长期施肥对中国3种典型土壤微生物量碳氮和微生物碳源利用率的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用氯仿熏蒸培养法、Biolog-ECO比色法、高锰酸钾比色法等,比较分析了湖南-祁阳、河南-郑州、吉林-公主岭3个长期定位试验点不同施肥处理土壤的微生物量碳、微生物量氮、AWCD值、微生物对6类31种碳源的利用率;分析了湖南祁阳2008-2009年冬小麦苗期、返青期和成熟期红壤的微生物量碳氮、全碳、全氮和活性有机碳;分析了湖南祁阳长期施肥19年后红壤的基本理化性质及其与红壤微生物性状的相关性。主要结果如下:
     1.红壤长期施肥19年后,在小麦苗期,单施有机肥和有机无机配施的微生物总数高于不施肥和单施化肥;在整个小麦生育期,有机无机配施和单施有机肥增加了红壤微生物量碳和微生物量氮;对于红壤微生物对碳源的利用率来说,有机肥处理的最高,其次为不施肥,单施化肥的最低;总体上,红壤微生物对聚合物类碳源,尤其是对其中的吐温40和吐温80的利用率较高。单施有机肥和有机无机配施条件下,红壤微生物对碳水化合物、聚合物、胺类、酚类和羧酸的利用类均高于不施肥和单施化肥;单施有机肥和有机无机配施的红壤微生物对碳源利用率相似。
     2.长期施肥19年后,在玉米成熟期,有机无机配施和高倍有机无机配施的潮土微生物量碳氮均高于不施肥和单施化肥。潮土各处理之间,微生物对碳源的利用率差异较小。总体上,潮土微生物对聚合物类碳源的利用率较高,尤其是对聚合物中的吐温40和吐温80的利用率较高,其次是碳水化合物类。高倍有机无机肥配施和秸秆还田配施化肥的潮土微生物对碳源的利用率相似。
     3.长期施肥19年后,在玉米成熟期,有机无机配施的黑土微生物量碳氮均高于不施肥和单施化肥。对于黑土微生物对碳源的利用率来说,有机肥处理的要高于单施化肥处理的。总体上,黑土微生物对6类碳源的利用情况是,黑土对碳水化合物类碳源的利用率高于其他碳源,尤其是对碳水化合物类中的D-甘露醇、D-纤维二糖和D-木糖/戊醛糖的利用率较高,对酚类的利用率最低。高倍有机无机配施和有机无机配施的黑土微生物量对碳源的利用率相似。
     4.在小麦生育期,红壤微生物量碳氮、全碳、全氮和活性有机碳均高于苗期和成熟期。各处理间微生物商、微生物量氮占全氮的比例和微生物量碳氮比之间的差异较小。小麦成熟期的微生物量碳氮和碳源利用率与产量呈正相关。
By the means of chloroform fumigation method, Biolog-Eco method, and potassium permanganate colorimetry, soil microbial biomass carbon, soil microbial biomass nitrogen, AWCD content, and utilization ratios of 31 carbon sources by soil microbe of long-term located fertilization points in Hunan Qiyang, Henan Zhengzhou, and Jilin Gongzhuling were compared; and analyzed soil microbial biomass carbon, soil microbial biomass nitrogen, organic carbon, total nitrogen, and active organic carbon of red soil in Qiyang at 2008~2009 winter wheat’s seedling stage, regreen stage, and mature stage; and after 19 years long-term fertilization in Qiyang, we analyzed the basic physical and chemical properties of red soil, and also analyzed the correlation relationship between the red soil properties and the red soil microbial properties. The major results were summarized as follows:
     1. Compared with control and inorganic fertilization, after 19 years fertilization at wheat seedling stage total soil microorganism of manure application and inorganic fertilizaton combinated with manure were higher. Manure application and inorganic fertilizaton combinated with manure increased the red soil microbial biomass carbon and microbial biomass nitrogen. To the utilization ratios of carbon sources by red soil microbe, the order of the values were as follow: manure application > control > inorganic fertilization. On the whole, the utilizations that the red soil microbe utilized polymer carbon sources especially tween 40 and tween 80, were at a high level. Compared with control and inorganic fertilization, manure application and inorganic fertilizaton combinated with manure raised the utilization ratios of carbon sources by red soil microbe, and the carbon sources included carbohydrates, polymers, amines, phenols, carboxylic acids. The carbon sources utilization ratios of manure application were similar to that of inorganic fertilizaton combinated with manure.
     2. Compared with control and inorganic fertilization, after 19 years fertilization at corn maturity stage the drab soil microbial biomass carbon, nitrogen of inorganic fertilizaton combinated with manure and high-power inorganic fertilizaton combinated with manure, were higher. Among the treatments, the utilization ratios of carbon sources by drab soil microbe had a little difference. The utilizations that the drab soil microbe utilized polymer carbon sources, especially tween 40 and tween 80, were higher, and carbohydrate carbon sources next.
     3. After 19 years fertilization, at corn maturity stage the black soil microbial biomass carbon, nitrogen of inorganic fertilizaton combinated with manure were higher than that of control and inorganic fertilization. The carbon sources utilization ratios of manure application by black soil microbe were higher than that of control and inorganic fertilization. On the whole, to 6 carbon sources utilization ratios by black soil microbe, the utilization ratios of carbohydrates, especially D-mannitol, D-cellobiose and D-xylose, were higher than that of others, and that of phenols lowest.
     4. The red soil microbial biomass carbon, soil microbial biomass nitrogen, total carbon, total nitrogen, and active organic carbon of wheat regreen stage were all higher than that of seedling stage and maturity stage. Among various treatments there was a little difference between the microbial quotient, the proportion of microbial biomass nitrogen to total nitrogen and the proportion of microbial biomass carbon to microbial biomass nitrogen. Soil microbial biomass carbon, nitrogen and carbon sources utilization ratios of wheat maturity stage were positive related to grain yield.
     5. The microbial biomass carbon of black soil was higher than that of drab soil, and that of red soil lowest. There was no significant difference between the microbial biomass nitrogen of red soil and drab soil. To the ratios of microbial biomass carbon to microbial biomass nitrogen, the black soil and drab soil were higher than red soil. While to the utilization ratios of amino acids, carbohydrates, phenols, amines, polymers, and carboxylic acids, the black soil were higher than red soil and drab soil.
引文
1张桂兰,宝德俊,王英.长期施用化肥对作物产量和土壤性质的影响[J].土壤通报,1999,30(2):64-67
    2张海燕,肖延华.土壤微生物量作为土壤肥力指标的探讨[J].土壤通报,2006,37(3):422-425
    3 Baath E, Diaz-Ravina M, Frostegard A. Effect of metal-rich sludge amendments on the soil microbial community[J]. Appl.Environ.Microb,1998,64:238-245
    4 Pennanen T. Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH—A summary of the use of phospholipid fatty acids, Biolog and 3H-thymidine incorporation methods in field studies[J]. Geoderma, 2001,100:91-126
    5张桃林,普如坤,季国亮.人为作用对环境质量的影响及对策与防治[M].北京.中国农业出版社.2000, 63-85
    6 Haack S K,GarchowH,KlugM J. Analysis of factors affect-ing the accuracy, reproducibility and interpretation of microbial community carbon source utilization patterns[J]. Environ.Microb.1995,61:1458-1468
    7 Tate R L. Soil Microbiology.Ind Ed.New York:John Wiley,2000.167-169
    8 Winding A, Hendriksen N B. Biolog substrate utilization assay for metabolic fingerprints of soil bacteria[J]. 1997.195-205
    9 Smalla K, Wachtendor, HeuerH. Analysisof BIOLOGGN substrate utilization patterns by microbial communities[J]. Environ.Microb,1998,64:1220-1225
    10 Campbell C D, Grayston S J, Hirst D J. Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities[J]. Microbiol. Methods,1997,30:33-41
    11 AbasiofiokMI, Ann CK. Phospholipid fatty acid profiles and carbonutilization patterns for analysis of microbial community structure underfield and greenhouse conditions[J]. FEMS Microb.Ecol,1998,26:151-163
    12 Schutter M, Dick R. Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates.Soil Biol[J]. Biochem, 2001,33:1481-1491
    13 Shishido M, Chanway C P. Storage effects on indigenous soil microbial communities and PGPR efficiency[J]. Soil Biol.Biochem,1998,30:937-947
    14 Warcup J H. The soil-plate method for isolation from soil[J]. Nature,1950, 166:117-118
    15张平究,李恋卿.长期不同施肥下太湖地区黄泥土表土微生物碳氮量及基因多样性变化[J].生态学报,2004,24(12):2818-2824
    16徐明岗,梁国庆,张夫道.中国土壤肥力演变[M].北京:中国农业科学技术出版社,2006
    17张夫道.中国土壤的生物演变及安全评价[M].北京:中国农业出版社,2006
    18石玲,戴万宏.宣城红壤微生物量碳含量及其与土壤有机碳矿化的关系[J].土壤通报, 2009,40(3):548-551
    19 Mark A. Williams, Charles W. Rice & Clenton E. Owens by Carbon dynamics and microbial activity in tall grass prairie exposed to elevated CO2 for 8 years[J]. Plant and Soil,2000,227:127-137
    20 Qiufang Xu, Peikun Jiang, Zhihong Xu. Soil microbial functional diversity under intensively managed bamboo plantations in southern China[J]. J Soils Sediments, 2008,8:177-183
    21 Cheng Hu, Zhi Ping Cao, Yun Feng Chen, Richard Dawson. Dynamics of Soil Microbial Biomass Carbon, Mineral Nitrogen and Nitrogen Mineralization in Long-Term Field Experiment[J]. Northern China,2008,32(2):287-302
    22 Zhong W H, Gu T, Wang W, Zhang B, Lin X G, Huang Q R, Shen W S. The effects of mineral fertilizer and organic manure on soil microbial community and diversity [J]. Plant Soil,2010,326:511-522
    23金剑,王光华,陈雪丽,刘晓冰,Step hen J Herbert. Biolog-ECO解析不同大豆基因型R1期根际微生物群落功能多样性特征[J].大豆科学,2007,26(4):566-569
    24 Shen W S, Lin X G, Gao N, Zhang H Y, Yin R, Shi W M, Duan Z Q. Land use intensification affects soil microbial populations functional diversity and related sup pressiveness of cucumber Fusarium wilt in China’s Yangtze River Delta[J]. Plant Soil,2008,306:117-127
    25徐晶,陈婉华,孙瑞莲,周义清.不同施肥处理对湖南红壤中微生物数量及酶活性的影响[J].土壤肥料,2003(5):9-11
    26郑勇,高勇生,张丽梅,何园球,贺纪正.长期施肥对旱地红壤微生物和酶活性的影响[J].植物营养与肥料学报,2008,14(2):316-321
    27郝晓晖,刘守龙,童成立,苏以荣,吴金水,胡荣桂.长期施肥对两种稻田土壤微生物量氮及有机氮组分的影响[J].中国农业科学,2007,40(4):757-764
    28贾伟,周怀平,解文艳,关春林,郜春花,石彦琴.长期有机无机肥配施对褐土微生物生物量碳、氮及酶活性的影响[J].植物营养与肥料学报,2008,14(4):700-705
    29 Garland J L. Analysis and interpretation of community-level physiological profiles in microbial ecology[J]. FEMSMicrobiol.Ecol,1997,24:289-300
    30 Garland J L,Mills A L. A community-level physiological approachfor studyingmicrobial communities.In: Ritz K, Dighton J, Giller KE. Beyond the Biomass: Composition and Functional Analysis of Soil Microbial Communities[J]. London: Wiley-Sayce Publications,1994,77-83
    31 HollibaughJT. Relationship between thymidine metabolism,bacterioplankt on community metabolic capabilities, and sources of organicmatter[J]. Microb.Ecol, 1994,28:117-131
    32 Jellette J F, Li W K W, Dickie P M. Metabolic activity ofbacterioplankton communities assessed by flow cytometric and singlecarbon substrate utilization [J]. Mar.Ecol.Prog.Ser,1996,136:213-225
    33 Garland J L, Mills A L. Classification and characterization of het-erotrophic microbial communities on the basis of patterns of community level sole carbon source utilization[J]. Appl.Environ Microb,1991,57:2351-2359
    34 Zak J C, WilligM R, Moorhead D L.Functional diversity ofmicrobial communities: a quantitative approach[J].Soil Biol.Biochem,1994,26:1101-1108
    35 Bossio D D, Scow K M. Impact of carbon and flooding on themetabolic diversity ofmicrobial communities in soils[J]. Environ.Microb,1995,61:4043-4050
    36 Buyer J S, Drinkwater L E. Comparison of substrate utilization assayand fatty acid analysis of soil microbial communities[J]. Microb.Methods,1997,30:3-11
    37 Grayston S J, Wang S, Campbell C D. Selective influence of plant species on microbial diversity in the rhizosphere[J]. Soil Biol. Biochem,1998,30:369-378
    38 Wunsche L, Bruggermann L, Wolfgang B. Determination of substrate utilization patterns of soil microbial communities: An approach to assess population changes after hydrocarbon pollution[J]. FEMS Microbiol.Ecol,1995,17:295-306
    39 Bochner B R. Sleuthing out bacterial identities[J]. Nature,1989,339:157-158
    40张逸飞,钟文辉,李忠佩.长期不同施肥处理对红壤水稻土酶活性及微生物群落功能多样性的影响[J].生态与农村环境学报,2006,22(4):39-44
    41王继红,刘景双,于君宝,王金达.氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响[J].水土保持学报. 2004,18(1):36-38
    42 Choi K, Dobbs F C. Comparison of two kinds of Biolog microplate (GN and ECO) in their ability to distinguish among aquatic microbialcommunities[J]. Microb. Methods,1999,36:203-213
    43 Imberger KT, Chiu CY. Spatial changes of soil fungal and bacterial biomass from a subalpineconiferous forest to grassland in a humid, sub-tropical region[J].Biology and Fertility of Soils,2001,33:105-110
    44蔡燕飞,廖宗文,章家恩,孔维栋,何成新.生态有机肥对番茄青枯病及土壤微生物多样性的影响[J].应用生态学报,2003,14(3):349-353
    45 Lindstrom J E, Barry RP, Braddock J F. Microbial community analysis: a kinetic approach to constructing potential C source utilization patterns[J]. Soil Biol. Biochem.1997,30(2):231-239
    46朱海平,姚槐应,张勇勇,吴愉萍.不同培肥管理措施对土壤微生物生态特征的影响[J].土壤通报,2003,34(2):141-142
    47罗希茜,郝晓晖,陈涛,邓婵娟,吴金水,胡荣桂.长期不同施肥对稻田土壤微生物群落功能多样性的影响[J].生态学报,2009,29(2):741-748
    48张逸飞,钟文辉,李忠佩,蔡祖聪.长期不同施肥处理对红壤水稻土酶活性及微生物群落功能多样性的影响生态与农村环境学报[J]. 2006,22(4):39-44
    49郑华,欧阳志云,方治国,赵同谦. BIOLOG在土壤微生物群落功能多样性研究中的应用[J].土壤学报,2004,41(3):457-460
    50 Naili Zhang, Shiqiang Wan, Linghao Li, Jie Bi, Mingming Zhao, Keping Ma. Impacts of urea N addition on soil microbial community in a semiarid temperate steppe in northern China[J]. Plant Soil,2008,311:19-28
    51吴金水,林启美,黄巧云,肖和艾.土壤微生物生物量测定方法及其应用[M].气象出版社, 2006
    52关焱,宇万太,李建东.长期施肥对土壤养分库的影响[J].生态学杂志,2004,23(6): 131-137
    53 Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J].Australian Journal of Agricultural Research,1995(46):1459-1466
    54 Sparling G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter [J]. Australian Journal of Soil Research,1992,30(2):195-207
    55刘守龙,苏以荣,黄道友,肖和艾,吴金水.微生物商对亚热带地区土地利用及施肥制度的响应[J].中国农业科学,2006,39(7):1411-1418
    56王晓龙,胡锋,李辉信,秦江涛,张斌.红壤小流域不同土地利用方式对土壤微生物量碳氮的影响[J].农业环境科学学报,2006,25(1):143-147
    57刘恩科,赵秉强,李秀英,姜瑞波,Hwat Bing So.不同施肥制度土壤微生物量碳氮变化及细菌群落16SrDNA V3片段PCR产物的DGGE分析[J].生态学报, 2007, 27(3):1080-1084
    58向月琴,高春明,庞国辉,郝乙杰,方华,楚小强,虞云龙.土壤中多茵灵的降解动态及其对土壤微生物群落多样性的影响[J].土壤学报,2008,45(4):700-703
    59 Andreas Fliebbach, Paul Mader. Short and long-term effects on soil microorganisms of two potato pesticide spraying sequences with either glufosinate or dinoseb as defoliants[J]. Biol Fertil Soils,2004(40):268-276
    60郝晓晖,刘守龙,童成立,苏以荣,吴金水,胡荣桂.长期施肥对两种稻田土壤微生物量氮及有机氮组分的影响[J].中国农业科学,2007,40(4):757-764
    61韩晓日,郑国砥,刘晓燕,孙振涛,杨劲峰,战秀梅.有机肥与化肥配合施用土壤微生物量氮动态、来源和供氮特征[J].中国农业科学,2007,40(4):765-772
    62 Preston-Mafham J, Boddy L, Randerson P F. Analysis of microbial community functional diversity using sole-carbon-source utilization profiles acritique[J]. FEMS Microb.Ecol.2002,42:1-14
    63 Alexander M. Introduction to Soil Microbiology[M]. New York: John Wiley and Sons, 1977.68-72
    64赵勇,李武,周志华,等.秸秆还田后土壤微生物群落结构变化的初步研究[J].农业环境科学学报,2005,24(6):1114-1118
    65俞慎,李勇,王俊华.土壤微生物生物量作为红壤质量生物指标的探讨[J].土壤学报1999,36(3):413-421
    66于树,汪景宽,王鑫,刘顺国.不同施肥处理的土壤肥力指标及微生物碳、氮在玉米生育期内的动态变化[J].水土保持学报,2007,21(4):137-140
    67章家恩,廖宗文.试论土壤的生态肥力及其培育[A].土壤与环境,2000,9(3):253-256
    68张璐,沈善敏,等.农业生态系统养分循环再利用的作物产量增益[J].应用生态学报,1998,9(1):37-40
    69 Helmut Burgmann, Manuel Pesaro, Franco Widmer,Josef Zeyer. A strategy for optimizing quality and quantity of DNA extracted from soils[J]. Journal of microbiological methods,2001,45:7-20
    70鲁如坤.北京:中国农业科技出版社,2000
    71 Jackson L E, Calderon F J, Steenwerth K L. Responses of soil microbial processes and community structure to tillage event s and implications for soil quality[J]. Geoderma,2003,114(324):305-317
    72 Heuer H, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) for studying soil microbial communities[A]. NewYork: Marcel Dekker,Inc.1997,353-373
    73 Holems W E,Zak D R. Soil microbial biomas dynamics and net nitrogen mineralization in northern hardwood ecosystems[J]. Soil Science Society of American Journal,1994,58:238-243
    74 Holland P M, Abramson R D, Watson R. Detection of specific polymerase chain reaction product by utilizing the 5'-3'exonuclease activity of Thermus aquaticus DNA polymerase.Proceedings of the National Academy of Science of USA[J]. 1991,88: 7276-7280
    75 Ibekwe A M,Papiernik S K,Gan J. Impact of fumigants on soil microbial communities[J].Applied Environmental Microbiology,2001,69:3245-3257
    76 Warcup J H. Isolation of fungi from hyphae present in soil[J]. Nature,1955,175: 953-954.
    77李玲,肖和艾,童成立,丁龙君,盛荣.培养条件下旱地和稻田土壤活性有机碳对外源有机底物的响应[J].生态学杂志,2008,27(12):2178-2183
    78 Glimm E, Heuer H, Engelen B,et al. Statistical comparisons of community catabolic profiles[J]. Microbiol Methods,1997,30:71-80
    79 Garland J L.Analytical approaches to the characterization of sample microbial communities using patterns of potential C source utilization[J]. Soil Biol Biochem.1996,28:213-221
    80 Insam H, Domsch K H. Relationship between soil organic carbon and microbial biomass on Chrono sequences of reclamation sites[J]. Microbial Ecology,1988,15:177-188
    81 Insam H, Mitchell C C, Dormaar J F. Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three Ultisols[J]. Soil Bioliogy and biochemistry,1991,23:459-464
    82 Dobranic J K, Zak J C. A microtiter plate procedure for evaluatingfungal functional diversity[J]. Mycologia,1999,91:756-765
    83 Insam H. A new set of substrates proposed for community, characterization in environmental samples[J]. In:Insam H,Rangger A.(Eds),Microbial Communities, Springer-Verlag,1997,259-260
    84 Findlay RH. The use of phospholipid fatty acids to determine micro-bial community structure.In: Akkermans ADL, Van Elsas J D, deBruijn F. Molecular Microbial Ecology Manual[J]. Kluwer Academic Publishers,1996.1-17