鲤遗传—物理整合图谱的构建及鲤与斑马鱼的比较作图
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鲤(Cyprinus carpio)在世界水产养殖上是一种重要的养殖品种,年产量已达340万吨,占所有淡水水产品的比例高达14%;鲤在我国有着悠久的养殖历史,并且还具有一定的文化意义;除此之外,鲤还可以作为观赏鱼。近年来,国内外研究者在鲤的遗传学和基因组学方面开展了广泛的研究,比如开发大量分子标记、构建低、中等密度的遗传连锁图谱、重要经济数量性状位点的定位、构建大片段基因组文库、末端测序以及构建物理图谱等。但是鲤较高密度的遗传连锁图谱、遗传—物理整合图谱构建工作还没有完成。本论文的目的就是要建立鲤较高密度的遗传连锁图谱以及遗传—物理整合图谱;另外,还通过比较基因组学手段对鲤与斑马鱼进行了比较作图,最终将鲤较高密度的遗传连锁图谱、鲤物理图谱和斑马鱼的全基因组图,三者有机的结合在了一起。通过本研究,以期丰富鲤的基因组学和比较基因组学方面的研究并且用于验证鲤全基因组测序和组装结果。具体研究结果如下:
     1、从鲤物理图谱中选择较大的230个重叠克隆群(contig),从每个contig的BAC末端序列里分别查找微卫星并设计微卫星引物2-3对。一共设计了629对BAC锚定(BAC-anchored)微卫星引物,其中550对引物有扩增产物;226对有效扩增的引物是多态的,并且在作图群体中进行了基因分型。
     2、通过将黑龙江水产研究所随机开发的664个微卫星和5000个SNP侧翼序列与鲤物理图谱上BAC末端序列数据库的比对,发现有40个微卫星以及137个SNP是属于BAC关联(BAC-associated)标记。
     3、一共使用了1359个标记分型结果进行遗传连锁图的连锁分析(包括新开发的226个BAC-anchored微卫星分型结果、原先开发的332个BAC-anchored微卫星分型结果、黑龙江水产研究所开发的664个微卫星分型结果和137个BAC-associated SNP分型结果),JoinMap4.0软件连锁分析后,得到的鲤遗传连锁图谱上一共有1209个标记分布于50个连锁群上。遗传连锁图谱长度为3565.9cM,每个连锁群长度范围是17.3-126.7cM,标记间平均间隔为3.077cM。
     4、所有的BAC-anchored及BAC-associated的标记共计有620个作为锚定点,将遗传连锁图谱与物理图谱联系在一起,达到了整合的目的。遗传—物理整合图谱上一共有463个物理图谱的contig (其中新开发微卫星标记整合了166个最大的contig)和88个物理图谱的单个克隆,共计498.75Mb的物理长度(其中新开发的微卫星标记共整合了258.28Mb),约占鲤全基因组大小的30%。
     5、通过Blastn比对发现,鲤遗传连锁图谱上的1209个标记中有597个标记可以定位到斑马鱼基因组(ZV9)上,并且鲤相应的两个连锁群上几乎所有的同源标记都位于斑马鱼相对应的一条染色体上,这很好的证明了鲤染色体与斑马鱼染色体2:1的比例,即鲤比斑马鱼多经历了一轮全基因组复制现象。
     6、通过Blastn比对发现,整合的463个物理图谱contig中有442个contig可以定位到斑马鱼相应的染色体上,这442个contig一共包含有13449个BAC末端序列,即鲤中一共有13449个BAC末端序列可以定位到斑马鱼染色体上。
Common carp (Cyprinus carpio) is one of the most important aquaculture species with an annualglobal production of3.4million metric tons that accounts for nearly14%of all freshwateraquaculture production in the world. In China, common carp has quite a long history ofcultivation and certain cultural meanings. Besides, common carp becomes an importantornamental species. Nowadays, researchers from home and abroad have carried out extensivestudies on common carp, such as the development of new molecular markers, construction ofseveral low or medium density genetic linkage maps, location of important economicquantitative trait locis, construction of a bacterial artificial chromosome library, BAC endsequences and a physical map. However, higher density genetic linkage map andgenetic-physical integrated map are not available for common carp. The objective of this studywas to construct a higher density genetic linkage map and genetic-physical integrated map forcommon carp. In addition, through comparative mapping between common carp and zebrafishgenomes, the three maps (common carp genetic linkage map, common carp physical map andzebrafish whole genome map) are finally successfully connected to each other. The study willhelp us enrich the field in genomics and comparative analysis of common carp and verify thecommon carp whole genome sequencing and assembly. The results as follows:
     1. A total of629BAC-anchored microsatellite loci from the common carp230largest physicalmap contigs were developed. Of these contig-anchored microsatellites,550markers had PCRproduct and a total of226showed the presence of polymorphism and genotyped them in themapping family.
     2. The flank sequences of664microsatellite and5000SNP markers randomly developed byHeilongjiang Fisheries Research Institute were aligned to the BES database and a total of40microsatellite and137SNP markers were mapped to physical map contigs or single BAC clones.
     3. A total of1359polymorphic genetic markers, including newly developed226microsatellitemarkers, previously developed332microsatellite markers,664microsatellite markers and137SNP markers developed by Heilongjiang Fisheries Research Institute were used for linkageanalysis. After using software JoinMap4.0, a total of1209genetic markers were finally mappedto50linkage groups. Spanning3565.9cM of the common carp genome and the genetic length ofeach linkage group ranged from17.3cM to126.7cM, and the average interval between markersis3.077cM.
     4. A total of620BAC-anchored or BAC-associated markers serve as anchor points that connect genetic linkage map and physical map together. The genetic-physical integrated map composedof463physical map contigs and88single BACs, of which166contigs are newly developed.Combined lengths of the contigs and single BACs covered a physical length of498.75Mb(among them258.28Mb are from newly developed markers), or around30%of the commoncarp genome.
     5. The flank sequences of1209markers from common carp genetic linkage map were aligned tothe zebrafish reference genome (zv9) using BLASTn and successfully mapped597markers on25chromosomes of zebrafish. The results showed that two linkage groups of common carp werehomologs with one particular chromosome of zebrafish, which confirmed the two-to-onehomologous relationship of common carp and zebrafish chromosomes, which means commoncarp have experienced an additional round of whole genome duplication that doubled thechromosome number.
     6. A total of442physical map contigs (from the463integrated contigs) that formed synteniesbetween the common carp and zebrafish genomes, of which13449BAC end sequences hadsignificant hits to zebrafish chromosomes.
引文
[1] Paaver T, Gross R. Genetic variability of carp (Cyprinus carpio) strains reared in Estonia[J]. Genetika(Moskva),1990,26(7):1269-1278.
    [2] Eugene K B. Origin and domestication of the wild carp, Cyprinus carpio: from Roman gourmets to theswimming flowers[J]. Aquaculture,1995,129:348.
    [3] Csizmadia C, Jeney Z, Szerencsés I, et al. Transferrin polymorphism of some races in a live gene bankof common carp[J]. Aquaculture,1995,129(1):193-198.
    [4] Kohlmann K, Kersten P. Geneticvariability of German and foreigncommoncarp (CyprinuscarpioL.)populations[J]. Aquaculture,1999,173(1):435-445.
    [5] MarcVandeputte. Selective breeding of quantitative traits in the common carp (Cyprinus carpio): areview[J]. Aquat. Living Resour.,2003,16:399-407.
    [6] Balon E K. The oldest domesticated fishes, and the consequences of an epigenetic dichotomy in fishculture[J]. J. Ichthyol. Aquat. Biol.,2006,11(2):47-86.
    [7] Rafael Z, Ignacio D. Molecular Evidence on the Evolutionary and Biogeographical Patterns of EuropeanCyprinids[J]. J Mol Evol,1999,49:227-237.
    [8] Kulhanek S A, Leung B, Ricciardi A. Using ecological niche models to predict the abundance andimpact of invasive species: application to the common carp[J]. Ecological Applications,2011,21:203-213.
    [9] D L, S L, C Y, et al. Identification and Expression Analysis of Genes Involved in Early OvaryDevelopment in Diploid Gynogenetic Hybrids of Red Crucian Carp×Common Carp[J]. MarineBiotechnology,2010,2(12):186-194.
    [10] K G M, W K H, A B P, et al. Development of a fish cell culture model to investigate the impact of fishoil replacement on lipid peroxidation[J]. Lipids,2011,8(46):753-764.
    [11] P K, Y P, M H E, et al. SNP discovery and development of genetic markers for mapping innate immuneresponse genes in common carp ( Cyprinus carpio)[J]. Fish&shellfish immunology,2010,2(29):356-361.
    [12] Y Z, E S, V H C, et al. Identification of common carp innate immune genes with whole-genomesequencing and RNA-seq data[J]. J Integr Bioinform,2011,2(8):169.
    [13] Van Campenhout K, Bervoets L, Redeker E S, et al. A kinetic model for the relative contribution ofwaterborne and dietary cadmium and zinc in the common carp (Cyprinus carpio)[J]. EnvironmentalToxicology and Chemistry,2009,28:209-219.
    [14] Kroupova H, Prokes M, Macova S, et al. Effect of nitrite on early-life stages of common carp (Cyprinuscarpio L.)[J]. Environmental Toxicology and Chemistry,2010,29:535-540.
    [15]李思发.主要养殖鱼类种质资源研究进展[J].水产学报,1993,17(4):344-358.
    [16]赵寿元.基因组研究与生命科学工业的崛起[J].生命科学,1999,11(1):1-5.
    [17]孙效文,梁利群,闫学春.水产养殖动物基因组研究的现状及其应用前景[J].水产学报,2004,28(6):716-722.
    [18] D W, X L, L C, et al. Development of novel EST-SSR markers in common carp by data mining frompublic EST sequences[J]. Aquaculture,2007,1(271):558-574.
    [19] J Z, Q W, Z W, et al. Genetic variation analysis within and among six varieties of common carp(Cyprinus carpio L.) in China using microsatellite markers[J]. Russian Journal of Genetics,2004,10(40):1144-1148.
    [20] H Y G, Y H M, L O, et al. Microsatellites within genes and ESTs of common carp and theirapplicability in silver crucian carp[J]. Aquaculture,2004,1(234):85-98.
    [21] J X, P J, Z Z, et al. Genome-Wide SNP Discovery from Transcriptome of Four Common Carp Strains[J].PloS one,2012,10(7):e48140.
    [22] P J, Y Z, C L, et al. High Throughput Mining and Characterization of Microsatellites from CommonCarp Genome[J]. International journal of molecular sciences,2012,8(13):9798-9807.
    [23] X S, L L. A genetic linkage map of common carp ( Cyprinus carpio L.) And mapping of a locusassociated with cold tolerance[J]. Aquaculture,2004,1(238):165-172.
    [24] L C, L L, X Y, et al. A linkage map of common carp (Cyprinus carpio) based on AFLP andmicrosatellite markers[J]. Animal Genetics,2010,2(41):191-198.
    [25] X Z, Y K, X Z, et al. A genetic linkage map and comparative genome analysis of common carp(Cyprinus carpio L.) using microsatellites and SNPs[J]. Molecular Genetics and Genomics,2011,3-4(286):261-277.
    [26] P J, G L, J X, et al. Characterization of common carp transcriptome: sequencing, de novo assembly,annotation and comparative genomics[J]. PLoS One,2012,4(7):e35152.
    [27] Y L, P X, Z Z, et al. Construction and characterization of the BAC library for common carp CyprinusCarpio L. and establishment of microsynteny with Zebrafish Danio Rerio[J]. Marine Biotechnology,2011,4(13):706-712.
    [28] P X, J L, Y L, et al. Genomic insight into the common carp (Cyprinus carpio) genome by sequencinganalysis of BAC-end sequences[J]. BMC genomics,2011,1(12):188.
    [29] Xu P, Wang J, Tu W J, et al. Generation of the first BAC-based physical map of the common carpgenome[J]. BMC Genomics,2011,12:537.
    [30] N M L, van der Ven K, Van Remortel P, et al. Gene expression analysis of estrogenic compounds in theliver of common carp (Cyprinus carpio) using a custom cDNA microarray[J]. Journal of biochemicaland molecular toxicology,2007,5(21):299-311.
    [31] J X, W H, C Z, et al. Defining global gene expression changes of the hypothalamic-pituitary-gonadalaxis in female sgnrh-antisense transgenic common carp (Cyprinus carpio)[J]. PloS one,2011,6(6):e21057.
    [32] V H C, P D R, J J H, et al. Comparison of the exomes of common carp (Cyprinus carpio) and zebrafish(Danio rerio)[J]. Zebrafish,2012,2(9):59-67.
    [33] A C, R B, H S, et al. Comparative genomics in cyprinids: common carp ESTs help the annotation of thezebrafish genome[J]. BMC bioinformatics,2006,Suppl5(7):S2.
    [34] Y Z, P X, C L, et al. Genetic linkage mapping and analysis of muscle fiber-related QTLs in commoncarp (Cyprinus carpio L.)[J]. Marine Biotechnology,2011,3(13):376-392.
    [35] X M R, J L F, F Z X, et al. Studies on quantitative trait loci related to activity of lactate dehydrogenasein common carp (Cyprinus carpio)][J]. Yi chuan=Hereditas/Zhongguo yi chuan xue hui bian ji,2009,4(31):407.
    [36] Z K M, S H, G I, et al. A first generation physical map of the medaka genome in BACs essential forpositional cloning and clone-by-clone based genomic sequencing[J]. Mechanisms of development,2004,7(121):903-913.
    [37] S L, S B H, T M, et al. BAC‐based upgrading and physical integration of a genetic SNP map inAtlantic salmon[J]. Animal genetics,2010,1(41):48-54.
    [38] Palti Y, Genet C, Cheng L M, et al. A first generation integrated map of the rainbow trout genome[J].BMC Genomics,2011,12:180.
    [39] Y P, C G, G G, et al. A second generation integrated map of the rainbow trout (Oncorhynchus mykiss)genome: analysis of conserved synteny with model fish genomes[J]. Marine Biotechnology,2012,3(14):343-357.
    [40] R G, M R, N A, et al. A high-resolution map of the Nile tilapia genome: a resource for studying cichlidsand other percomorphs[J]. BMC genomics,2012,1(13):222.
    [41] Ninwichian P, Peatman E, Liu H, et al. Second-Generation Genetic Linkage Map of Catfish and ItsIntegration with the BAC-Based Physical Map[J]. G3: Genes|Genomes|Genetics,2012,10(2):1233-1241.
    [42] M W C, C L L, F F, et al. Construction of a BAC library and mapping BAC clones to the linkage map ofBarramundi, Lates calcarifer[J]. BMC genomics,2008,1(9):139.
    [43] W M, J Z, S B M. Comparative analysis of1196orthologous mouse and human full-length mRNA andprotein sequences[J]. Genome Research,1996,9(6):846-857.
    [44] B H, S R, Van der Voort J R, et al. Comparative mapping of DNA sequences in rye (Secale cereale L.)in relation to the rice genome[J]. Theoretical and Applied Genetics,2009,2(118):371-384.
    [45] J W, J L D, P P I A, et al. Integration of linkage maps for the Amphidiploid Brassica napus andcomparative mapping with Arabidopsis and Brassica rapa[J]. BMC genomics,2011,1(12):101.
    [46] M L, H T, X C, et al. Comparative genome mapping between apple and pear by apple mapped SSRmarkers[J]. American-Eurasian Journal of Agricultural&Environmental Science,2010,3(9):303-309.
    [47] H K, S W, P L, et al. Construction of genetic linkage maps and comparative genome analysis of catfishusing gene-associated markers[J]. Genetics,2009,4(181):1649-1660.
    [48] G M. Experiments in plant hybridization [D]. Read at the meetings of February8th, and March8th,1865.
    [49] S S W. The chromosomes in heredity[J]. The Biological Bulletin,1903,5(4):231-250.
    [50] T. B. über den Einflu der Samenzelle auf die Larvencharaktere der Echiniden[J]. Development Genesand Evolution,1903,2(16):340-363.
    [51]作物DNA标记辅助育种[EB/OL].(2012-09-08)http://www.docin.com/p-24106956.html.
    [52] W B, R S E, C P R. Further experiments on inheritance in sweet peas and stocks: preliminary account[J].Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character,1906,517(77):236-238.
    [53] H M T. Sex limited inheritance in Drosophila[J]. Science,1910,812(32):120-122.
    [54]分子育种教案[EB/OL].(2012-08-26)http://wenku.baidu.com/view/f848a5f24693daef5ef73de6.html.
    [55] H S A. The linear arrangement of six sex‐linked factors in Drosophila, as shown by their mode ofassociation[J]. Journal of experimental zoology,1913,1(14):43-59.
    [56]刘祖洞.遗传学[M]//第2版上册.北京:高等教育出版社,1990:162-170.
    [57] S H J B. The combination of linkage values and the calculation of distances between the loci of linkedfactors[J]. J Genet,1919,29(8):299-309.
    [58] D K D. The estimation of map distances from recombination values[J]. Annals of Eugenics,1943,1(12):172-175.
    [59]刘长国,罗军,杨公社. DNA标记技术研究进展[J].黄牛杂志,2001,27(6):41-45.
    [60] Sturtevant, H A. The linear arrangement of six sex-linked factors in Drosophila, as shown by their modeof association[J]. Journal of Experimental Zoology,1913,14:43-59.
    [61] J O S. Mammalian genome mapping: lessons and prospects[J]. Current opinion in genetics&development,1991,1(1):105-111.
    [62] Grodzicker T, Williams J, Sharp P, et al. Physical Mapping of Temperature-sensitive Mutations ofAdenoviruses[J]. Cold Spring Harb Symp Quant Biol.,1974,39:439-446.
    [63] BOTSTEIN D, RAYMOND L W, SKOLNICK M, et al. Construction of a Genetic Linkage Map in ManUsing Restriction Fragment Length Polymorphisms[J]. Am JHum Genet.,1980,32:314-331.
    [64] BERNATZKY R, TANKSLEY S D. TOWARD A SATURATED LINKAGE MAP IN TOMATOBASED ON ISOZYMES AND RANDOM cDNA SEQUENCES[J]. Genetics,1986,112:887-898.
    [65] Donis-Keller H, Green P, Helms C, et al. A Genetic Linkage Map of the HumanGenome[J]. Cell,1987,51:319-337.
    [66] Williams J G K, Kubelik A R, Kenneth J L, et al. DNA polymorphisms amplified by arbitrary primersare useful as genetic markers[J]. Nucleic Acids Research,1990,18(22):6531-6535.
    [67] Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic AcidsResearch,1990,18(24):7213-7218.
    [68] Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNAfingerprinting[J]. European Patent Office,1993, publication0534858Al.
    [69] Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting[J]. Nucleic AcidsResearch,1995,21(23):4407-4414.
    [70] Tautz D, Trick M, Dover G A. Cryptic simplicity in DNA is a major source of genetic variation[J].Nature,1986(322):652-656.
    [71] Tautz D. Hypervariabflity of simple sequences as a general source for polymorphic DNA markers[J].Nucl. Acids Res.,1989,16(17):6463-6471.
    [72] Litt M, Luty J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotiderepeat within the cardiac muscle actin gene[J]. Am. J. Hum. Genet.,1989(44):397-401.
    [73] M S D, G B W, R B F, et al. Repeat sequence of a hermit crab satellite deoxyribonucleic acid is(-TAGG-) n.(-ATCC-) n[J].1974,19(13):3930-3937.
    [74] R M, M K, N A. A member of a new repeated sequence family which is conserved throughouteucaryotic evolution is found between the human δ and β globin genes[J]. Nucleic acids research,1981,22(9):5931-5948.
    [75] H H, G P M, T K. A novel repeated element with Z-DNA-forming potential is widely found inevolutionarily diverse eukaryotic genomes[J]. Proceedings of the National Academy of Sciences,1982,21(79):6465-6469.
    [76] Gur-Arie R, Cohen C J, Eitan Y, et al. Simple sequence repeats in Escherichia coli: abundance,distribution, composition, and polymorphism[J]. Genome Research,2000,1(10):62-71.
    [77] Weber J L, Wong C. Mutation of human short tandem repeats[J]. Hum. Mol. Genet.,1993,8(2):1123-1128.
    [78] Crawford A M, Cuthbertson R P. Mutations in sheep microsatellites[J]. Genome Res.,1996(6):876-879.
    [79] Ellegren H. Microsatellite mutations in the germline:: implications for evolutionary inference[J]. TrendsGenet,2000,12(16):551-558.
    [80] Levinson G, Gutman G A. Slipped-strand mispairing: a major mechanism for DNA sequenceevolution[J]. Mol Biol Evol,1987,3(4):203-221.
    [81] Jakupciak J P, Wells R D. Genetic Instabilities of Triplet Repeat Sequences by Recombination[J].IUBMB Life,2000,6(50):355-359.
    [82] G T, Z G, J J. Microsatellites in different eukaryotic genomes: survey and analysis[J]. Genome Research,2000,7(10):967-981.
    [83] D M, C W. Evolutionary changes in mutation rates and spectra and their influence onthe adaptation ofpathogens[J]. Microbes and infection,2000,12(2):1513-1522.
    [84] Varshney R K, Thiel T, Stein N, et al. In silico analysis on frequency and distribution of microsatellitesin ESTs of some cereal species[J]. Cellular and Molecular Biology Letters,2002,2A(7):537-546.
    [85] Li Y C, Korol A B, Fahima T, et al. Microsatellites within genes: structure, function, and evolution[J].Molecular biology and evolution,2004,6(21):991-1007.
    [86] M R. Sourcing of SSR markers from related plant species[M]//Plant Genotyping: the DNAFingerprinting of Plant,2001:211-224.
    [87] Lander E S. The New Genomics: Global Views of Biology[J]. Science,1996,5287(274):536-539.
    [88] A B N, D E P, S A T, et al. Rapid SNP discovery and genetic mapping using sequenced RADmarkers[J]. PloS one,2008,10(3):e3376.
    [89] Miller M R, Dunham J, Amores A, et al. Rapid and cost-effective polymorphism identification andgenotyping using restriction site associated DNA (RAD) markers[J]. Genome Research,2007,2(17):240-248.
    [90] J B C, R E J. Assignment of30microsatellite loci to the linkage map of Arabidopsis[J]. Genomics,1994,1(19):137-144.
    [91] Ujino T, Kawahara T, Tsumura Y, et al. Development and polymorphism of simple sequence repeatDNA markers for Shorea curtisii and other Dipterocarpaceae species[J]. Heredity,1998,4(81):422-428.
    [92] Waldbieser G C, Bosworth B G, Nonneman D J, et al. A microsatellite-based genetic linkage map forchannel catfish, Ictalurus punctatus[J]. Genetics,2001,2(158):727-734.
    [93] Ostrander E A, Jong P M, Rine J, et al. Construction of small-insert genomic DNA libraries highlyenriched for microsatellite repeat sequences[J]. Proceedings of the National Academy of Sciences,1992,8(89):3419-3423.
    [94] D P. Microsatellites obtained using strand extension: an enrichment protocol[J]. Biotechniques,1999,4(26):690.
    [95] L K, D K I, M C V. Construction of random small-insert genomic libraries highly enriched for simplesequence repeats[J]. Nucleic Acids Research,1993,16(21):3911-3912.
    [96] P K R, G K, M W S. Construction of libraries enriched for sequence repeats and jumping clones, andhybridization selection for region-specific markers[J]. Proceedings of the National Academy of Sciences,1994,1(91):88-92.
    [97] L Z, L B, T P. Strategies for microsatellite isolation: a review[J]. Molecular ecology,2002,1(11):1-16.
    [98] J F P, C G R, E R T. Single locus microsatellites isolated using5′anchored PCR[J]. Nucleic acidsresearch,1996,21(24):4369-4371.
    [99] J H M, J S P. Targeted development of informative microsatellite (SSR) markers[J]. Nucleic AcidsResearch,2001,8(29):e44.
    [100] J F P, E R T, C G R. Characteristics of single-and multi-copy microsatellites from Pinus radiata[J].Theoretical and Applied Genetics,1998,6-7(96):969-979.
    [101] Varghese J P, Rudolph B, Uzunova M I, et al. Use of5′-anchored primers for the enhanced recovery ofspecific microsatellite markers in Brassica napus L.[J]. Theoretical and Applied Genetics,2000,1-2(101):115-119.
    [102] Hayden M J, Stephenson P, Logojan A M, et al. A new approach to extending the wheat marker pool byanchored PCR amplification of compound SSRs[J]. Theoretical and Applied Genetics,2004,4(108):733-742.
    [103] P X, S W, L L, et al. Channel catfish BAC‐end sequences for marker development and assessment ofsyntenic conservation with other fish species[J]. Animal genetics,2006,4(37):321-326.
    [104] de Givry S, Bouchez M, Chabrier P, et al. CarthaGene: multipopulation integrated genetic and radiatedhybrid mapping [J]. bioinformatics,2005,8(21):1703-1704.
    [105] P G, K F, S C. Documentation for CRI-MAP, version2.4[J]. Washington University School of Medicine,St. Louis, MO,1990.
    [106] Stam P. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap[J]. The Plant Journal,1993(3):739-744.
    [107] RG D. LINKMFEX: Linkage analysis package for outcrossed mapping families with male or femaleexchange of the mapping parent[J].2001.
    [108] Lander ES, Green P, Abrahamson J, et al. MAPMAKER: an interactive computer package forconstructing primary genetic linkage maps of experimental and natural populations[J]. Genomics,1987,2(1):174-181.
    [109] KF M, JM O. Overview of QTL mapping software and introduction to map manager QT[J]. MammalianGenome,1999,4(10):327-334.
    [110]常玉梅,孙效文.水产养殖动物遗传连锁图谱及QTL定位研究进展[J].动物学研究,2006,5(27):533-540.
    [111] H P J, L J S, N M C, et al. A genetic linkage map for the zebrafish[J]. Science,1994,5159(264):699-703.
    [112] H P J, L Y Y, A G M, et al. Vertebrate genome evolution and the zebrafish gene map[J]. Nature genetics,1998,4(18):345-349.
    [113] W K E, A G, M E, et al. A microsatellite genetic linkage map for zebrafish (Danio rerio)[J]. Naturegenetics,1998,4(18):338-343.
    [114] N S, W K E, J Z, et al. Zebrafish genetic map with2000microsatellite markers[J]. Genomics,1999,3(58):219-232.
    [115] G W I, C W, B F, et al. The zebrafish gene map defines ancestral vertebrate chromosomes[J]. Genomeresearch,2005,9(15):1307-1314.
    [116]贾顺姬,孟安明.中国斑马鱼研究发展历程及现状[J].遗传,2012,9(34):1082-1088.
    [117] H W, K N, A S, et al. Genetic linkage map of a fish, the Japanese medaka Oryzias latipes[J]. Molecularmarine biology and biotechnology,1995,3(4):269.
    [118] K N, S F, H M, et al. A detailed linkage map of medaka, Oryzias latipes: comparative genomics andgenome evolution[J]. Genetics,2000,4(154):1773-1784.
    [119] K N, M T, K M, et al. A medaka gene map: the trace of ancestral vertebrate proto-chromosomesrevealed by comparative gene mapping[J]. Genome research,2004,5(14):820-828.
    [120] T K, K Y, A S, et al. Genetic linkage map of medaka with polymerase chain reaction lengthpolymorphisms[J]. Gene,2005(363):24-31.
    [121] D K T, J L W, H S, et al. A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus)[J].Genetics,1998,3(148):1225-1232.
    [122] Y L B, J L W, T S J, et al. A second-generation genetic linkage map of tilapia (Oreochromis spp.)[J].Genetics,2005,1(170):237-244.
    [123] F L, F S, J L, et al. A microsatellite-based linkage map of salt tolerant tilapia (Oreochromismossambicus x Oreochromis spp.) and mapping of sex-determining loci[J]. BMC genomics,2013,1(14):58.
    [124] P Y W, A W P, H C V, et al. A detailed linkage map of rainbow trout produced using doubledhaploids[J]. Genetics,1998,2(148):839-850.
    [125] M N K, P Y W, G D R, et al. A consolidated linkage map for rainbow trout (Oncorhynchus mykiss)[J].Animal genetics,2003,2(34):102-115.
    [126] T S, G D R, Gharbi K E A. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss)characterized by large sex-specific differences in recombination rates[J]. Genetics,2000,3(155):1331-1345.
    [127] K G, A G, G D R, et al. A linkage map for brown trout (Salmo trutta): chromosome homeologies andcomparative genome organization with other salmonid fish[J]. Genetics,2006,4(172):2405-2419.
    [128] E R C, Y P, A G S, et al. A second generation genetic map for rainbow trout (Oncorhynchus mykiss)[J].BMC genetics,2008,1(9):74.
    [129] R G, M B, F K, et al. A synthetic rainbow trout linkage map provides new insights into the salmonidwhole genome duplication and the conservation of synteny among teleosts[J]. BMC genetics,2012,1(13):15.
    [130] C W G, G B B, J N D, et al. A microsatellite-based genetic linkage map for channel catfish, Ictaluruspunctatus[J]. Genetics,2001,2(158):727-734.
    [131] Z L, A K, P L, et al. An AFLP-based genetic linkage map of channel catfish (Ictalurus punctatus)constructed by using an interspecific hybrid resource family[J]. Genetics,2003,2(165):687-694.
    [132]孙效文,梁利群.鲤鱼的遗传连锁图谱(初报)[J].中国水产科学,2000,7(1):1-5.
    [133] N C S, Y C A C, W B H, et al. Construction of biologically functional bacterial plasmids in vitro[J].Proceedings of the National Academy of Sciences,1973,11(70):3240-3244.
    [134] F B, L R R, J G P, et al. Construction and characterization of new cloning vehicles. II. A multipurposecloning system[J]. Gene,1977,2(2):95.
    [135] C Y, J V, J M. Improved M13phage cloning vectors and host strains: nucleotide sequences of theM13mpl8and pUC19vectors[J]. Gene,1985,1(33):103-119.
    [136] J C, B H. Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophagelambda heads[J]. Proceedings of the National Academy of Sciences,1978,9(75):4242-4246.
    [137] W M A, W S J. Construction of artificial chromosomes in yeast[J]. Nature,1983(305):189-193.
    [138] T B D, F C G, V O M. Cloning of large segments of exogenous DNA into yeast by means of artificialchromosome vectors[J]. Science,1987,4803(236):806-812.
    [139] Shizuya H, Birren B, Kim U J, et al. Cloning and stable maintenance of300-kilobase-pair fragments ofhuman DNA in Escherichia coli using an F-factor-based vector[J]. Proceedings of the NationalAcademy of Sciences,1992,18(89):8794-8797.
    [140] J K U, W B B, T S, et al. Construction and characterization of a human bacterial artificial chromosomelibrary[J]. Genomics,1996,2(34):213-218.
    [141] T A C, J G, M K P, et al. A new bacteriophage P1–derived vector for the propagation of large humanDNA fragments[J]. Nature genetics,1994,1(6):84-89.
    [142] N S. Bacteriophage P1cloning system for the isolation, amplification, and recovery of DNA fragmentsas large as100kilobase pairs[J]. Proceedings of the National Academy of Sciences,1990,1(87):103-107.
    [143] M H C, A F, C L, et al. Stable transfer of intact high molecular weight DNA into plant chromosomes[J].Proceedings of the National Academy of Sciences,1996,18(93):9975-9979.
    [144] Q T, B Z H. Cloning and stable maintenance of DNA fragments over300kb in Escherichia coli withconventional plasmid-based vectors[J]. Nucleic acids research,1998,21(26):4901-4909.
    [145] G L Y, Y S, H F, et al. Complementation of plant mutants with large genomic DNA fragments by atransformation-competent artificial chromosome vector accelerates positional cloning[J]. Proceedings ofthe National Academy of Sciences,1999,11(96):6535-6540.
    [146] Meksem K A G K. The handbook of plant genome mapping[M]//Wiley-Blackwell,2006:121-125.
    [147] R C S, M S D. Heterochromatic knob composition of commercial inbred lines of maize[J]. Maydica,1987,3(32):171-187.
    [148] R J L. Aneuploid analysis in tetraploid wheat[J]. Wheat and wheat improvement,1987:255-267.
    [149] J S P, S C, S D, et al. The isolation, characterization and application in the Triticeae of a set of wheatRFLP probes identifying each homoeologous chromosome arm[J]. Theoretical and Applied Genetics,1989,3(78):342-348.
    [150] D Y N. Constructing a plant genetic linkage map with DNA markers[M]//DNA-based markers in plants.Springer Netherlands,1994:39-57.
    [151] DR C, M B, ER P, et al. Radiation hybrid mapping: a somatic cell genetic method for constructinghigh-resolution maps of mammalian chromosomes[J]. Science,1990,4978(250):245-250.
    [152] T M, K D, P D, et al. A complete BAC-based physical map of the Arabidopsis thaliana genome[J].Nature genetics,1999,3(22):271-275.
    [153] S S, Y U, A A B, et al. A physical map with yeast artificial chromosome (YAC) clones covering63%ofthe12rice chromosomes[J]. Genome,2001,1(44):32-37.
    [154] A M M, A K T, L D N, et al. High throughput fingerprint analysis of large-insert clones[J]. GenomeResearch,1997,11(7):1072-1084.
    [155] C S, I L, R M. FPC: a system for building contigs from restriction fingerprinted clones[J]. Computerapplications in the biosciences: CABIOS,1997,5(13):523-535.
    [156] D M J, M M, D H L, et al. A physical map of the human genome[J]. Nature,2001,6822(409):934-941.
    [157] S N S H, G A C, E B I, et al. A physical map of the genome of Atlantic salmon, Salmo salar[J].Genomics,2005,4(86):396-404.
    [158] A C, J S, S B, et al. Toward a physical map of the genome of the nematode Caenorhabditis elegans[J].Proceedings of the National Academy of Sciences,1986,20(83):7821-7825.
    [159] C L M, C T, M Y F, et al. High-throughput fingerprinting of bacterial artificial chromosomes using thesnapshot labeling kit and sizing of restriction fragments by capillary electrophoresis[J]. Genomics,2003,3(82):378-389.
    [160] E P, P S, J S, et al. A physical map of the1-gigabase bread wheat chromosome3B[J]. science,2008,5898(322):101-104.
    [161] A Q S M, C W G, V D M. A first generation BAC-based physical map of the channel catfish genome[J].BMC genomics,2007,1(8):40.
    [162] P X, S W, L L, et al. A BAC-based physical map of the channel catfish genome[J]. Genomics,2007,3(90):380-388.
    [163] Y P, C L M, Y H, et al. A first generation BAC-based physical map of the rainbow trout genome[J].BMC genomics,2009,1(10):462.
    [164] J J, S G B. Nonisotopic in situ hybridization and plant genome mapping: the first10years[J]. Genome,1994,5(37):717-725.
    [165] G P D, V L N L, M S S. Localization of single-and low-copy sequences on tomato synaptonemalcomplex spreads using fluorescence in situ hybridization (FISH)[J]. Genetics,1999,1(152):427-439.
    [166] Z C, G P G, R B C, et al. High-resolution pachytene chromosome mapping of bacterial artificialchromosomes anchored by genetic markers reveals the centromere location and the distribution ofgenetic recombination along chromosome10of rice[J]. Genetics,2001,4(157):1749-1757.
    [167] M O, L H, C C, et al. A common language for physical mapping of the human genome[J]. Science,1989,4925(245):1434-1435.
    [168] R F D, I K M, R C, et al. Software for automated analysis of DNA fingerprinting gels[J]. Genomeresearch,2003,5(13):940-953.
    [169] J S, F M, R S, et al. Software for genome mapping by fingerprinting techniques[J]. Computerapplications in the biosciences: CABIOS,1988,1(4):125-132.
    [170] R G, J R G, H B, et al. A radiation hybrid map of the zebrafish genome[J]. Nature genetics,1999,1(23):86-89.
    [171] A H N, L J, M T, et al. Radiation hybrid mapping of the zebrafish genome[J]. Proceedings of theNational Academy of Sciences,1999,17(96):9745-9750.
    [172] N H, D F, J E, et al. The LN54radiation hybrid map of zebrafish expressed sequences[J]. Genomeresearch,2001,12(11):2127-2132.
    [173] R K, J R G, S H, et al. Bacterial artificial chromosome (BAC) clones and the current clone map of thezebrafish genome[J]. Methods in cell biology,2004(77):295-304.
    [174] F Z, G Z, JD L, et al.[Advanced methods of preparing pachytene bivalents and high resolution multiplebands of zebrafish (Danio rerio)][J]. Yi Chuan,2004,5(31):474-479.
    [175] T K, C K, E T, et al. A BAC-based physical map of the Nile tilapia genome[J]. BMC genomics,2005,1(6):89.
    [176] A F I, C M. Physical chromosome mapping of repetitive DNA sequences in Nile tilapiaOreochromis niloticus: Evidences for a differential distribution of repetitive elements in the sexchromosomes[J]. Micron,2008,4(39):411-418.
    [177] G O R. Molecular systematics[M]. Sunderland, MA: Sinauer Associates,1996.
    [178] Ooijen J. JoinMap4.0, Software for the calculation of genetic linkage maps in experimentalpopulations[M]. Kyazma BV, Wageningen, Netherlands,2006.
    [179] E V R. MapChart: software for the graphical presentation of linkage maps and QTLs[J]. Journal ofHeredity,2002,1(93):77-78.
    [180] H W, C E S. Detection of Allelic Imbalance in Gene Expression UsingPyrosequencing [M]//Pyrosequencing Protocols. Humana Press,2007:157-175.
    [181]常玉梅,高国强,韩启霞,等.应用荧光标记通用引物检测鲤鱼(Cyprinus Carpio)微卫星基因型[J].水产学杂志,2010,001(23):1-5.
    [182] A N B, N W A, D J. A universal procedure for primer labelling of amplicons[J]. Nucleic acids research,1997,14(25):2938-2939.
    [183] M S. An economic method for the fluorescent labeling of PCR fragments[J]. Nature biotechnology,2000,2(18):233-234.
    [184] L Z, Y Z, P J, et al. A Dense Genetic Linkage Map for Common Carp and Its Integration with aBAC-Based Physical Map[J]. PLoS ONE,2013,8(5):e63928.
    [185] L D, S B, MW F, et al. Recent duplication of the common carp (Cyprinus carpio L.) genome as revealedby analyses of microsatellite loci[J]. Molecular Biology and Evolution,2003(20):1425-1434.