Exp Brain Res. 1996, 108(2):285-96.
    
    54. Pare D, Quirk GJ, Ledoux JE. New vistas on amygdala networks in conditioned fear. J Neurophysiol. 2004, 92(1):1-9.
    
    55. Breiter HC, Etcoff NL, Whalen PJ, Kennedy WA, Rauch SL, Buckner RL, Strauss MM, Hyman SE, Rosen BR. Response and habituation of the human amygdala during visual processing of facial expression. Neuron. 1996,17(5):875-87.
    
    56. Morris JS, Ohman A, Dolan RJ. Conscious and unconscious emotional learning in the human amygdala. Nature. 1998, 393:467-70.
    
    57. Hadjikhani N, de Gelder B. Seeing fearful body expressions activates the fusiform cortex and amygdala. Curr Biol. 2003, 13(24):2201-5.
    
    58. Adolphs R, Tranel D, Damasio H, Damasio AR. Fear and the human amygdala. J Neurosci. 1995,15(9):5879-91.
    
    59. Adolphs R, Tranel D, Damasio AR.The human amygdala in social judgment. Nature. 1998, 393:470-474.
    
    60. Bremner JD. Neuroimaging studies in post-traumatic stress disorder. Curr. Psychiatry Rep. 2002,254-263.
    
    61. Hull AM. Neuroimaging findings in post-traumatic stress disorder. Systematic review, Br J Psychiatry. 2002,181: 102-110.
    
    62. Pitman RK, Shin LM, Rauch SL. Investigating the pathogenesis of posttraumatic stress disorder with neuroimaging. J Clin Psychiatry. 2001, 17: 47-54.
    
    63. Rauch SL, van der Kolk BA, Fisler RE, Alpert NM, Orr SP, Savage CR, Fischman AJ, Jenike MA, Pitman RK. A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Arch Gen Psychiatry. 1996, 53: 380-387.
    
    64.. Rauch SL, Whalen PJ, Shin LM, McInerney SC, Macklin ML, Lasko NB, Orr SP,. Pitman RK. Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biol Psychiatry. 2000, 47: 769-776.
    
    65. Sheline YI, Gado MH, Price JL. Amygdala core nuclei volumes are decreased in recurrent major depression. NeuroReport. 1998, 9: 2023-2028.
    
    66. Shin LM, Kosslyn SM, McNally RJ, Alpert NM, Rauch WL, Rauch SL, Macklin ML, Pitman RK. Visual imagery and perception in posttraumatic stress disorder. Arch Gen Psychiatry. 1997, 54:233-241.
    
    67. De Bellis MD, Casey BJ, Dahl RE, Birmaher B, Williamson DE, Thomas KM, Axelson DA, Frustaci K, Boring A.M, Hall J, Ryan ND. A pilot study of amygdala volumes in pediatric generalized anxiety disorder. Biol Psychiatry. 2000, 48: 51-57.
    
    68. Suchecki D, Neto JP. Prenatal stress and emotional response of adult offspring. Physiol. Behav. 1991,49: 423-426.
    
    69. Ward IL. The prenatal stress syndrome: current status. Psychoneuroendocrinology. 1984,9:3-11.
    
    70. Weinstock M. Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Prog Neurobiol. 2001, 65: 427-451.
    
    71. Salm AK, Pavelko M, Krouse EM, Webster W, Kraszpulski M, Birkle DL. Lateral amygdaloid nucleus expansion in adult rats is associated with exposure to prenatal stress. Developmental Brain Research. 2004,148: 159-167.
    
    72. Cratty MS, Ward HE, Johnson EA, Azzaro AJ, Birkle DL. Prenatal stress increases corticotrophin-releasing factor (CRF) content and release in rat amygdala minces. Brain Res. 1995, 675:297-302.
    
    73. Fujioka T, Sakata Y, Yamaguchi K, Shibasaki T, Kato H, Nakamura S. The effects of prenatal stress on the development of hypothalamic paraventricular neurons in fetal rats. Neuroscience. 1999, 92:1079-1088.
    
    74.Gmerek DE, Cowan A. Studies on bombesin-induced grooming in rats. Peptides. 1983,4:907-13.
    
    75. Johnston SA, Merali Z. Specific neuroanatomical and neurochemical correlates of locomotor and grooming effects of bombesin. Peptides. 1988, 9(Suppl 1):245—56.
    
    76. Kulkosky PJ, Gibbs J, Smith GP. Behavioral effects of bombesin administration in rats. Physiol Behav. 1982,28:505-12.
    
    77. Itoh S, Takashima A, Itoh T, Morimoto T. Open-field behavior of rats following intracerebroventricular administration of neuromedin B,. neuromedin C, and related amphibian peptides. Jpn J Physiol. 1994,44:271-81.
    
    78. Anisman H, Merali Z. Regulating the stress response. Alcohol Res Health. 1999, 23:241-9.
    
    79. Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000, 21:55-89.
    
    80. Johnson EO, Kamilaris TC, Chrousos GP, Gold PW. Mechanisms of stress: a dynamic overview of hormonal and behavioral homeostasis. Neurosci Biobehav Rev. 1992, 16:115-30.
    
    81. Kvetnansky R, Pacak K, Fukuhara K, Viskupic E, Hiremagalur B, Nankova B, et al. Sympathoadrenal system in stress. Ann NY Acad Sci. 1995, 771:131-58.
    
    82. Michelson D, Licinio J, Gold PW. Mediation of the stress response by the hypothalamic-pituitary-adrenal axis. In: Freidman MJ, Chamey DS, editors. Neurobiological and clinical consequences of stress. Philadelphia, NY: Lippincott, Raven Publishers; 1995.p225-38.
    
    83. Bremner JD, Krystal JH, Southwick SM, Charney DS. Noradrenergic mechanisms in stress and anxiety: I. preclinical studies. Synapse.1996,23:28-38.
    
    84. Brown M, Tache Y, Fisher D. Central nervous system action of bombesin: mechanism to induce hyperglycemia. Endocrinology. 1979,105(3):660-5.
    
    85. Kent P, Anisman H, Merali Z. Central bombesin administration elicits site-specific alterations in the levels of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) immunoreactivity. Brain Res. 2003 [in press].
    
    86. Kent P, Merali Z. Does bombesin (BN) mediate stress-response through CRF release? Effects of BN on brain CRF, plasma ACTH, corticosterone and catecholamines. Summer Neuropeptide Conf. 1996; 15:3.
    
    88. Merali Z, McIntosh J, Kent P, Michaud D, Anisman H. Aversive and appetitive events evoke the release of corticotropin-releasing hormone and bombesin-like peptides at the central nucleus of the amygdala. J Neurosci. 1998, 18:4758-66.
    
    87. Merali Z, Moody T, Kateb P, Piggins H. Antagonism of satiety and grooming effects of bombesin by antiserum to bombesin and by [Tyr4, D-Phel2]bombesin: central versus peripheral effects. Ann NY Acad Sci. 1988, 547:489-92.
    
    89. Fekete E, Vigh J, Bagi EE, Lenard L. Gastrin-releasing peptide microinjected into the amygdala inhibits feeding. Brain Res. 2002, 955:55-63.
    
    90. Shumyatsky GP, Tsvetkov E, Malleret G, Vronskaya S, Hatton M, Hampton L Battey JF, Dulac C, Kandel ER, Bolshakov VY. Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Cell. 2002, 111: 905-918.
    91.Will B, Galani R, Kelche C, Rosenzweig MR. Recovery from brain injury in animals: relative efficacy of environmental enrichment, physical exercise or formal training (1990-2002). Prog Neurobiol. 2004, 72(3): 167-82.
    
    92. Schrijver NC, Pallier PN, Brown VJ, Wurbel H. Double dissociation of social and environmental stimulation on spatial learning and reversal learning in rats. Behav Brain Res. 2004,152(2):307-14.
    
    93. Li H, Dokas LA, Godfrey DA, Rubin AM. Remodeling of synaptic connections in the deafferented vestibular nuclear complex. J Vestib Res. 2002-2003, 12(4): 167-83.
    
    94. Singh P, Heera PK, Kaur G. Expression of neuronal plasticity markers in hypoglycemia induced brain injury. Mol Cell Biochem. 2003,247(1-2):69-74.
    
    95. Van Waas M, Soffie' M. Differential environmental modulations on locomotor activity, exploration and spatial behaviour in young and old rats. Physiol Behav. 1996,59:265-271.
    
    96.Frick K M , Fernandez SM . Enrichment enhances spatial memory and increases synaptophysin levels in aged female mice. Neurobiol Aging. 2003, 24(4):615.
    
    97. Bredy TW , Humpartzoomian R A ,Cain D P,et al.Partial reversal of the effect of maternal care on cognitive function through environmental enrichment. Neuroscience. 2003,118(2):571.
    
    98. Moncek F, Duncko R, Johansson BB, Jezova D. Effect of environmental enrichment on stress related systems in rats. J Neuroendocrinol. 2004, 16(5):423-31.
    99. Rasmuson S, Olsson T, Henriksson BG, Kelly PA, Holmes MC, Seckl JR, Mohammed AH. Environmental enrichment selectively increases 5-HT1A receptor mRNA expression and binding in the rat hippocampus. Brain Res Mol Brain Res. 1998,53:285-290.
    100. Rampon C, Jiang CH , Dong H , Tang YP, Lockhart DJ, Schultz PG, Tsien JZ, Hu Y. Effects of environmental enrichment on gene expression in the brain. Proc Natl Acad Sci USA. 2000, 97(23): 12880-4.
    101. Pham TM, Winblad B, Granholm A C. Environmental influences on brain neurotrophins in rats.Pharmacol Biochem Behav. 2002,73(1): 167.
    102. Tang AC, Zou B. Neonatal Exposure to Novelty Enhances Long-Term Potentiation in CA1 of the Rat. Hippocampus. 2002,12(2):398.
    103. Rampon C, Tang YP, Goodhouse J. Enrichment induces structural changes and recovery rom nonspatial memory deficits in CA1 NMDAR 1-knockout mice. Nat Neurosci. 2000, 3(2):238.
    104. Koehl M, Lemaire V, Mayo W, Abrous D N, Maccari S, Piazza PV, Le Moal M, Vallee M. Individual vulnerability to substance abuse and affective disorders: role of early environmental influences. Neurotoxicity Research. 2002, 4:281-296.
    105. Morley-Fletcher S, Rea M, Maccari S, Laviola G. Environmental enrichment during adolescence reverses the effects of prenatal stress on play behaviour and HPA axis reactivity in rats. The European Journal of Neuroscience. 2003, 18:3367-3374.
    106. Bowling SL, Rowlett JK, Bardo MT. The effect of environmental enrichment on amphetamine-stimulated locomotor activity, dopamine synthesis and dopamine release. Neuropharmacology. 1993, 32:885- 893.
    107. Zimmermann A, Stauffacher M, Langhans W, Wu" rbel H. Enrichment-dependent differences in novelty exploration in rats can be explained by habituation. Behavioural Brain Research. 2001, 121:11-20.
    108. Kamichi S, Wada E, Aoki S, Sekiguchi M, Kimura I, Wada K. Immunohistochemical localization of gastrin-releasing peptide receptor in the mouse brain. Brain Res. 2005, 1032:162-170.
    109. Battey J, Wada E, Wray S. Bombesin receptor gene expression during mammalian development. Ann N Y Acad Sci. 1994, 739:244-252.
    110. Merali Z, McIntosh J, Kent P, Michaud D, Anisman H. Aversive and appetitive events evoke the release of corticotropin-releasing hormone and bombesin-like peptides at the central nucleus of the amygdala. J Neurosci. 1998, 18: 4758-4766.
    111. Kent P, Anisman H, Merali Z. Are bombesin-like peptides involved in the mediation of the stress response? Life Sci. 1997, 62: 103-114.
    112. Novak J, Schleman S, Scott J, Balderman VL, Krech L, Kane MA. Dexamethasone regulation of gastrin-releasing peptide receptor in human lung cells. Lung Cancer. 2004,43:17-28.
    1.Schafe GE,Nader K,Blair HT,et al.Memory consolidation of pavlovian fear conditioning:a cellular and molecular perspective.Trends Neurosci.2001,24(9):540-546
    2.Adolphs R.Trust in the brain.Nat Neurosci.2002,5:192-193.
    3.朱长庚。神经解剖学[M]。北京:人民卫生出版社,2002.711
    4.李涛,李栓德。杏仁核簇解剖的研究现状.国外医学神经病学神经外科学分册,2002,29(5):424-427
    5.Fox RJ,Sorensmr CA.Bilateral lesions of the amygdala attenuate analgesia induced by diverse environmental chalenges.Brain Res.1994,648:215-221.
    6.Adolphs R,Tranel D,Darnasio AR.The human amygdala in social judgment.Nature.1998,393:470-474
    7.Amoral DG.The primate amygdala and neurobiology of social behavior,implications for understanding social anxiety.Biol Psychiatry.2002,51:11-17.
    8.Wall- K.Rcaen JB.Neuromxic lesions of the lateral nucleus ofthe amygdalad decrease conditioned fear but not unconditioned fear of a predator odur:comparison with electrolytic lesions.J N eurosci.2001,21:3619-3627.
    9.Davis M.Neurobiology of fear responses:the rule of the amygdala.J Neuropsychiatry Ch.Neurosci.1997,9:382-402.
    10.Pare D,Quirk G J,Ledoux JE.New vistas on amygdala networks in conditioned fear.J Neomphysiol.2004,92:1-9
    11.Ono T,Nishijo H,Uwano Y.Amygdala role in conditioned associative learning.Prog Neurobiol.1995,46(4):401-422
    12.Tabery MH,Borod JC,Tang CY,et al.Diferential amygdala activation during emotional decision and recognition memory tasks using unpleasant words:an MRI study.Neuropsychologia.2001,39(6):556-573.
    13.Aggleton JP.The contribution of the amygdala to normal and abnormal emotional states.Trends Neurosci.1993,16(8):328-333.
    14.钟明奎,何延龙,张景行,等。基底外侧杏仁核中5-羟色胺抗抑郁作用的研究[J].中国行为医学科学杂志,2001,10(4):284-285.
    15.钟明奎,朱国庆,张景行,等。基底外侧杏仁核内一氧化氮对大鼠睡眠及行为活动的影响.中国行为医学科学,2002,11(3):247-249.
    16.Osadchuk LV,Braastad BO,Hovland AL.Handling during pregnancy in the blue fox(Alopex lagopus):the influence on the fetal pituitary-adrenal axis.Gen Comp Endocrinol.2001,123(1):100-110
    17.Kanitz E,Otten W,Tuchscherer M.Effects of prenatal stress on corticosteroid receptors and monoamine concentrations in limbic areas of suckling piglets(Sus scrofa)at different ages.J Vet Med A Physiol Pathol Clin Med.2003,50(3):132-139.
    18.Reznikov AG,Nosenko ND,TarasenkoL V.Prenatal stress and glucocorticoid effects on the developing gender-related brain.J Steroid Biochem Mol Biol.1999,69:109-115.
    19.Glover V.Maternal stress or anxiety during pregnancy and the development of the baby.Pract Midwife.1999,2(5):20-22.
    20.Fujioka T,Sakata Y,Yamaguchi K,et al.The effects of prenatal stress on the development of hypothalamic paraventricular neurons in fetal rats.Neuroscience.1999,92:1079-1088.
    21.Shin LM,Kosslyn SM,McNally RJ,et al.Visual imagery and perception in post traumatic stress disorder.Arch Gen Psychiatry.1997,54:233-241.
    22.Shin LM,McNally RJ,Kosslyn SM,et al.Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related PTSD:a PET investigation.Am J Psychiatry.1999,156:575-584.
    23.Ward HE,Johnson EA,Salm AK,Birkle DL.Effects of prenatal stress on defensive withdrawal behavior and corticotrophin releasing factor systems in rat brain.Physiol.Behav.2000,70:359-366.
    24.Cratty MS,Ward HE,Johnson EA,et al.Prenatal stress increases corticotrophin-releasing factor(CRF)contentand release in rat amygdala minces.Brain Res.1995,675:297-302.
    25. Patchev VK, Montkowski A, Rouskova D. Neonatal treatment of rats with the neuroactive steroide trahyrodeoxycorticosterone (THDOC) abolishes the behavioral and neuroendocrine consequences of adverse early life events. J Clin Invest. 1997, 99:962-966.
    
    
    26. Feldman PJ, Dunkel-Schetter C, Sandman CA. Maternal social support predicts birth weight and fetal growth in human pregnancy. Psychosomi. 2000, 62(5):715-725.
    
    27. Salm AK, Pavelko M, Krouse EM, Webster W, Kraszpulski M, Birkle DL. Lateral amygdaloid nucleus expansion in adult rats is associated with exposure to prenatal stress. Developmental Brain Research. 2004, 148:159- 67.
    
    28. Bayer SA. Quantitative 3H-thymidine radiographic analyses of neurogenesis in the rat amygdala. J Comp Neurol. 1980, 194:845-875.
    
    29. Kraszpulski M, Dickerson PA, Birkle DL. Altered developmental trajectory in the amygdala of prenatally stressed offspring, in: Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC, 2003, Program No. 149.10.
    
    30. Fowler CD, Liu Y, Ouimet C, Wang Z. The effects of social environment on adult neurogenesis in the female prairie vole. Neurobiol. 2002, 51:115-128.
    
    31. Bernier PJ, Bedard A, Vinet J. Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc. Natl. Acad. Sci. 2002, 99:11464— 11469.
    
    32. Kraszpulski M, Dickersonl PA, Salm AK. Prenatal stress affects the developmental trajectory of the rat amygdala. Stress. 2006, 9(2): 85-95.
    
    33. Kawamura T, Chen J, Takahashi T, Ichitani Y, Nakahara D. Prenatal stress suppresses cell proliferation in the early developing brain. Neuroreport. 2006, 17(14):1515-8.
    Anastasi A, Erspamer V, Bucci M. 1971. Isolation and structure of bombesin and alytesin, two analogous active peptides from the skin of the European amphibian bombina and alytes. Experiential 27: 166-167.
    Battey J, Wada E, Wray S. 1994. Bombesin receptor gene expression during mammalian development. Ann N Y Acad Sci 739: 244-252.
    Berridge CW, Dunn AJ. 1989. Restraint-stress-induced changes in exploratory behavior appear to be mediated by norepinephrine-stimulated release of CRF. J Neurosci 9:3513-21.
    Bowling SL, Rowlett JK, Bardo MT. 1993. The effect of environmental enrichment on amphetamine-stimulated locomotor activity, dopamine synthesis and dopamine release. Neuropharmacology 32:885- 893.
    Bruijnzeel AW, Stam R, Wiegant VM. 2001. Effect of a benzodiazepine receptor agonist and corticotropin-releasing hormone receptor antagonists on longterm foot-shock-induced increase in defensive withdrawal behavior. Psychopharmacology 158:132-9.
    Cratty MS, Ward HE, Johnson EA, Azzaro AJ, Birkle DL. 1995. Prenatal stress increases corticotropin-releasing factor (CRF) content and release in rat amygdala minces. Brain Res 675: 297-302.
    De Bellis MD, Casey BJ, Dahl RE, Birmaher B, Williamson DE, Thomas K et al. 2000. A pilot study of amygdala volumes in pediatric generalized anxiety disorder. Biol Psychiatry 48:51-57.
    Del Arco A, Segovia G, Canales JJ, Garrido P, De Blas M, Garc(?)a-Verdugo JM, Mora F. 2007. Environmental enrichment reduces the function of D1 dopamine receptors in the prefrontal cortex of the rat. J Neural Transm 114:43-8.
    Dickerson PA, Lally BE, Gunnel E, Birkle DL, Salm AK. 2005. Early emergence of increased fearful behavior in prenatally stressed rats. Physiol Behav 86: 586 -593.
    Francis DD, Diorio J, Plotsky PM, Meaney MJ. 2002. Environmental enrichment reverses the effects of maternal separation on stress reactivity. J Neurosci 22:7840-3.
    Fride E, Dan Y, Feldon J, Halevy G, Weinstock M. 1986. Effects of prenatal stress on vulnerability to stress in prepubertal and adult rats. Physiol Behav 37:681-7.
    Garrido MM, Manzanares J, Fuentes JA. 1999. Hypothalamus, anterior pituitary and adrenal gland involvement in the activation of adrenocorticotropin and corticosterone secretion by gastrinreleasing peptide. Brain Res 828: 20-26.
    Hull AM. 2002. Neuroimaging findings in posttraumatic stress disorder. Systematic review. Br J Psychiatry 181: 102-110.
    Ickes BR, Pham TM, Sanders LA, Albeck DS, Mohammed AH, Granholm AC. 2000. Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp Neurol 164:45-52.
    Kamichi S, Wada E, Aoki S, Sekiguchi M, Kimura I, Wada K. 2005. Immunohistochemical localization of gastrin-releasing peptide receptor in the mouse brain. Brain Res 1032: 162-170.
    Kent P, Anisman H, Merali Z. 1997. Are bombesin-like peptides involved in the mediation of the stress response? Life Sci 62: 103-114.
    Kent P, Anisman H, Merali Z. 2001. Central bombesin activates the hypothalamic-pituitary- adrenal axis: effects on regional levels and release of corticotropin-releasing hormone and arginine vasopressin. Neuroendocrinology 73: 203-214.
    Kent P, Bedard T, Kahn SE, Anisman H, Merali Z. 2001. Bombesin induced HPA and sympathetic activation requires CRH receptors. Peptides 22: 57-65.
    Koehl M, Lemaire V, Mayo W, Abrous D N, Maccari S, Piazza PV, Le Moal M, Vallee M. 2002. Individual vulnerability to substance abuse and affective disorders: role of early environmental influences. Neurotoxicity Research 4:281-296.
    
    LeDoux JE. 2000. Emotion circuits in the brain. Ann Rev Neurosci 23: 155-184.
    Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 25: 402-408.
    Martijena ID, Calvo N, Volosin M, Molina VA. 1997. Prior exposure to a brief restraint session facilitates the occurrence of fear in response to a conflict situation: behavioral and neurochemical correlates. Brain Res 752:136-42.
    Merali Z, McIntosh J, Kent P, Michaud D, Anisman H. 1998. Aversive and appetitive events evoke the release of corticotropin-releasing hormone and bombesin-like peptides at the central nucleus of the amygdala. J Neurosci 18: 4758-4766.
    Mohammed AH, Zhu SW, Darmopil S, Hjerling-Leffler J, Ernfors P,Winblad B, Diamond MC, Eriksson PS, Bogdanovic N. 2002. Environmental enrichment and the brain. Progress in brain research 138: 109-33.
    Moncek F, Duncko R, Johansson BB, Jezova D. 2004. Effect of environmental enrichment on stress related systems in rats. J Neuroendocrinol 16: 423-431.
    Morley-Fletcher S, Rea M, Maccari S, Laviola G. 2003. Environmental enrichment during adolescence reverses the effects of prenatal stress on play behaviour and HPA axis reactivity in rats. The European Journal of Neuroscience 18:3367-3374.
    Novak J, Schleman S, Scott J, Balderman VL, Krech L, Kane MA. 2004. Dexamethasone regulation of gastrin-releasing peptide receptor in human lung cells. Lung Cancer 43:17-28.
    Paxinos G, Watson C.1998. The rat brain in stereotaxic coordinates. San Diego: Academic Press. P 50-55.
    Piggins HD, Merali Z. 1992. Short- and long-term behavioral effects of neonatal exposure to bombesin. Behavioral and Neural Biology 57: 213-225.
    Piggins HD, Moody TW, Merali Z. 1993. Effects of neonatal blockade of bombesin (BN) receptors with [D-Phe6, phi Leul3-Cpal4] BN (6-14) on adult behavior and sensitivity to BN. Peptides 14: 845-848.
    Pryce C, Mohammed A, Feldon J. 2002. Environmental manipulations in rodents and primates: Insights into pharmacology, biochemistry and behaviour. Pharmacol. Biochem. Behav 73:1-5.
    Segovia G, Del Arco A, de Blas M, Garrido P, Mora F. 2007. Effects of an enriched environment on the release of dopamine in the prefrontal cortex produced by stress and on working memory during aging in the awake rat. Behav Brain Res Sep 25 [Epub ahead of print]
    Shumyatsky GP, Tsvetkov E, Malleret G, Vronskaya S, Hatton M, Hampton L Battey JF, Dulac C, Kandel ER, Bolshakov VY. 2002. Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Cell 111: 905-918.
    Takahashi LK, Kalin NH. 1991. Early developmental and temporal characteristics of stress- induced secretion of pituitary-adrenal hormones in prenatally stressed rat pups. Brain Res 558: 75-78.
    Valle'e M, Mayo W, Delhi F, Le Moal M, Simon H, Maccari S. 1997. Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: Correlation with stress-induced corticosterone secretion. J Neurosci 17: 2626-2636.
    Van Praag H, Kempermann G, Gage F. H. 2000. Neural consequences of environmental enrichment. Nature Reviews. Neuroscience 1:191-198.
    Van Waas M, Soffie' M. 1996. Differential environmental modulations on locomotor activity, exploration and spatial behaviour in young and old rats. Physiol Behav 59:265-271.
    Ward HE, Johnson EA, Salm AK, Birkle DL. 2000. Effects of prenatal stress on defensive withdrawal behavior and corticotrophin releasing factor systems in rat brain. Physiol Behav 70: 359-366.
    Weinstock M, Poltyrev T, Schorer-Apelbaum D, Men D, McCarty R. 1998. Effect of prenatal stress on plasma corticosterone and catecholamines in response to footshock in rats. Physiol Behav 64: 439-444.
    Zhu J, Apparsundaram S, Bardo MT, Dwoskin LP. 2005. Environmental enrichment decreases cell surface expression of the dopamine transporter in rat medial prefrontal cortex. J Neurochem 93:1434-43.
    Zimmermann A, Stauffacher M, Langhans W, Wu" rbel H. 2001. Enrichment-dependent differences in novelty exploration in rats can be explained by habituation. Behavioural Brain Research 121 : 11-20.
    1. Zatorre, R., McGill, J. (2005). Music, the food of neuroscience? Nature, 434(7031), 312-315.
    
    2. Hamel, W.J. (2001). The effects of music intervention on anxiety in the patient waiting for cardiac catheterization. Intensive Crit Care Nurs, 17(5), 279-285.
    
    3. Allen, K., Golden, L.H., Izzo J.L., Jr., Ching, M.I., Forrest, A., Niles, C.R., Niswander, P.R., Barlow, J.C. (2001). Normalization of hypertensive responses during ambulatory surgical stress by perioperative music. Psychosom Med, 63(3), 487-492.
    
    4. Boso, M., Politi, P., Barale, F., Enzo, E. (2006). Neurophysiology and neurobiology of the musical experience. Funct. Neurol, 21(4), 187-191.
    
    5. Abikoff, H., Courtney, M.E., Szeibel, P.J., Koplewicz, H.S. (1996). The effects of auditory stimulation on the arithmetic performance of children with ADHD and nondisabled children. J Learn Disabil, 29(3), 238-246.
    
    6. Koelsch, S., Fritz, T., Cramon, D.Y., Muller, K., Friederici, A.D. (2006). Investigating emotion with music: an fMRI study. Hum Brain Mapp, 27(3), 239-250
    
    7. Zarbin, M.A., Kuhar, M.J., O'Donohue, T.L., Wolf, S.S., Moody, T.W. (1985). Autoradiographic localization of (125I-Tyr4) bombesin-binding sites in rat brain. J Neurosci, 5(2), 429-437.
    
    8. Moody, T.W., Merali, Z. (2004). Bombesin-like peptides and associated receptors within the brain: distribution and behavioral implications. Peptides, 25(3), 511-520.
    
    9. Piggins, H.D., Merali, Z. (1992). Short- and long-term behavioral effects of neonatal exposure to bombesin. Behavioral and Neural Biology, 57(3), 213-225.
    10. Piggins, H.D., Moody, T.W., Merali, Z. (1993). Effects of neonatal blockade of bombesin (BN) receptors with [D-Phe6, phi Leu13-Cpa14] BN (6-14) on adult behavior and sensitivity to BN. Peptides, 14(4), 845-848.
    
    11. Merali, Z., McIntosh, J., Kent, P., Michaud, D., Anisman, H. (1998). Aversive and appetitive events evoke the release of corticotropin-releasing hormone and bombesin-like peptides at the central nucleus of the amygdala. J Neurosci 18(12), 4758-4766.
    
    12. Shumyatsky, G.P., Tsvetkov, E., Malleret, G., Vronskaya, S., Hatton, M., Hampton, L., Battey, J.F., Dulac, C., Kandel, E.R., Bolshakov, V.Y. (2002). Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Cell 111(6), 905-918
    
    13. Ishikawa-Brush, Y., Powell, J.F., Bolton, P., Miller, A.P., Francis, F., Willard, H.F., Lehrach, H., Monaco, A.P. (1997). Autism and multiple exostoses associated with an X;8 translocation occurring within the GRPR gene and 3' to the SDC2 gene. Hum Mol Genet, 6(8), 1241-1250.
    
    14. Marui, T., Hashimoto, O., Nanba, E., Kato, C., Tochigi, M., Umekage, T., Kato, N., Sasaki T. (2004). Gastrin-releasing peptide receptor (GRPR) locus in Japanese subjects with autism. Brain Dev, 26(1), 5-7
    
    15. Anand, A., Shekhar, A. (2003). Brain imaging studies in mood and anxiety disorders: special emphasis on the amygdale. Ann. N. Y. Acad. Sci, 985, 370-388.
    
    16. Zirlinger, M., Anderson, D. (2003). Molecular dissection of the amygdala and its relevance to autism. Genes Brain Behav, 2(5), 282-94.
    
    17. Niu, L., Matsui, M., Zhou, S.Y., Hagino, H., Takahashi, T., Yoneyama, E., Kawasaki, Y., Suzuki, M., Seto, H., Ono, T., Kurachi, M. (2004). Volume reduction of the amygdala in patients with schizophrenia: a magnetic resonance imaging study. Psychiatry Res, 132(1), 41-51.
    
    18. Dickerson, P.A., Lally, B.E., Gunnel, E., Birkle, D.L., Salm, A.K. (2005). Early emergence of increased fearful behavior in prenatally stressed rats. Physiol Behav, 86(4), 586 -593.
    19. Cratty, M.S., Ward, H.E., Johnson, E.A, Azzaro, A.J., Birkle, D.L. (1995). Prenatal stress increases corticotropin-releasing factor (CRF) content and release in rat amygdala minces. Brain Res, 675(1-2), 297-302.
    
    20. Livak, K.J., Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-408.
    
    21. Smolen, D., Topp, R., Singer, L. (2002). The effect of self-selected music during colonoscopy on anxiety, heart rate, and blood pressure. Appl Nurs Res 15(3): 126-136.
    
    22. Knight, W.E., Rickard, Ph.D. N.S. (2001). Relaxing music prevents stress-induced increases in subjective anxiety, systolic blood pressure, and heart rate in healthy males and females. J Music Ther, 38(4), 254-272.
    
    23. Roesler, R., Kopschina, M.I., Rosa, R.M., Henriques, J.A., Souza, D.O., Schwartsmann, G. (2004). RC-3095, a bombesin/gastrin-releasing peptide receptor antagonist, impairs aversive but not recognition memory in rats. Eur J Pharmacol, 486(1), 35-41
    
    24. Roesler, R., Lessa, D., Venturella, R., Vianna, M.R.M., Luft, T., Henriques, J.A.P., Izquierdo, I., Schwartsmann, G. (2004). Bombesin/gastrinreleasing peptide receptors in the basolateral amygdala regulate memory consolidation. Eur J Neurosci, 19(4), 1041-1045
    
    25. Santo-Yamada, Y., Yamada, K., Wada, K. (2001). Posttraining administration of gastrin-releasing peptide improves memory loss in scopolamine- and hypoxia-induced amnesic mice. Physiol Behav, 74(1-2), 139-143
    
    26. Santo-Yamada, Y., Yamada, K., Wada, E., Goto, Y., Wada, K. (2003). Blockade of bombesin-like peptide receptors impairs inhibitory avoidance learning in mice. Neurosci Lett, 340(1), 65-68
    
    27.Bedard, T., Mountney, C., Kent, P., Anisman, H., Merali, Z. (2007). Role of gastrin-releasing peptide and neuromedin B in anxiety and fear-related behavior. Behav Brain Res, 179(1), 133-140.
    28. McIntyre, C.K., Power, A.E., Roozendaal, B., McGaugh, J.L. (2003). Role of the basolateral amygdala in memory consolidation. Ann N Y Acad Sci, 985,273-293.
    
    29. Kent, P., Anisman, H., Merali, Z. (2001). Central bombesin activates the hypothalamic- pituitary- adrenal axis: effects on regional levels and release of corticotropin-releasing hormone and arginine vasopressin. Neuroendocrinology, 73(3), 203-214
    
    30. Mountney, C., Sillberg, V., Kent, P., Anisman, H., Merali, Z. (2006). The role of gastrin releasing peptide on conditioned fear: differential cortical and amygdaloid responses in the rat. Psychpharmacology, 189(3), 287-296.
    
    31.Kamichi, S., Wada, E., Aoki, S, Sekiguchi, M, Kimura, I, Wada, K. (2005). Immuno- histochemical localization of gastrin-releasing peptide receptor in the mouse brain. Brain Res, 1032(1-2), 162-170.
    
    32. Nunez, M.J., Mafia, P., Lifiares, D., Riveiro, M.P., Balboa, J., Suarez-Quintanilla, J., Maracchi, M., Mendez, M.R., Lopez, J.M., Freire-Garabal, M. (2002). Music, immunity and cancer. Life Sci, 71(9), 1047-1057.
    
    33. Angelucci, F., Ricci, E., Padua, L., Sabino, A., Tonali, P.A. (2007). Music exposure differentially alters the levels of brain-derived neurotrophic factor and nerve growth factor in the mouse hypothalamus. Neurosci Lett, 429(2-3), 152-155.
    
    34. Battey, J., Wada, E., Wray, S. (1994). Bombesin receptor gene expression during mammalian development. Ann N Y Acad Sci, 739,244-252.
    
    35. Fox, C., Merali, Z., Harrison, C. (2006). Therapeutic and protective effect of environmental enrichment against psychogenic and neurogenic stress. Behav Brain Res, 175(1), 1-8.
    
    36. van Praag, H., Kempermann, G., Gage, F.H. (2000). Neural consequences of environmental enrichment. Nat Rev Neurosci, 1(3), 191-198.
    
    37. Kulkosky, P.J., Gibbs, J., Smith, G.P. (1982). Behavioral effects of bombesin administration in rats. Physiol Behav, 28(3), 505-512.
    
    38. Kent, P., Bedard, T., Kahn, S.E., Anisman, H., Merali, Z. (2001). Bombesin induced HPA and sympathetic activation requires CRH receptors.Peptides,22(1),57-65.
    39.Moncek,F.,Duncko,R.,Johansson,B.B.,Jezova,D.(2004).Effect of environmental enrichment on stress related systems in rats.J Neuroendocrinol,16(5),423-431.
    40.Novak,J.,Schleman,S.,Scott,J.,Balderman,V.L.,Krech,L.,Kane,M.A.(2004).Dexamethasone regulation of gastrin-releasing peptide receptor in human lung cells.Lung Cancer,43(1),17-28.