石墨烯基金属和金属氧化物材料制备与催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是一种新发现的碳纳米材料,比表面大,制备工艺简单,具有独特的物理和化学性能,已经成为纳米研究领域的一个新热点,尤其是在水处理方面有着巨大的潜力。
     本文通过氧化还原法制备石墨烯并以氧化石墨为起点制备石墨烯负载金属(Graphene-Pt,Graphene-Cu)和金属氧化物(Graphene-Fe_3O_4,Graphene-MnO_2)纳米材料,并分别以它们为催化剂,对选定的内分泌干扰物2,4-二氯苯酚进行催化臭氧化降解性能研究。
     以氧化石墨为基础,依据不同负载前驱体的特性,分别制备了不同金属和金属氧化物负载的石墨烯-铂、石墨烯-铜、石墨烯-Fe_3O_4和石墨烯-MnO2材料。采用X射线粉末衍射、拉曼光谱、X射线光电子能谱、热重分析、原子力显微镜、透射电镜等多种现代化测试仪器和方法对样品进行了结构和形貌表征。
     催化降解性能研究表明,6.4wt%石墨烯-铂材料和石墨烯-Fe_3O_4做催化剂的催化臭氧化能力较强且高于石墨烯,说明石墨烯与金属铂或Fe_3O_4相结合对臭氧分解具有一定的催化协同作用。降解性能测试表明在相同条件下,不同的初始浓度降解率不同,浓度越低去除的越快。不同的pH条件对去除率也有影响,中性条件下的去除效果最好。石墨烯负载铜之后对2,4-二氯苯酚的去除率与石墨烯作催化剂的去除效果大体基本相同。石墨烯-多孔MnO2材料的催化臭氧化能力比石墨烯差,具有负催化效应。
Graphene, which have been one of the new hot spot in the nanomaterial field because of its large surface area, simple preparation methods, unique physical and chemical properties, is a newly discovered carbon nanomaterial, and especially it has great potential in water treatment.
     The method of oxiding and reducing graphite is adopted to prepare graphene in this paper, and graphite oxide as the starting point of preparation of garaphene-metal (Graphene-Pt, Graphene-Cu) and graphene-metal oxides (Graphene-Fe_3O_4, Graphene-MnO_2) nanomaterials, and each of them as a catalyst on selected endocrine disrupting chemicals 2,4-dichlorophenol catalytic ozonation performance.
     According to different charasteristics of precursors, the graphene with different metals and metal oxides load as graphene-platinum, graphene-copper, graphene-Fe_3O_4, graphene-MnO_2 were prepared by taking graphite oxide as the foundation. X-ray diffraction and Raman spectroscopy, X-ray photoelectron spectroscopy and thermal gravimetric analysis, atomic force microscopy, transmission electron microscopy and other modern test instruments and methods were characterized on the structure and the appearance attribute to the sample. Catalytic degradation experiment suggest that the abilities of the catalytic ozonation of 6.4wt% graphene-Pt and graphene-Fe_3O_4 catalytic material performance stronger and higher than the capacity of graphene, showing synergy in
     catalytic decomposition of ozone after the combination of Fe_3O_4 or platinum. Degradati- on performance tests show that under the same conditions, different initial concentrations have the different degradation rates, the lower the faster the removal. Different pH conditions also affect the removal, removal under neutral conditions the best. Graphene after load of copper as a catalyst on the 2, 4–dichlorophenol removal behave the same as graphene. The Capability of catalytic ozonation of graphene– porous MnO_2 material is worse than graphene.
引文
1 J. Pelley. Estrogen Knocks out Fish in Whole-lake Experiment. Environ. Sci. Technol. 2003: 313A~314A
    2 C. R. Tyler, S. Jobling, J. P. Crit. Rev. Toxicol. Endocrine Disruption in Wildlife: a Critical Review of the Evidence. 1998, 28(a): 319~361
    3 R. J. Golden, K. L. Noller,L. Titus-Ernstoff, et al. Environmental Endocrine Modulators and Human Health: An Assessment of the Biological Evidence. Toxicol. 1998: 101~227
    4 L. J. Guillette, T. S. Gross, G. R. Masson, et al. Developmental Abnormalities of the Gonad and Abnormal Sex Hormone Concentrations in Juvenile Alligators from Contaminated and Control Lakes in Florida. Environ. Hea. Perspect. 1994: 680~688
    5 R. Stone. Environmental Estrogens Stir Debate. Seience. 1994, 265: 308~310.
    6刘相伟.工业含酚废水处理技术的现状与进展.工业水处理. 1998, 18(2): 25~27
    7施汉昌.氯酚废水的生物处理技术的研究与进展.化学通报. 1998, 8: 1~ 5
    8 B. Moters,J. Y. S. WU. Removal of Organic Precursors by Permanganate Oxidation and Alum Coagnlation. Wat. Res. 1985, 19(3): 309~314
    9吴锡康.有机化工废水治理技术.化学工业出版社. 1985: 1~ 15
    10 Girishkumar, G. Vinodgopal, K. Kamat. Carbon Nanostructures in Portable Fuel Cells: Single-walled Carbon Nanotube Electrodes for Methanol Oxidation and Oygen Reduction . Phys. Chem. B. 2004, 108: 19960~19966
    11 C. Wang, M. Waje, X. Wang, J. M. Tang, et al. Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes. S. Nano Lett. 2004, 4: 345~348.
    12 X. L. Pan and X. H. Bao. Reactions Over Catalysts Confined in Carbon Nanotubes. Chem. Commun. 2008: 6271~6281
    13 B.Yoon, H. B. Pan and C. M. Wai. Relative Catalytic Activities of Carbon Nanotube-Supported Metallic Nanoparticles for Room-Temperature Hydrogena -tion of Benzene. J. Phys. Chem. C. 2009, 113: 1520~1525
    14 U. von Gunten. Ozonation of Drinking Water: Part I. Oxidation Kinetics and Pr- oduct Formation. Water Res. 2003, 37(7):1443~1467
    15 U. von Gunten. Ozonation of Drinking Water: Part II. Disinfection and By-production Formation in Presence of Bromide, Iodide or Chlorine. Water Res. 2003, 37(7): 1469~1487
    16 F. J. Beltrán, G. Ovejero, F. J. Rivas. Oxidation of Polynuclear Aromatic Hydrocarbons in Water Ozone Combined with Hydrogen Peroxide. Ind Eng. Chem. Res. 1996, 35(3): 891~898
    17 A. A. A. El-Raady, T. Nakajima. Effect of UV Radiation on the Removal of Carboxylic Acids from Water by H2O2 and O3 in the Presence of Metallic Ions. Ozone Sci. Eng. 2006, 28(1): 53~58
    18 F. J. Benitez, F. J. Beltrán, J. L. Acero, et al. Degradation of Protocatechuic Acid by Two Advanced Oxidation Processes:Ozone/UV Radiation and H2O2/UV Radiation. Water Res. 1996, 30(7): 1597~1604
    19 S. P. Tong, D. M. Xie, H. Wei, et al. Degradation of Sulfosalicylic Acid by O3/UV, O3/TiO2/UV and O3/V-O/TiO2: A Comparative Study. Ozone Sci. Eng. 2005, 27(3): 233~238
    20 N. Kishimoto, Y. Morita, H. Tsuno, et al. Advanced Oxidation Effect of Ozonation Combined with Electrolysis. Water Res. 2005, 39(19): 4661~4672
    21 N. Al-Hayek, B. legube, M. Doré. Catalytic Ozonation (FeIII/Al2O3) of Phenol and Its Ozonation By-products. Environ. Technol. Lett. 1989, 10(4): 415~426
    22郑志民,雷挺,许嘉炯,等.嘉兴石臼水厂深度处理工程设计与运行.给水排水. 2005, 31(10): 10~13
    23 R. Gracia, J. L. Aragues, J. L. Ovelleiro.Study of the Catalytic Ozonation of Humic Substances in Water and Their Ozonation Byproducts. Ozone. Sci. Eng. 1996, 18(3): 195~208
    24 R. Gracia, J. L. Aragues, J. L. Ovelleiro. Mn(II)-Catalysed Ozonation of Raw Ebro River Water and Its Ozonation By-Products. Water Res. 1998, 32(1): 57~62
    25 C. H. Ni, J. N. Chen, P. Y. Yang. Catalytic Ozonation of 2-Chlorophenol by Metallic Ions. Water Sci. Technol. 2002, 47(1): 77~82
    26施银桃,李海燕,曾庆福,等.臭氧氧化法去除水中邻苯二甲酸二甲酯的初步研究.环境化学. 2002, 21(5): 500~504
    27柳葛贤,吕功煊.催化臭氧化降解罗丹明B的初步研究.环境化学. 2007, 26(5): 626~629
    28 H. Allemane, B. Delouane, H. Paillard, et al. Comparative Efficiency of Three Systems (O3,O3/H2O2 and O3/TiO2) for the Oxidation of Natural Organic Matter in Water. Ozone Sci. Eng. 1993, 15(5): 419~432
    29 Y. X. Yang, J. Ma, Q. D. Qin, et al. Degrada tion of Nitrobenzene by Nano-TiO2 Catalyzed Ozonation. J. Mol. Catal. A: Chem. 2007, 267(1-2): 41~48
    30 R. Andreozzi, R. Marotta, R. Sanchirico. Manganese-catalysed Ozonation of Glyoxalic Acid in Aqueous Solutions. J. Chem. Technol. Biotechnol. 2000, 75(1): 59~65
    31 J. Ma, N. J. D. Graham. Degradation of Atrazine by Manganese-catalysed Ozonation: Influence of Humic Substances. Water Res. 1999, 33(3): 785~793
    32 J. Ma, N. J. D. Graham. Degradation of Atrazine by Manganese-catalysed Ozonation: Influence of Radical Scavengers. Water Res. 2000, 34(15): 3822~3828
    33 S. P. Tong, W. P. Liu, W. H. Leng, et al. Characteristics of MnO2 Catalytic Ozonation of Sulfosalicylic Acid and Propionic Acid in Wat. Chemos. 2003, 50(10): 1359~1364
    34童少平,杜桂荣,张鉴清.液相中MnO2催化臭氧化降解磺基水杨酸.环境化学. 2003, 22(5): 454~458
    35 M. Ernst, F. Lurot, J. C. Schrotter. Catalytic Ozonation of Refractory Organic Model Compounds in Aqueous Solution by Aluminum Oxide. Appl. Catal. B:Environ. 2004, 47(1): 15~25
    36 B. Kasprzyk-Horden, U. Raczyk-Stanis?awiak, J. ?wietlik, et al. Catalytic Ozonation of Natural Organic Matter on Alumina. Appl. Catal. B:Environ. 2006, 62(3-4): 345~358
    37 Y. M. Dong, K. He, L. Yin, et al. A Facile Route to Controlled Synthesis of Co3O4 Nanoparticles and Their Environmental Catalytic Properties. Nanotechnol. 2007, 18(43): 435602
    38 W. J. Huang, G. C. Fang, C. C. Wang. A Nanometer-ZnO Catalyst to Enhance The Ozonation of 2,4,6-trichlorophenol in Water. Col and Sur A. 2005, 260 (1-3): 45~51
    39 H. Jung, H. Choi. Catalytic Decomposition of Ozone and para-Chlorobenzoic Acid (pCBA)in the Presence of Nanosized ZnO. Appl. Catal. B: Environ. 2006, 66(3-4): 288~294
    40 F. J. Rivas, M. Carbajo, F. J. Beltrán, et al. Perovskite Catalytic Ozonation ofPyruvic Acid in Water:Operating Conditions Influence and Kinetics. Appl. Catal. B: Environ. 2006, 62(1-2): 93~103
    41 M. Carbajo, F. J. Beltrán, F. Medina, et al. Catalytic Ozonation of Phenolic Compounds: The Case of Gallic Acid. Appl. Catal. B: Environ. 2006, 67(3-4): 177~186
    42 F. J. Beltrán, F. J. Rivas, R. Montero-de-Espinosa. Ozone-Enhanced Oxidation of Oxalic Acid in Water with Cobalt Catalysts. Heterogeneous Catalytic Ozonation. Ind. Eng. Chem. Res. 2003, 42(14): 3218~3224
    43 J. H. Qu, H. Y. Li, H. J. Liu, et al. Ozonation of Alachlor Catalyzed by Cu/Al2O3 in Water. Catal. Today. 2004, 90: 291~296
    44 R. Gracia, S. Cortes, J. Sarasa, et al. Catalytic Ozonation with Supported Titanium Dioxide. The Stability of Catalyst in Water. Ozone Sci. Eng. 2000, 22(2): 185~193
    45 R. Gracia, S. Cortes, J. Sarasa, et al. Heterogeneous Catalytic Ozonation with Supported Titanium Dioxide in Model and Natural Waters.Ozone Sci. Eng. 2000, 22(5): 461~471
    46尹琳. Zn-粘土催化剂对染料废水的O3氧化降解性能的影响.高校地质学报. 2000, 6(2): 260~264
    47 U. Jans, J. Hoigné. Activated Carbon and Carbon Black Catalyzed Transformation of Aqueous Ozone into OH-Radicals. Ozone Sci. Eng. 1998, 20(1): 67~90
    48 J. Ma, M. H. Sui, T. Zhang, et al. Effect of pH on MnOx/GAC Catalyzed Ozonation for Degradation of Nitrobenzene. Water Res. 2005, 39(5): 779~786
    49 M. Muruganandham, S. H. Chen, J. J. Wu. Evalution of water treatment sludge as a catalyst for aqueous ozone decomposition. Catal. Commun. 2007, 8(11): 1609~ 1614
    50 F. Delanoё, B. Acedo, N. K. V. Leitner, B. Legube. Relationship between the Structure of Ru/CeO2 Catalysts and Their Activity in the Catalytic Ozonation of Succinic Acid Aqueous Solutions. Appl. Catal. B:Environ. 2001, 29(4): 315~325
    51 C. Cooper, R. Burch. Mesoporous Materials for Water Treatment Processes. Water Res. 1999, 33(18): 3689~3694
    52 H. Fujita, J. Izumi, M. Sagehashi, et al. Adsorption and Decomposition of Water-dissolved Ozone on High Silica Zeolites. Water Res. 2004, 38(1):159~165
    53 M. Sagehashi, K. Shiraishi, H. Fujita, et al. Adsorptive Ozonation of 2-Methylisoborneol in Natural Water with Preventing Bromate Formation. Water Res. 2005, 39(16): 3900~3908
    54 C. A. Zazor. Enhanced Oxidation of Toxic Effluents Using Simultaneous Ozonation and Activated Carbon Treatment. J. Chem. Technol. Biotechnol. 1997, 70(1): 21~28
    55 S. Muramoto, J. Nishino. An Advanced Purification System Combining Ozonation and BAC, Developed by the Bureau of Waterworks, Tokyo Metropolitan Government. Desalination. 1994, 98(1-3): 207~215
    56 W.H.Kim, Nishijima, Shoto, t al. ilot Plant Study on Ozonation and Biological Activated Carbon Processes for Drinking Water Treatment.Water. Sci. Technol. 1997,35(8): 21~28
    57 U. Jans, J. Hoigné. Activated Carbon and Carbon Black Catalyzed Transformation of Aqueous Ozone into OH-Radicals. Ozone Sci. Eng. 1998, 20(1): 67~90
    58 M. Sánchez-Polo, E. Salhi, J. Rivera-Utrilla, et al. Combination of Ozone with Activated Carbon as an Alternative to Conventional Advanced Oxidation Processes. Ozone Sci. Eng. 2006, 28(4): 237~245
    59 F.J.Beltrán,F.J.Rivas,R.Montero-de-Espinosa.Mineralization Improvement of Phenol Aqueous Solutions through Heterogeneous Catalytic Ozonation. J. Chem. Technol. Biotechnol. 2003, 78(12): 1225~1233
    60 M. M. Hassan, C. J. Hawkyard. Decolourisation of Dye and Dyehouse Effluent in a Bubble-column Reactor by Heterogeneous Catalytic Ozonation. J. Chem. Techno-l. Biotechnol. 2006, 81(2): 201~207
    61 F. J. Beltrán, F. J. Rivas, L. A. Fernández, et al. Kinetics of Catalytic Ozonation of Oxalic Acid in Water with Activated Carbon. Ind. Eng. Chem. Res. 2002, 41(25): 6510~6517
    62 J. Ma, M. H. Sui, Z. L. Chen, et al. Degradation of Refractory Organic Pollutants by Catalytic Ozonation-Activated Carbon and Mn-loaded Activated Carbon as Catalysts. Ozone Sci. Eng. 2004, 26(1): 3~10
    63 B. S. Oh, S. J. Song, E. T. Lee, et al. Catalyzed Ozonation Process with GAC and Metal Doped-GAC for Removing Organic Pollutants. Water Sci. Technol 2004, 49(4): 45~49
    64周云瑞,祝万鹏,刘福东,等.催化剂载体对催化臭氧化活性的影响.清华大学学报(自然科学版). 2007, 47(9): 1481~1484
    65 S. Iijima. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354 (6348): 56~58
    66 E. T. Thostenson, Z. F. Ren, T. W. Chou. Advances in the Science and Technology of Carbon Nanotubes and Their Composites: a Review. Comp. Sci. Technol. 2001, 61(13): 1899~1912
    67 F. Luck. Wet Air Oxidation: Past, Present and Future. Catal. Today. 1999, 53: 81~91
    68 H. T. Gomes, P. V. Samant, P. Serp, et al. Carbon Nanotubes and Xerogels as Supports of Well-dispersed Pt Catalysts for Environmental Applications. Appl. Catal. B:Environ. 2004, 54(3): 175~182
    69 J. Garcia, H. T. Gomes, P. Serp, et al. Platinum Catalysts Supported on MWCNT for Catalytic Wet Air Oxidation of Nitrogen Containing Compounds. Catal. Today. 2005, 102-103: 101~109
    70 J. Garcia, H. T. Gomes, P. Serp, et al. Carbon Nanotubes Supported Ruthenium Catalysts for the Treatment of High Strength Wastewater with Aniline Using Wet Air Oxidation.Carbon. 2006, 44(12): 2384~2391
    71 G. Ovejero, J. L. Sotelo, M. D. Romero, et al. Mulltiwalled Carbon Nanotubes for Liquid-phase Oxiadation.Functionalization, Characterization, and Catalytic Activity. Ind. Eng. Chem. Res. 2006, 45(7): 2206~2212
    72 S. Yang, W. Zhu, X. Li, et al. Multi-walled Carbon Nanotubes(MWNTs)as an Efficient Catalyst for Catalytic Wet Air Oxidation of Phenol. Catal. Commun. 2007, 8(12): 2065~2069
    73温轶,施利毅,方建慧,等.压缩集结碳纳米管电极对活性艳红染料的电催化降解研究.化学学报. 2006, 64(5): 439~443
    74 Z. Q. Liu, J. Ma, Y. H. Cui. Carbon Nanotube Supported Platinum Catalysts for the Ozonation of Oxalic Acid in Aqueous Solutions. Carbon. 2008: 890~897
    75 H. W. Kroto, J. R. Heath, S. C. O 'Brien, et al. C60 : Buckm Insterfullerence . Nature. 1985, 318: 162~2163
    76 A. K. Geim, K. S. Novoselov. The Rise of Graphene. Nature Mater. 2007, 6: 183~191
    77 B. Partoens and F. M. Peeters. From Graphene to Graphite: Electronic Structure around the K Point. Phys. Rew. B. 2006, 74: 075404
    78 H. Shioyama, T. Akita. A New Route to Carbon Nanotubes. Carbon, 2003, 41 (1): 179
    79 L. M. Viculis, J. J. Mack, R. B. Kaner, et al. A Chemical Route to Carbon Nanoscrolls. Science, 2003, 299 (5611): 1361
    80 C. N. R. Rao, Kanishka Biswas , K. S. Subrahmanyam and A. Govindaraj. Graphene, the new nanocarbon. J. Mater. Chem, 2009, 19: 2457~2469
    81 J. C. Meyer, A. K. Geim, M. I. Katsnelson, et al. The Structure of Suspended Graphene Sheets. Nature, 2007, 446: 60~63
    82 H. K. Chae, D. Y. Siberio Perez, J. Kim. A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals. Nature, 2004, 427: 523
    83 L. S. Schadler, S. C. Giannaris, P. M. Ajayan. Load Transfer in Carbon Nanotube Epoxy Composites. Appl. Pys. Lett. 1998 ,73: 3842.
    84 Y. Zhang, J. W. Tan, P. Kim, et al. Experimental Observation of Quantum Hall Effect and Berry’s Phase in GrapheneNature, 2005, 438: 201
    85 Y. Matsuo. Preparation of Intercalation Compounds of Graphite Oxide. TANSO, 2007 (228): 209~214
    86 H. C. Schniepp, J. L. Li, M. J. McAllister, et al. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B, 2006, 110 (17): 8535~8539
    87 W. Hummers, A. Offema. Preparation of Graphitic Oxide. J. Am. Chem. Soc, 1958, 80: 1339
    88 J. W. Peckett, P. Trens, R. D. Gougeon, et al. Electrochem Ically Oxidised Graphite: Characterisation and Some Ion Exchange Properties. Carbon, 2000, 38(3): 345~353
    89 J. M. Hudson, Hunter, F. RFujita, J. W. Peckett, et al. Electro Chemically Prepared Colloidal, Oxidised Graphite. J. Mater. Chem, 1997, 7: 301~305
    90 H. Kaczmarek, A. Podgorski. Photochem Ical and Thermal Behaviours of Poly (vinyl alcohol) /Graphite Oxide Composites. Polymer Degradation and Stability, 2007, 92 (6): 939~946
    91 J.Jiang. Thermodynamic Data for Anodic Solid State Graphite Oxidation Products in 71% Perchloric Acid. Carbon, 1993; 31 (5): 663~666
    92 M.J.Hudson, F.R.Hunter-Fujita, et al. Electrochemically Prepared Colloidal, Oxidized Graphite. J.Mater.Chem , 1997; 7 (2): 301
    93 H. He, J. Klinowski, M. Forster, A. Lerf, A New Structural Mode for GraphiteOxide. Chem. Phys. Lett. 1998, 287: 53~56
    94 S. Stankovich, D. A. Dikin, R. D. Piner, et al. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Egraphite Oxide. Carbon, 2007, 45: 1558~1565.
    95 R. Muszynski, B. Seger and P. V. Kamat. Decorating Graphene Sheets with Gold Nanoparticles J. Phys. Chem. C. 2008, 112:5263~5266
    96 V. C. Tung1?, M. J. Allen2?, Y. Yang1* and R.B.Kaner1,2*. High-throughput Soluti- on Processing of Large-scale Graphene. NNANO. 2008, 4: 25~29
    97 C. Xu, X. Wang, J. W. Zhu, X. J. Yang and L. Lu. Deposition of Co3O4 Nano- particles onto Exfoliated Graphite Oxide Sheets. J. Mater. Chem. 2008, 18: 5625~5629
    98 C. Xu, X. Wang and J. W. Zhu. Graphene-Metal Particle Nanocomposites. J. Phys. Chem. C. 2008, 112: 19841~19845
    99 R. Kou, Y. Y. Shao, D. H. Wang, M. H. Engelhard, et al. Enhanced Activity and Stability of Pt Catalysts on Functionalized Grapheme Sheets for Electrocatalytic Oxygen Reduction. Electochem. Commun. 2009, 11:954~957.
    100 B. Seger and P. V. Kamat. Electrocatalytically Active Graphene-Platinum Nano- composites Role of 2-D Carbon Support in PEM Fuel Cells. J. Phys. Chem. C. 2009, 113: 7990~7995
    101 E. J. Yoo, T. Okata, T. Akita, M. Kohyama, et al. Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface. Nano. Lett. 2009, 9: 2255~2259
    102 X. Z. Zhou, X. Huang, X. Y. Qi, S. X. Wu, et al. In Situ Synthesis of Metal Nanoparticles on Single-Layer Graphene Oxide and Reduced Graphene Oxide Surfaces. J. Phys. Chem. C. 2009, 113: 10842~10846
    103 Hassan M. A. Hassan, V. Abdelsayed, A. E. R. S. Khder, et al. Microwave Synthesis of Graphene Sheets Supporting Metal Nanocrystals in Aqueous and Organic Media. J. Mater. Chem. 2009, 19: 3832~3837
    104 S. Kapoor, R. Joshi, T. Mukherjee. Influence of Ianions on the Formation and Stabilization of Copper Nanoparticles. Chem. Phys. Lett, 2002, 354(5-6): 443~448
    105王全胜,刘颖,王建华,张先武.沉淀氧化法制备Fe3O4的影响因素研究.北京理工大学学报. 1994(2): 200~205