FGFR2单核苷酸多态性rs2981582位点(C/T)与尿道下裂的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     寻找尿道下裂遗传易感性的基因,特别是FGFR2基因的多态性与尿道下裂发病的相关性,探讨FGFR2基因单核苷酸多态位点rs2981582与尿道下裂的关系。
     方法
     收集2007年至2009年在中国医科大学附属盛京医院小儿外科确诊后实施手术并且无其他畸形的尿道下裂患者188例,作为实验病例组。无任何先天畸形的健康儿童118例做为正常对照组,收集血液样本,提取基因组DNA。设计针对FGFR2基因rs2981582位点的PCR引物、进行聚合酶链反应——限制性片段长度多态性方法(PCR-RFLP)分析尿道下裂患者及正常人群中的基因分型。两组间变量比较采用卡方检验,P<0.05有统计学意义。
     结果
     我国北方儿童FGFR2基因rs2981582位点的基因型以C/C为主,占78.81%,C/T基因型占21.19%,本组未检测到T/T基因型。两种基因型频率在北方儿童尿道下裂中分别为C/C基因型150例,占87.77%, C/T基因型23例,占12.23%;正常对照组中C/C基因型93例,占78.81%, C/T基因型25例,占21.19%。两组之间的基因型频率分布比较有差异,X2=4.396,P=0.028。
     结论
     在所研究的人群中,FGFR2单核苷酸多态性位点rs2981582位点与尿道下裂的发病相关,FGFR2基因的rs2981582位点的基因型多态性可能是尿道下裂的致病因素之一。
Objective
     To investigate the association between FGFR2 gene rs2981582 single nucleotide polymorphism and hypospadias in Chinese patients.
     Methods
     To collect 188 patients and 118 healthy individuals'DNA, design PCR primer.Genotyping of FGFR2 gene rs2515733 performed in 188 patients with and 118 healthy individuals by PCR-RFLPassay respectively.
     Results
     The rs2981582 genotypes in the hypospadias patients consisted of homozygote 150(87.77%) C/C,23 (12.23%) C/T, while The genotypes in the controls were composed of 93 (78.81%) C/C,25 (21.19%) C/T. Significant difference was found in the distribution of rs2981582 genotypes between the two groups (X2 =4.396 P=0.028).
     Conclusion
     There may be association between the FGFR2 gene rs2981582 SNP and hypospadias in Chinese northern population.
引文
1 Leonard J, Paulozzi J, Erickson JD, et al. Hypospadias Trends in Two US Surveillance Systems. Pediatrics.1997; 100:831-834.
    2 Paulozzi LJ and Lary JM. Laterality patterns in infants with external birth defects. Teratology.1999; 60:265-271.
    3 L S Baskin, K Himes, and T Colborn. Hypospadias and endocrine disruption:is there a connection? Environ Health Perspect.2001; 109(11):1175-1183.
    4 Kurzrock EA, Jegatheesan P, Cunha GR, et al. Urethral development in the fetal rabbit and induction of hypospadias:a model for human development. J Urol. 2000; 164:17862-17921.
    5 徐家杰,李森恺,李强等.尿道下裂患者SRD5A2基因突变的研究.中华整形外科杂志.2006;3(22):139-141.
    6 Petiot A, Perriton CL, Dickson C, et al. Development of the mammalian urethra is controlled by Fgfr2-Ⅲb. Developmen.2005; 132:2441-2450.
    7 李强,李森恺,徐家杰等.尿道下裂患者雄激素受体基因突变的研究.中华整形外科杂志.2004;11(20)6:421-424.
    8 YongW, Yang Z, Periyasamy S, et al. Essential Role for Co-Chap2erone FKBP52 but not FKBP51 in Androgen Recep tor-MediatedSignaling and Physiology. J Biol Chem,2006.
    9 Beleza-Meireles A, Omrani D, Kockum I, et al. Polymorphisms of estrogen receptor beta gene are associated with hypospadias. J Endocrinol Invest 2006; 29: 5-10.
    10 Beleza-Meireles A, Kockum I, Lundberg F,et al. Risk factors for hypospadias in the estrogen receptor 2 gene. J Clin Endocrinol Metab 2007; 92:3712-3718.
    11 Watanabe M, Yoshida R, Ueoka K, et al. Haplotype analysis of the estrogen receptor 1 gene in male genital and reproductive abnormalities. Hum Reprod 2007; 22:1279-1284.
    12 Emily Willingham, Laurence S Baskin. Candidate genes and their response to environmental agents in the etiology of hypospadias. Nature Clinical Practice Urology.2007; 4:270-279.
    13 Ana Beleza-Meireles, Fredrik Lundberg, Kristina Lagerstedt, et al. FGFR2, FGF8, FGF10 and BMP7 as candidate genes for hypospadias. European Journal of Human Genetics.2007; 15:405-410.
    14 Paulozzi L. International trends in rates of hypospadias and cryptorchidism. Environ Health Perspect 1999; 107:297-302.
    15 Morgan EA, Nguyen SB, Scott V, et al. Loss of Bmp7 and Fgf8 signaling in HOXA13-mutant mice causes hypospadia. Development 2003; 130:3095-3109.
    16 Perriton CL, Powles N, Chiang C,et al. Sonic hedgehog signaling from the urethral plate epithelium controls external genitalia development. Dev Biol 2002; 247:26-46.
    17 Suzuki K, Bachiller D, Chen YP et al. Regulation of outgrowth and apoptosis for the terminal appendage:external genitalia:development by concerted actions of BMP signaling. Development.2003; 130:6209-6220.
    18 Goodman FR, Scambler PJ. Human HOX gene mutations. Clin Genet 2001; 59:1-11.
    19 Petiot A, Perriton CL, Dickson C, et al. Development of the mammalian urethra is controlled by Fgfr2-IIIb. Development.2005; 132:2441-2450.
    20 Ana Beleza-Meireles, Virpi Tohonen, Cilla Soderhall, et al. Activating transcription factor 3:a hormone responsive gene in the etiology of hypospadias. European Journal of Endocrinology.2008; 158 (5):729-739.
    21 Yamaguchi TP. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development.1999; 126:1211-1223.
    22 刘国庆,赵蕊,叶志纯等.先天性尿道下裂与SRY基因关系的探讨.中华泌尿外科杂志.2001;22(4):241-242.
    23 Pascal De Santa Barbara, Nathalie Bonneaud, Brigitte Boizet, et al. Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Mullerian hormone gene.Mol Cell Biol.1998; Nov;18(11):6653-6665.
    24 徐家杰,范巨峰,李森恺等.尿道下裂患者SOX9基因突变的研究.中国美容医学.2008;17(2):238-239.
    25 张艳萍,管慧,宋晶等.WT1在哺乳动物性别发育过程中的调控作用.生物技术通报.2006;2:5-10.
    26 Clark CC, Cohen I Eichstetter I, et al. Molecular cloning of the human proto-oncogene Wnt-5A and mapping of the gene(WNT-5A) to chromosome 3p14-p21. Genomics.1993; 18(2):249.
    27 C Dravis, N Yokoyama, MJ Chumley, et al. Bidirectional signaling mediated by ephrin-B2 and EphB2 controls urorectal development. Developmental Biology. 2004; 271:272-290.
    28 J Amiel, Y Espinosa-Parrilla, J Steffann, et al. Large-Scale Deletions and SMADIP1 Truncating Mutations in Syndromic Hirschsprung Disease with Involvement of Midline Structures. Genet.2001; 69:1370-1377.
    29 N Kalfa, B Liu, K Ophir, F Audran, et al. Mutations of CXorf6 are associated with a range of severities of hypospadias. Eur J Endocrinol.2008; 17:453-458.
    30 Maki Fukami, Yuka Wada, Kanako Miyabayashi, et al. CXorf6 is a causative gene for hypospadias. Nat Genet.2006; 38(12):1369-71.