养分水平和氮磷比对入侵植物空心莲子草与非入侵种竞争关系的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物入侵已成为全球变化的重要组成部分,并在人类干扰和全球气候变化的影响下日益加剧。生物入侵会干扰新栖息地生态系统结构和功能稳定性,降低当地物种的生物多样性,同时阻碍经济发展和危害人类健康。空心莲子草(Alternanthera philoxeroides (Mart.) Griseb.)是世界性的恶性入侵植物,已成为我国湿地的重要入侵种,造成严重的生态危害和经济损失。尤其在富营养分化水体中,空心莲子草能在短时期内迅速繁殖,形成大面积单种群落,给当地的生物多样性和湿地生态系统服务功能带来严重威胁。氮磷元素作为植物最重要的营养元素,对空心莲子草的生长具有重要影响。研究不同养分水平和氮磷比,对空心莲子草生长的影响,及对空心莲子草与非入侵种的种间竞争关系的影响,对于揭示空心莲子草的入侵机制具有重要意义,同时为空心莲子草的防治提供科学依据和建议。
     本研究通过温室实验,研究了不同养分水平和氮磷比条件下,空心莲子草的生长指标及与非入侵种竞争关系的变化。实验中设置低、中、高3个养分水平,同时每个养分梯度下设置3个氮磷比(1、10、100)。实验材料采用3个物种,分别为入侵植物空心莲子草(Alternanthera philoxeroies)、本地植物水芹(Oenanthe javanica)及外来非入侵植物黄菖蒲(Iris pseudacorus),采用单种和混种的种植方式,研究不同养分处理对空心莲子草及与其他2种非入侵植物的种间竞争关系的影响。
     空心莲子草的单种实验结果表明,养分水平和氮磷比对空心莲子草的生物量积累、形态特性、光合荧光及叶片氮磷含量均有显著影响。高养分水平显著地增加了空心莲子草的生物量积累、分枝数、分蘖数、匍匐茎长。氮磷比对空心莲子草植物地上部分,如分枝数、分蘖数、匍匐茎长等有显著影响,而对其生物量分配无显著影响。空心莲子草的比叶面积随着养分水平的升高显著地减低,在高养分下,具有最低的比叶面积;同时,在同一养分水平下,比叶面积随着氮磷的降低而显著增加,在氮磷比为1的条件下,具有最高的比叶面积。
     空心莲子草与2种非入侵植物的混种实验结果表明,在不同的养分条件下,空心莲子草具有比其他2个物种更高的表型可塑性,对环境的适应性较强。入侵种空心莲子草对养分水平的响应更为敏感,同时对氮磷比的响应快于其他2个物种,从而更好的促进自身生长和竞争能力。不同的养分条件下,入侵种空心莲子草的比叶面积具有较高的表型可塑性,而本地种水芹的比叶面积表型可塑性较低。空心莲子草叶片具有.比其他2个物种更高的氮磷含量,表明该物种具有较强的氮磷吸收能力,对高养分生境的适应性强。
     在入侵种空心莲子草与2种非入侵植物混种实验中,空心莲子具有绝对的竞争优势,高养分环境下空心莲子草的竞争优势更大,而低养分环境往一定程度上能降低空心莲子草的竞争优势。氮磷比对空心莲子草的竞争优势的影像随着养分总体水平不同而变化,在中养分条件下,磷元素让空心莲子草入侵的过程中扮演着重要角色,而在低和高养分下,氮磷比对该物种的入侵没有显著影响。
     总之,养分水平和氮磷比对空心莲子草及其与其他2个非入侵种的竞争关系均有显著影响,空心莲子草可塑性强,且对高养分环境更为适应。研究结果有助于揭示空心莲子草的入侵机制和预测环境变化对其未来入侵趋势的影响,同时为空心莲子草的防治工作提供科学依据和建议。
Biological invasion has been an important part of global changes, and might aggravate under the influence of human disturbance and global climate change. Biological invasion might have serious influence on the ecosystem structure and functional stability, reducing the diversity of local species, hampering the economic development, and harming to people's health. Alligator weed (Alternanthera philoxeroies (Mart.) Griseb) is a worldwide noxious invasive plant and has become a major invader of wetland habitats in China, causing serious ecological damages and economic losses. In the eutrophication wetland, A. philoxeroides could spread rapidly and form dominant species in large areas, which pose a serious threat to local biodiversity and wetland ecosystem service function. Nitrogen and phosphorus, considered as the most important nutrient elements for plant growth, has significant effect on the growth of A philoxeroies. The research on the effects of nutrient level and N:P ratio on growth of A. philoxeroies and the competition between A. philoxeroies and non-invasive species, could play an important role in revealing the invasive mechanism of A. philoxeroides and provide theoretical foundation and advice for the management of A. philoxeroides.
     A greenhouse experiment was conducted to study the effects of nutrient level and N:P ratio on growth of A. philoxeroides and competition between A. philoxeroides and two non-invasive plants. In the experiment, A. philoxeroides was grown in monoculture or in mixture with native plant Oenanthe javanica and non-invasive alien plant Iris pseudacorus at three N:P ratios (1,10and100) combined with three levels of total nutrient availability (low, medium, high).
     The experiment that A. philoxeroides was grown in monoculture indicated that both nutrient level and N:P ratio had significant effects on the biomass accumulation, morphological characteristics, photosynthetic fluorescence, leaf nitrogen and phosphorus concentration of A. philoxeroides. High nutrient level significantly increased the biomass accumulation, branch number, tiller number and the stolon length of A. philoxeroides. N:P ratio had significant influence on the aboveground part of A. philoxeroides, such as branch number, tiller number, length of maximum node and the stolon length, but had no significant effect on the biomass allocation. The SLA (Specific leaf area) of A. philoxeroides decreased significantly with the nutrient availability increasing, having lowest SLA under high nutrient level, and meanwhile under the same nutrient level, the SLA of A. philoxeroides increases with the N:P ratio decreasing, having highest SLA under N:P ratio1.
     The experiment that A. philoxeroides was grown in mixture with O.javanica and I. pseudacorus showed that A. philoxeroides had higher plasticity than other two non-invasive species, having higher adaptability to the different nutrient conditions. Invasive species A. philoxeroides had stronger response to the change of nutrient level and N:P ratio than other two species, promoting its the growth and competitive ability. And the SLA of A. philoxeroides had higher plasticity than that of O. javanica under different nutrient conditions. Higher leaf nitrogen and phosphorus concentration of A. philoxeroides indicated that species A. philoxeroides had higher ability to require nutrient, promoting its growth and invasion.
     When grown in mixture with two studied non-invasive plants, A. philoxeroides had absolute competitive advantage. High nutrient level could increase the competitive advantage of A. philoxeroides and low nutrient level could to some extent decrease its invasion. The effect of N:P ratio on the competitive advantage of A. philoxeroides changed with the nutrient level. Under medium nutrient level, phosphorus played an important role in the invasion of A. philoxeroides, while under low and high nutrient level, phosphorus had no effect on the competitive advantage of A. philoxeroides.
     In conclusion, both nutrient level and N:P ratio had significant effects on growth of A. philoxeroides and on the competition relationship between A. philoxeroides and two non-invasive plants. A. philoxeroides has more phenotypic plasticity than the other two non-invasive plants and adapts to high nutrient environment. These results would be of great importance for revealing the invasive mechanism of A. philoxeroides and predicting the effect of environment changing on its invasion. Meanwhile, the results could provide theoretical foundation for the scientific management of A. philoxeroides.
引文
[1]Alpert P, Bone E, Holzapfel C. Invasiveness, invasibility, and the role of environmental stress in preventing the spread of non-native plants[J]. Perspectives in Plant Ecology, Evolution and Systematics,2000,3:52-66.
    [2]Bassett I, Paynter Q, Beggs G R. Invasive Alternanthera philoxeroides (alligator weed associated with increased fungivore dominance in Coleoptera on decomposing leaf litter[J]. Biological Invasions,2010,13:1377-1385.
    [3]Blumenthal DM. Interactions between resource availability and enemy release in plant invasion[J]. Ecology Letters,2006,9:887-895.
    [4]Carlton JT, Geller JB. Ecological Roulette:The global transport of nonindigenous organisms[J]. Science,1993,261:78-82.
    [5]Conner JK, Hartl DL. A primer of ecological genetics. Sinauer Associates, Sunderland, MA,2004.
    [6]Dong BC, Alpert P, Guo W, et al. Effects of Fragmentation on the survival and growth of the invasive, clonal plant Alternanthera philoxeroides[J]. Biological Invasions,2012,14:1101-1110.
    [7]Dong BC, Yu GL, Guo W, et al. How internode length, position and presence of leaves affect survival and growth of Alternanthera philoxeroides after fragmentation? [J]. Evolutionary Ecology,2010,24:1447-1461.
    [8]Dong BC, Liu RH, Zhang Q, et al. Burial depth and stolon internode length independently affect survival of small clonal fragments[J]. PlosONE,2011,6: e23942.
    [9]Duda J, Freeman DJ. Differences in native soil ecology associated with invasion of the exotic annual chenopod, Halogeton glomeratus[J]. Biology and Fertility of Soils,2003,38:72-77.
    [10]Durand LZ, Goldstein G. Photosynthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii[J]. Oecologia,2001,126: 345-354.
    [11]Elton CS. The ecology of invasions by animals and plants. London:Methuen Press.1958.
    [12]Gao JM, Xiao Q, Ding LP, et al. Differential responses of lipid peroxidation and antioxidants in Alternanthera philoxeroides and Oryza saliva subjected to drought stress[J]. Plant Growth Regulation,2008,56:89-95.
    [13]Geng YP, Pan XY, Xu CY, et al. Phenotypic plasticity of invasive Alternanthera philoxeroides in relation to different water availability, compared to its native congener. Acta Oecologica,2006,30:380-385.
    [14]Geng Y P, Pan XY, Xu CY, et al. Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats[J]. Biological Invasions,2007,9:247-256.
    [15]Gusewell S, Bollens U. Composition of plant species mixtures grown at various N:P ratios and levels of nutrient supply[J]. Basic and Applied Ecology,2003,4: 453-466.
    [16|Gusewell S. Responses of wetland graminoids to the relative supplies of nitrogen and phosphorus[J]. Plant Ecology,2005,176:35-55.
    [17]Hedrick PW, Miler PS. Conservation genetics:techniques and fundamentals[J]. Ecological Applications,1992,2:30-46.
    [18|Hoopes MF,Hall LM. Edaphic factors and competition affect pattern formation and invasion in a California grassland[J]. Ecology Application,2002,12:24-39.
    [19]Huenneke LF. Effects of soil resource on plant invasion and community structure in Californian serpentine grassland[J]. Ecology,1990,71:478-491.
    [20]Hulme PE. Trade, transport and trouble:managing invasive species pathways in an era of globalization[J]. Journal of Applied Ecology,2009,46:10-18.
    [21]Huston, MA, Deangelis DL. Competition and coexistence:the effects of resource transport and supply rates[J]. American Naturalist,1994,144:954-977.
    [22]llman D, Wedin D, Knops J. Productivity and sustainability influenced by biodiversity in grassland ecosystems[J]. Nature,1996,379:718-720.
    [23]Julien MH, Skarratt B, Maywald GF. Potential geographical distribution of alligator weed and its biological control by Agasicles hygrophila[J]. Journal of Aquatic Plant Management,1995,33:55-60.
    [24]Saltonstall K, Stevenson JC. The effect of nutrients on seedling growth of native and introduced Phragmites australis[J]. Aquatic Botany,2007,86:331-336.
    [25]Lake JC, Leishman MR. Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores[J]. Biological Conservation,2004,117:215-226.
    [26]Lapointe BE, Bedford BJ. Storm water nutrient inputs favor growth of non-native macroalgae (Rhodophyta) on O'ahu, Hawaiian Islands[J]. Harmful Algae,2011, 10:310-318.
    [27]Leine JM. Species diversity and biological invasions:relating local process to community pattern[J]. Science,2000,288:852-854.
    [28]LeJeune KD, Suding KN, Seastedt TR. Nutrient availability does not explain invasion and dominance of a mixed grass prairie by the exotic forb Centaurea diffusa Lam[J]. Application Soil Ecology,2006,32:98-110.
    [29]Liu CH, Yu D. The bud and root sprouting capacity of Alternanthera philoxeroides after over-wintering on sediments of a drained canal[J]. Hydrobiologia,2009,623:251-256.
    [30]Liu J, Dong M, Miao SL, et al. Invasive plants in China:role of clonality and geographical origin[J]. Biological Invasions,2006,8:1461-1470.
    [31]Liu J, Liang SC, Liu FH, et al. Invasive alien plant species in China:regional distribution patterns[J]. Diversity and Distributions,2005,11:341-347.
    [32]Liu J, Chen H, Kowarik I, et al. Plant invasions in China:an emerging hot topic in invasion science[J]. NeoBiota,2012,15:27-51.
    [33]Liu J, He WM, Zhang SM, et al. Effects of clonal integration on photosynthesis of the invasive clonal plant Alternanthera philoxeroides. Photosynthetica,2008, 46:299-302.
    [34]Lodge DM. Biological invasions:Lessons for ecology[J]. Trends in Ecology and Evolution,1993,8:133-137.
    [35]Longstreth DJ, Bolanos JA, Goddard RH. Photosynthetic rate and mesophyll surface area in expanding leaves of Alternanthera philoxeroides grown at two light levels[J]. American Journal of Botany,1985,72:14-19.
    [36]L6vei GL. Biodiversity:Global change through invasion[J]. Nature,1997,388: 627-628.
    [37]Ludsin SA, Wolfe AD. Biological invasion theory:Darwin's contributions from the origin of species[J]. Biology Science,2001,51:780-789.
    [38]Maron JL, Connonm PG. A native nitrogen-fixing shrub facilitates weed invasion[J]. Oecologia,1996,105:302-312.
    [39]Miao SL, Yi L, Guo QF, et al. Potential alternatives to classical biocontrol:using native agents in invaded habitats and genetically engineered sterile cultivars for invasive plant management[J]. Tree and Forestry Science and Biotechnology, 2012,6:17-21.
    [40]Myers J, Bazely D. Ecology and control of introduced plants. Cambridge: Cambridge University Press.2003.
    [41]Naqvi SM, Rizvi SA. Accumulation of chromium and copper in three different soils and bioaccumulation in an aquatic plant, Alternanthera philoxeroides[J]. Bulletin of Environmental Contamination and Toxicology,2002,65:55-61.
    [42|Osunkoya OO, Deanna Bayliss,Dane Panetta F, et al. Leaf trait co-ordination in relation to construction cost, carbon gain and resource-use efficiency in exotic invasive and native woody vine species[J]. Annals of Botany,2010,106: 371-380.
    [43]Parker IM, Rodriguez J, Loik ME. An evolutionary approach to understanding the biology of invasions:local adaptation and general-purpose genotypes in the weed Verbascum thapsus[J]. Conservation Biology,2003,17:59-72.
    [44]Pimentel D, Lach L, Zuniga R, et al. Environmental and economic costs of non-indigenous species in the United States[J]. Biology Science,2000,50:53-65.
    [45]Pysek P, Kopecky M, Jarosik V, et al. The role of human density and climate in the spread of Heracleum mantegazzianum in the Central European landscape[J]. Diversity and Distributions,1998,4:9-16.
    [46]Pysek P, Richardson DM, Rejmanek M, et al. Alien plants in checklists and floras: towards better communication between taxonomists and ecologists[J]. Taxon, 2004,53:131-143.
    [47]Schooler SS, Yertes AG, Wilson JRU, et al. Herbivory, mowing, and herbicides differently affect production and nutrient allocation of Alternanthera philoxeroides[J].Aquatic Botany,2007,86:62-68.
    [48]Shen RL, Guan BH, Cai Y, et al. High sediment phosphorus concentration enhanced invasiveness of Alternanthera philoxeroides[J]. Journal Plant Ecology, 2007,31:665-672.
    [49]Sorrell BK, Brix H, Fitridge I, et al. Gas exchange and growth response to nutrient enrichment in invasive Glyceria maxima and native New Zealand Carex species[J]. Aquatic Botany,2012,103:27-37.
    [50]Stohlgren TJ, Bennett DT, Kartese JT. The rich get richer:patterns of plant invasions in the United States[J]. Frontiers in Ecology of the Environment,2003, 1:11-14.
    [51]Stohlgren TJ, Chong GW, Schell LD, et al. Assessing vulnerability to invasion by nonnative plant species at multiple spatial scales[J]. Environmental Management, 2002,29:566-577.
    [52]Suding KN, LeJeune KD, Seastedt TR. Competitive impacts and responses of an invasive weed:dependencies on nitrogen and phosphorus availability[J]. Oecologia,2004,141:526-535.
    [53]Tan WZ, Jin Q, Qing L. Biological control of alligatorweed (Alternanthera philoxeroides) with a Fusarium sp[J]. Biological Control,2002,47:463-479.
    [54]Tao Y, Chen F, Wan KY, et al. The structural adaptation of aerial parts of invasive Alternanthera philoxeroides to water regime[J]. Journal of Plant Biology,2009, 52:403-410.
    [55]Vitousek PM, D'Antonio CM, Loope LL. Biological invasions as global environmental change[J]. American Science,1996,84:468-478
    [56]Wang BR, Li WR, Wang JB. Genetic diversity of Alternanthera philoxeroides in China[J]. Aquatic Botany,2005,81:277-283.
    [57]Wang N, Yu FH, Li PX, et al. Clonal integration affects growth, photosynthetic efficiency and biomass allocation, but not the competitive ability, of the alien invasive Alternanther a philoxeroides[J]. Annals of Botany,2008,101:671-678.
    [58]Weltzin JF, Belote RT, Sanders NJ. Biological invaders in a greenhouse world: will elevated CO2 fuel plant invasions?[J]. Frontiers in Ecology and the Environment,2003,1:146-153.
    [59]Willby NJ, Pulford ID, Flowers, TH. Tissue nutrient signatures predict herbaceous-wetland community responses to nutrient availability[J]. New Phytologist,2001,152:463-481.
    [60]Williamson M. Invaders, weeds and the risk from genetically modified organisms[J]. Experientia,1993,49:219-224.
    [61]Xing LJ. The present status and perspectives of weed biocontrol with microbia organisms[J]. Acta Mycologia Sinica,1995,14:153-157.
    [62|Xu CY, Zhang WJ, Fu CZ, et al. Genetic diversity of Alligator Weed in China by RAPD analysis[J]. Biodiversity and Conservation,2003,12:637-645.
    [63]Yu II, Liu J, He WM, et al. Cuscuta australis restrains three exotic invasive plants and benefits native species[J]. Biological Invasions,2011,13:747-756.
    [64]蔡燕徽,江红英,陈中义.模拟酸雨对外来入侵植物空心莲子草的出苗及生长的影响[J].长江大学学报(自科版)农学卷,2007,4(4):73-76.
    [65]陈斌,储亮.沤制水花生作麦稻基肥的效应研究[J].土壤通报,2000,31(4):180-182.
    [66]陈兵,康乐.生物入侵及其与全球变化的关系[J].生态学杂志,2003,22(1):31-34.
    [67]陈兵,康乐.西部大开发过程中生物入侵风险分析术[J].自然生态保护,2001,(12):30-31.
    [68]陈立立,余岩,何兴金.喜旱莲子草在中国的入侵和扩散动态及其潜在分布区预测[J].生物多样性,2008,16(6):578-585.
    [69]陈振武,沈武孝.空心莲子草治疗带状疱疹50例[J],江西中医药,199425(增刊):16-171.
    [70]陈中义,王府京,王英英,等.光照强度对2种来源的空心莲子草生长的影响[J].长江大学学报(自科版)农学卷,2007,4(1):68-71.
    [71]程栋梁,林娜.福州市常见植物比叶面积研究[J].安徽农业科学.2009,37(31):15131-15133,15136.
    [72]邓自发,欧阳琰,谢晓玲,等.全球变化主要过程对海滨生态系统生物入侵的影响[J].生物多样性,2010,18(6):605-614.
    [73]耿宇鹏,张文驹,李博,等.表型可塑性与外来植物的入侵能力[J].生物多样性,2004,12(4):447-455.
    [74]皇甫超河,张天瑞,刘红梅,等.三种牧草植物对黄顶菊田间替代控制[J].生态学杂志,2010,29(8):1511-1518.
    [75]黄永杰,杨红飞,杨集辉,等.铜胁迫对水花生生长及活性氧代谢的影响[J].生态学杂志,2009,28(6):1112-1116.
    [76]姜立志,王东,刘树楠,等.光照和氮素对喜旱莲子草形态特征和生物量分配的影响[J].水生生物学报,2010,34(1):101-107.
    [77]蒋文志,曹文志,冯砚艳,等.我国区域间生物入侵的现状及防治[J].生态学杂志,2010,29(7):1451-1457.
    [78]雷军成,徐海根.外来入侵植物假高粱在我国的潜在分布区分析[J].植物保护,2011,37(3):87-92.
    [79]李博,徐炳声,陈家宽.从上海外来杂草区系剖析植物入侵的一般特征.生物多样性,2001,9(4):446-457.
    [80]李宏科,王韧.空心莲子草叶甲的越冬保护和大量繁殖释放研究[J].生物防治通报,1994,10(1):11-14.
    [81]李梅,聂呈荣,李锐,陈碧云.外来植物入侵机制研究进展[J].2005,(2):93-96.
    [82]李明财,朱教君,孙一荣.东北次生林主要树种比叶面积对光照强度的响应[J].生态学杂志.2009,28(8):1437-1442.
    [83]李媛媛,赵磊,陈小勇,等.上海的空心莲子草来源于同一克隆[J].华东师范大学学报:自然科学版,2004,(2):107-109.
    [84]李振宇,解焱(主编).中国外来入侵种[M].北京:中国林业出版社,2002.
    [85]林金成,强胜.空心莲子草营养繁殖特性研究[J].上海农业学报,2004,20(4):96-101.
    [86]刘爱荣,张远兵,陈庆榆,等.盐胁迫对空心莲子草生长和光合作用的影响[J].云南植物研究,2007,29(1):85-90.
    [87]刘大胜,张学杰,常光玲,等.外来入侵物种空心莲子草花粉形态及生活力测定[J].安徽农业科学,2008,36(35):15447-15448.
    [88]刘慧.喜早莲子草对光照及植株密度的表型可塑性响应[J].河南科学,2011,29(2):159-164.
    [89]刘建,王仁卿,张治国.植物外来种研究进展[J].植物科学进展,2001,4:335-344.
    [90]刘建,李钧敏,余华,等.植物功能性状与外来植物入侵[J].生物多样性,2010,18(6):569-576.
    [91]刘长河,陈志谊,聂亚峰,等.喜旱莲子草生防真菌SF-193分生孢子萌发条件及其侵入过程[J].中国生物防治,2010,26(2):154-159.
    [92]娄远来,邓渊钰,沈纪冬,等.我国空心莲子草的研究现状[J].江苏农业科学,2002,(4):46-48.
    [93]陆俊姣,马瑞燕.真菌防治喜旱莲子草研究进展[J].植物保护,2008,34(2):10-13.
    [94]马晔,沈珍瑶.外来植物的入侵机制及其生态风险评价[J].生态学杂志,2006,25(8):983-988.
    [95]潘晓云,耿宇鹏,Alejandro S,等.入侵植物喜旱草—生物学、生态学及管理[J].植物分类学报,2007,45(6):884-900.
    [96]沈健英,黄渊智.环境因子对空心莲子草出苗和生长的影响[J].上海农业学报,2006,22(1):34-38.
    [97]宋莉英,吴海昌,彭少麟.二氧化碳浓度升高对植物入侵的影响[J].生态环境,2006,15(1):158-163.
    [98]万方浩,郭建英,王德辉.中国外来入侵生物的危害与管理对策[J].生物多样性,2002,10(1):119-125.
    [99]王德芝,张红军.利用水花生袋栽黑木耳高产技术研究[J].信阳农业高等专科学校学报.1999,9(4):10-12.
    [100]王俊刚,陈国仓,张承烈.水分胁迫对3种生态型芦苇的可溶性蛋白含量、SOD、POD、CAT活性的影响[J].西北植物学报,2002,22(3):561-565.
    [101]王满莲,冯玉龙.紫茎泽兰和飞机草的形态、生物量分配喝光合特性对氮营养的响应[J].植物生态学报,2005,29(5):697-705.
    [102]王满莲,冯玉龙.紫茎泽兰和飞机草的形态和光合特性对磷营养的响应[J].应用生态学报,2006,17(4):602-606.
    [103]王如魁,管铭,杨蓓芬,等.南方菟丝子寄生对喜旱莲子草叶片光合特性的影响[J].台州学院学报,2011,33(3):25-29.
    [104]王重云,刘文耀,刘伦辉,等.紫茎泽兰迹地上不同替代植物群落植物多样性的变化[J].应用生态学报,2006,17(3):377-383.
    [105]王元军.南四湖湿地外来入侵植物[J].2010,45(2):212-219.
    [106]翁伯琦,林嵩,王义祥.空心莲子草在我国的适应性及入侵机制[J].生态学报,2006,26(7):2373-2381.
    [107]吴虹玥,包维楷,王安.外来种入侵对乡土生物多样性的影响机制.长江流域资源与环境.2004,13(1):40-46.
    [108]向言词,彭少麟,任海,等.植物外来种的生态风险评估和管理[J].生态学杂志,2002,21(5):40-48.
    [109]肖红,刘焱文.空心莲子草口服治疗乳鼠流行性出血热病毒感染的研究[J].中国病毒学,1996,11(4):348-351.
    [110]肖强,高建明,罗立廷,等.干旱胁迫对空心莲子草抗氧化酶活性和组织学的影响[J].生物技术通讯,2006,17(4):556-559.
    [111]徐海根,王建民,强胜.外来物种入侵、生物安全、遗传资源[M].北京:科学出版社,2004.
    [112]许凯扬,叶万辉,曹洪麟,等.植物群落的生物多样性及其可入侵性关系的实验研究[J].植物生态学报,2004,28(3):385-391.
    [113]许凯扬,叶万辉,李静,等.入侵种喜旱莲子草对土壤水分的表型可塑性反应[J].华中师范大学学报(自然科学版),2005,39(1):100-103.
    [114]杨永清,龙富波,张伟,等.入侵植物喜旱莲子草对光、氮及其互作的表型可塑性反应[J].贵州农业科学,2011,39(4):38-41.
    [115]张格成,李继祥,陈秀华.空心莲子草主要生物学特性研究[]J.杂草科学,1993,(2):10-12.
    [116]张天瑞,皇甫超河,白小明,等.黄顶菊入侵对土壤养分和酶活性的影响[J].生态学杂志,2010,29(7):1353-1358.
    [117]张秀艳,叶永忠,张小平,等.空心莲子草啦的生殖及入侵特性[J].河南科学,2004,22(1):60-62.
    [118]赵月琴,陆剑波,朱磊,傅智慧.不同营养水平对外来种凤眼莲生长特征及其竞争力的影响[J].生物多样性,2006,14(2):159-164.
    [119]周大祥,刘云峰,刘学斌,等.涝滞胁迫对空心莲子草生理生化特性的影响[J].湖北农业科学,2009,48(3):585-587.