氨抑制臭氧化副产物溴酸盐的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在饮用水深度处理中,采用臭氧化技术后,产生可能对人体有高致癌性的溴酸盐副产物。目前对溴酸盐的控制方法有多种,氨抑制溴酸盐就是其中方法之一。但是,目前研究者仅针对水中NH4+研究的相对较多,而气相氨无人研究。因此,本课题提出一种新方法,通过气相氨和液相氨对溴酸盐抑制作用的比较来探索气相氨对于溴酸盐的抑制效果。
     论文首先研究了逆向流鼓泡柱实验,结果表明:两种情况下,气相氨对溴酸盐的抑制率在52%-60%,液相氨(氯化铵)则为53%-62%,气相氨和液相氨对溴酸盐的抑制率接近,气相氨对液相氨没有优势。对于出水氨氮浓度的变化情况,气相氨的氨氮浓度有波动,但波动幅度不大,出水氨氮浓度的变化范围在0.030-0.166mg/L;加氯化铵氨氮浓度也有所波动,但波动范围不大,出水氨氮浓度的变化范围在0.030-0.165mg/L。同时实验还考察了氨氮浓度沿柱方向变化情况,结果为:气相氨为逐渐降低,而液相氨则为逐渐升高。
     改变进水方式,论文继续对同向流鼓泡柱实验进行了研究,结果表明:气相氨对溴酸盐的抑制率在60%-71%,而加入液相氨(硫酸铵)对溴酸盐的抑制率在55%-62%;与液相氨生成溴酸盐量相比,气相氨比液相氨减少20%-32%,气相氨比液相氨有更好的抑制效果。在不改变其它条件的情况下:增加氨氮浓度,气相氨和液相氨抑制溴酸盐的效果都增强;而分别增加溴离子浓度和臭氧浓度,气相氨和液相氨对溴酸盐的抑制率都有所降低,但降幅不大。若保持臭氧浓度不变,同时改变溴离子浓度和氨氮浓度也即N/Br(摩尔比)不变,这种情况对抑制溴酸盐的影响没有规律性。对于出水氨氮浓度变化则是变化幅度都不大,气相氨出水氨氮浓度比液相氨出水氨氮浓度低;氨氮浓度沿柱体方向的变化情况为:气相氨先升高后降低,液相氨为逐渐升高。
     基于以上实验结果可知,采用同方向进水进气的方式,气相氨比液相氨对溴酸盐有更好的抑制效果,与液相氨生成溴酸盐量相比,气相氨比液相氨减少20%-32%;气相氨可通过调节氨气流量来控制氨气的投加量,这样就可以实现实际工程中的在线控制。
Ozone-based technology has been applied widely in the drinking water treatment. But it may create a high carcinogenic bromate by-product for human body. Bromate has a variety of control methods at present and ammonia is one of them. However, researchers have just many studies for NH4 +relatively at present, gas phase ammonia is currently no studied. Therefore, this issue presents a new method to explore inhibition effect of bromate for gas phase ammonia through the comparison of gas phase ammonia and liquid phase ammonia on bromate inhibition.
     At first, paper studies the reverse-flow bubble column experiment and results show: bromate inhibition rate of gas phase ammonia is 52%-60% and bromate inhibition rate of liquld phase ammonia (ammonium chloride) is 53%-62%. Gas phase ammonia and liquild phase ammonia have a similar bromate inhibition rate. So gas phase ammonia is not for the advantages of liquid phase ammonia in bromate inhibition. For the changes in effluent ammonia concentration, concentration of gas phase ammonia has volatility, but the volatility is not high and the effluent ammonia concentration is in the range of 0.030-0.166mg/L. Liquid phase ammonia concentration is also fluctuate but the fluctuation is little and effluent ammonia concentration is in the range of 0.030-0.165mg/L. In the meantime, experiment also examines the change of ammonia concentration along the column direction and its experiment results is that gas phase ammonia is gradually reduced, while liquid phase ammonia is then gradually increased.
     Paper continues to study bubble column experiment with the same flow and the experiment results show that bromate inhibition rate of gas phase ammonia is 60%-71%, while bromate inhibition rate of liquid phase ammonia (ammonium sulfate) is 55%-62%. Compared with the bromate generated by liquid phase ammonia, the bromate generated by gas phase ammonia is reduced by 20%-32%. So gas phase ammonia has a better bromate inhibition effect than that of liquid phase ammonia. Without changing the other conditions, increasing ammonia concentration, inhibition effect of bromate by gas phase ammonia and liquid phase ammonia are both enhanced; increasing concentration of bromide ion and ozone respectively, bromate inhibition rate of gas phase ammonia and liquid phase ammonia has been lower, but drop a little. If the ozone concentration is unchanged while concentration of bromide ion and ammonia is changed, that is N / Br is unchanged, bromate inhibition effect in this condition has not regularity. For the effluent ammonia concentration, its magnitude of change is not large. Generally, the effluent ammonia concentration of gas phase ammonia is lower than that of liquid phase ammonia. Ammonia concentration change along the bubble column direction is first increased and then decreased for gas phase ammonia, while liquid phase ammonia is gradually increased.
     Based on the above results, we can conclude that gas phase ammonia inhibition effect on the bromate is better than that of liquid phase ammonia in the direction of water intake using the same way. Compared with the bromate generated by liquid phase ammonia, the bromate generated by gas phase ammonia is reduced by 20% -32%. Gas phase ammonia can be controlled by regulating the flow of ammonia dosage, so that it can achieve on-line control in the actual project.
引文
1董海山,曾抗美.控制饮用水消毒副产物的研究状况与评述.重庆环境科学. 2000, 22(6): 68-71
    2孙毅,吕锡武.应用BAC和UV-micro-O3技术对饮用水深度处理的研究.净水技术. 2000, 18(1): 21-24
    3陈向明,王虹.优质饮用水深度处理技术探讨.给水排水. 2001, 27(8): 1-5
    4叶辉,陈翼孙. O3-BAC深度处理黄浦江污染原水中试研究.给水排水. 2000, 26(12): 18-22
    5田禹,曾祥荣,周定.臭氧-生物活性炭联用技术发展状况.哈尔滨工业大学学报. 1998, 30(2): 21-25
    6 Urs Von Gunten, et al. Bromate Formation during Ozonation of Bromide-containing Waters Interaction of Ozone and Hydroxyl Radi-cal Reactions. Environ Sci & Tec. 1994, 28(7): 1234
    7 H. Glaze William, et al. Evaluating the Formation of Brominated DBPs during Ozonation. JAWWA. 1993, 85(1): 96
    8王晓昌.臭氧处理的副产物.给水排水. 1998, 24(12): 22-25
    9 USEPA. Health Risk Assessment/Characterization of the Drinking Water Disinfection By-product Bromate. FR Document. 1998, 61: 15673
    10 Mohamed S. Siddiqui, et al. Bromate Ion Formation: a Critical Review. JAWWA. 1995, 87(10): 58
    11 Paul Westerhoff, et al. NOM’s Role in Bromine and Bromate Formation during Ozonation. JAWWA. 1998, 90(2): 82
    12 M. Siddiqui & G. Amy. Factors Affecting DBP Formation during Ozone-bromide Reactions. JAWWA. 1993, 85(1): 63
    13 Urs von Gunten. Ozonation of Drinking Water: Part II Disinfection and By-product Formation in Presence of Bromide, Iodide or Chlorine. Wat Res. 2003, 37(7): 1469-1487
    14马军,刘晓飞,王刚,等.臭氧/高锰酸盐控制臭氧氧化副产物.中国给水排水. 2005, 21(6): 12-15
    15 Clayton J Johnson, Philip C Singer. Impact of Amagneticion Exchange Resin on Ozone Demand and Bromate Formation during Drinking Water Treatment. Wat Res. 2004, 38(17): 3738-3750
    16 X. Yang, S. Chii. Quantification of Aqueous Cyanogen Chloride and Cyanogen Bromide in Environmental Samples by MIMS. Wat Res. 2005, 39(9): 1709-1718
    17 USEPA. Determination of Carbonyl Compounds in Drinking Water by Pentafluorobenzylhydroxylamine Derivatization and Capillary Gas Chromatography with Electron Capture Detection. FR Document. 1998, 61: 15782
    18 K. Nagano, H. Kano, H. Arito, et al. Enhancement of Renal Carcinogenicity by Combined Inhalation and Oral Exposures to Chloroform in Male Rats. Environ Health PartA. 2006, 69(14): 1827-1842
    19 C. Zwiener, S. D. Richardson, D. M. De Marini, et al. Drowning in Disinfection By-products Assessing Swimming Pool Water. Environ Sci Tec. 2007, 41(2): 363-372
    20 S. W. Krasner, H. S. Weinberg, S. D. Richardson, et al. Occurrence of a New Generation of Disinfection By-products. Environ Sci Tec. 2006, 40(23): 7175-7185
    21张绍园,姜兆春,王菊思.饮用水消毒副产物控制技术研究现状与发展.水处理技术. 1998, 24(1): 7-13
    22周云,梅胜.给水处理中的臭氧副产物.中国给水排水. 1999, 15(2): 27-28
    23浣晓丹,罗岳平,译.自来水中臭氧副产物的生成及其控制.净水技术. 2000, 18(3): 41-44
    24王晓昌.臭氧处理的副产物.给水排水. 1998, 24(12): 75-77
    25王祖琴,李田.含溴水氧化过程中溴酸盐的形成与控制.净水技术. 2001, 20(2): 7-11
    26王琳,王宝贞.优质饮用水净化技术.北京,科学出版社, 2000: 51-57
    27陈向明,王虹.优质饮用水深度处理技术探讨.给水排水. 2001, 27(8): 1-5
    28 K. L. Simpson, K. P. Hayes. Drinking Water Disinfection By-products: an Australian Perspective. Wat Res. 1998, 32(5): 1522-1528
    29 C. P. Weisel, H. Kim, P. Haltmeier, et al. Exposure Estimates to Disinfection By-products of Chlorinated Drinking Water. Environ Health Perspect. 1999, 107(2): 103-110
    30白晓慧,贺兰喜,王宝贞.常规饮用水净化技术面临的挑战及对策.水科学进展. 2002, 13(1): 122-127
    31 E. Malliarou, C. Collins, N. Graham, et al. Haloacetic Acids in Drinking Water in the United Kingdom. Wat Res. 2005, 39(12): 2722-2730
    32 A. I. Egorov, A. A. Tereschenko, L. M. Altshul, et al. Exposures to Drinking Water Chlorination By-products in a Russian City. Environ Heal. 2003, 206(6): 539-551
    33刘勇建,牟世芬,林爱武,等.北京市饮用水中溴酸盐、卤代乙酸及高氯酸盐研究.环境科学. 2004, 25(2): 51-55
    34魏建荣,王振刚,郭新彪,等.生活饮用水中消毒副产物的分布水平.环境与健康杂志. 2004, 21(1): 33-37
    35李继,董文艺,贺彬,等.臭氧投加方式对溴酸盐生成量的影响.中国给水排水. 2005, 21(4): 1-4
    36董丽丽,黄骏雄.饮用水消毒副产物及其分析技术.化学进展. 2005, 17(2): 350-358
    37 H. Zhou, X. J. Zhang, Z. S. Wang. Occurrence of Haloacetic Acids in Drinking Water in Certain Cities of China. Biomed Environ Sci. 2004, l7: 299-308
    38 L. Liang, P. C. Singer. Factors Influencing the Formation and Relative Distribution of Haloacetic Acids and Trihalomethanes in Drinking Water. Environ Sci Tec. 2003, 37(13): 2920-2928
    39 Tasushi takeuchi, Kazuhiro Mochiaxuki, Noiryuki Matsunobu, et al. Removal of Organic Substances from Water by Ozone Treatment Followed by Biological Activated Carbon Treatment. Wat Sci Tec. 1997, 35(7): 171-178
    40 E. E. Chang, P. C. Chiang. Effect of Bromide and Ammonia on the Formation of Ozonation and Chlorination By-product. ASCE. 2008, 12: 2
    41 R. Hofmann, R. C. Andrews. Potential Side Effects of Using Ammonia to Inhibit Bromate Formation during the Ozonation of Drinking Water. Environ Eng Sci. 2007, 6: 739-743