靶向肺癌重组抗体的构建及其体内、外抑瘤实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用基因工程操作技术对抗CEA单链抗体T84.66进行了二硫键改构,设计并人工合成了抗CEA scdsFv基因序列,并通过柔性连接肽将SEA基因序列融合在抗CEAscdsFv末端,此基因序列命名为SC-C/SEA。将上述核苷酸序列克隆入原核表达载体pET28a(+),构建了原核表达质粒pET-SC-C/SEA。将原核表达质粒转化感受态大肠杆菌BL21,利用异丙基-β-D-硫代半乳糖苷(IPTG)进行诱导表达,并对诱导时间、IPTG浓度等表达条件进行优化,从而获得目的蛋白SC-C/SEA。利用SDS-PAGE和Western blotting对SC-C/SEA的表达进行了鉴定。利用亲合层析方法对SC-C/SEA进行复性和初步纯化。利用免疫荧光结合流式细胞术分析、MTT等方法探讨了SC-C/SEA对A549细胞的识别和结合能力及其特异性;分析了SC-C/SEA对体外培养的A549细胞增殖的影响;检测了重组蛋白SC-C/SEA对PBMC中CTL功能的作用。实验结果表明,SC-C/SEA可特异性识别A549细胞(CEA阳性)并与之结合,对HeLa细胞(CEA阴性)无此活性。SC-C/SEA对A549细胞的结合活性存在一定的剂量和时间依赖关系,其最佳作用条件为20μl作用4h; SC-C/SEA基本对体外培养的细胞无明显毒性作用;另外,PBMCCTL活性的检测结果表明,SC-C/SEA能够刺激针对A549细胞的特异性CTL反应,且其作用具有一定的效靶比依赖性。
     本研究利用所构建和表达的重组蛋白SC-C/SEA、SC-C和SEA对肺癌实体肿瘤模型进行探索性治疗研究。结果表明,SC-C/SEA能有效延长肺癌实体模型动物的平均生存期、提高生存几率。另外,SC-C/SEA具有减缓肿瘤组织生长速度的作用。对免疫指标的检测表明,SC-C/SEA能够非特异性的促进某些细胞因子的分泌,且具有刺激增强抗肿瘤CTL和NK活性的作用。
The carcinoembryonic antigen (CEA), known as an important clinical tumor marker, is a highly glycosylated oncofetal glycoprotein containing 50% carbohydrates with a molecular weight of about 180-200 kDa. CEA is a tumor-associated antigen uptrgulated in the majority of colon cancers, non-small cell lung cancers and half of all breast cancers. On the other hand, CEA is also present in some normal tissues. A lot of research demonstrated that, in normal tissues, CEA was mainly localized on the luminal surface of the single layer of columnar epithelial cells lining the upper parts of the crypts and was not directly in contact with blood flow or tissue fluid. While, in tumor tissues, CEA was localized on all sides of the cell membranes and was directly facing blood flow or tissue fluid. All these features made it an attractive target molecule for antibody-directed diagnosis, gene therapy and immunotherapy.
     Although monoclonal antibody was considered one of the preferred forms of cancer immunotherapy, many other methods have been proved more effective. Liu Y et al produced a dual functional protein that exhibited both tumor specific binding and killing activities by fusing the tumor-specific apoptosis-inducing molecule Apoptin to an anti-CEA single chain antibody. Alternatively, one study was to localize interleukin-2 (IL-2) to cancer cells by joining the IL-2 to the antibodies specific for tumor antigens. These studies indicated that antibody-directed targeting of the antitumoral molecule could alleviate the toxic side effects while enhancing the proteins deposition at tumor sites. Genetically engineered fusion proteins basing on tumor specific antibody have received more emphasis.
     The single-chain disulfide-stabilized Fv antibody (scdsFv), comprised of the variable heavy domain (VH) and the variable light domain (VL), is the smallest antibody fragment containing a complete antigen binding site. The engineered stabilizing disulfide bond in scdsFv can overcome the problem of aggregatjon at high concentrations of the basic single-chain Fv antibody (scFv). In comparison with the much larger IgG, scdsFv fragments have lower retention times in non-target tissues, a more rapid blood clearance and better tumor penetration in vivo. The use of labeled scdsFv that target the tumor-associated antigen has been described extensively.
     The selection of human anti-CEA single-chain antibody fragment (scFv) is a key step toward the development of new antitumoral agent designed for immunotherapy based on CEA. The engineered scFv of anti-CEA T84.66 antibody used for this research has been studied extensively since its discovery. Phase I clinical trials have demonstrated that the engineered scFv of anti-CEA T84.66 antibody was rapid tumor uptake, high tumor activity, fast blood clearance and suitable for clinical practice.
     Staphylococcal enterotoxin A (SEA), known as superantigens (SAgs) because of the ability to recognize Vβregion of T-lymphocyte receptors, is a one of the bacerial superantigen, involving in autoimmune and toxic shock disorders, that activates immune responses and induces production of various cytokines. Previous studies have indicated that SEA was the most potent stimulator of T cells and tumor necrosis factor (TNF). Furthermore, SEA stimulates T cells mainly in histocompatiblity complex classⅡrestricted manner and induces high levels of cytokines, such as TNF, IL-2 and interferon-y. These characteristic of SEA might be useful in therapy for regulating immune responses.
     In present study, we construted a chimeric protein, designated as SC-C/SEA that exhibits both specific binding and immune stimulating activities, by fusing staphylococcal enterotoxin A (SEA) to C-terminus of an anti-CEA single-chain disulfide-stabilized Fv antibody (scdsFv). The SC-C/SEA proteins were expressed in Escherichia coli (E. coli), refolded and purified on an immobilized Ni2+ affinity chromatography column. SDS-PAGE and Western blotting revealed that the target protein was well-expressed. We demonstrated by immunofluorescence assays that SC-C/SEA could bind specifically to human lung carcinoma cells (A549), but almost not to human uterine cervix (HeLa). We also observed the anti-tumor activity of the recombinant proteins in vivo. The solid tumor model and the in situ model were established. The mean survival, the tumor growth, the suppression rate, the NK activity, the CTL activity and the cytokine levels of the animal models were evaluated. The results showed that the recombinant proteins inhibited the lung cell growth effectively. Although the injection of the recombinant adenoviruses did not lead to complete elimination of the tumors, effective inhibition was observed in the established solid tumor model and the in situ model.
     In summary, SDS-PAGE and Western blotting analysis demonstrated that the recombinant protein was well expressed. Immunofluorescent and CTL assays indicated that SC-C/SEA could bind to CEA-positive cells specifically and induce CTL predominance. The SC-C/SEA protein produced in the work can be developed for potential use in CEA-targeted cancer immunotherapy.
引文
[1]E VB, S K. Dtsch Med[J]. Wochenschr,1890,16:1113-1114.
    [2]J H. Astronomical[J]. Science (New York, NY,1895,2 (51):845-846.
    [3]HIMMELWEIT F. Serological responses and clinical reactions to influenza virus vaccines[J]. British medical journal,1960,2 (5214):1690-1694.
    [4]NADLER LM, STASHENKO P, HARDY R et al. Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen[J]. Cancer research,1980,40 (9):3147-3154.
    [5]MILLER RA, MALONEY DG, WARNKE R, LEVY R. Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody [J]. The New England journal of medicine, 1982,306 (9):517-522.
    [6]FOON KA, SCHROFF RW, BUNN PA et al. Effects of monoclonal antibody therapy in patients with chronic lymphocytic leukemia[J]. Blood,1984,64 (5):1085-1093.
    [7]GOLDENBERG DM, DELAND F, KIM E et al. Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning[J]. The New England journal of medicine,1978,298 (25):1384-1386.
    [8]GAFFAR SA, PANT KD, SHOCHAT D, BENNETT SJ, GOLDENBERG DM. Experimental studies of tumor radioimmunodetection using antibody mixtures against carcinoembryonic antigen (CEA) and colon-specific antigen-p (CSAp)[J]. International journal of cancer,1981,27 (1):101-105.
    [9]DENARDO SJ, DENARDO GL, O'GRADY LF et al. Treatment of B cell malignancies with 131I Lym-1 monoclonal antibodies[J]. International journal of cancer Supplement = Journal international du cancer,1988,3:96-101.
    [10]GOLDENBERG DM, HOROWITZ JA, SHARKEY RM et al. Targeting, dosimetry, and radioimmunotherapy of B-cell lymphomas with iodine-131-labeled LL2 monoclonal antibody [J]. J Clin Oncol,1991,9 (4):548-564.
    [11]BUCHSBAUM DJ, WAHL RL, NORMOLLE DP, KAMINSKI MS. Therapy with unlabeled and 131I-labeled pan-B-cell monoclonal antibodies in nude mice bearing Raji Burkitt's lymphoma xenografts[J]. Cancer research,1992,52 (23):6476-6481.
    [12]KAMINSKI MS, ZASADNY KR, FRANCIS IR et al. Radioimmunotherapy of B-cell lymphoma with [131I]anti-B1 (anti-CD20) antibody[J]. The New England journal of medicine,1993,329 (7):459-465.
    [13]MALONEY DG, LILES TM, CZERWINSKI DK et al. Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma[J]. Blood,1994,84 (8):2457-2466.
    [14]JAZIREHI AR, BON AVID A B. Cellular and molecular signal transduction pathways modulated by rituximab (rituxan,. anti-CD20 mAb) in non-Hodgkin's lymphoma:implications in chemosensitization and therapeutic intervention[J]. Oncogene,2005,24 (13):2121-2143.
    [15]ZHANG N, KHAWLI LA, HU P, EPSTEIN AL. Generation of rituximab polymer may cause hyper-cross-linking-induced apoptosis in non-Hodgkin's lymphomas[J]. Clin Cancer Res,2005,11 (16):5971-5980.
    [16]GHOBRIAL IM, WITZIG TE, ADJEI AA. Targeting apoptosis pathways in cancer therapy[J]. CA:a cancer journal for clinicians,2005,55 (3):178-194.
    [17]BIANCO R, DANIELE G, CIARDIELLO F, TORTORA G. Monoclonal antibodies targeting the epidermal growth factor receptor[J]. Current drug targets,2005,6 (3):275-287.
    [18]EMENS LA. Trastuzumab:targeted therapy for the management of HER-2/neu-overexpressing metastatic breast cancer[J]. American journal of therapeutics, 2005,12 (3):243-253.
    [19]CZUCZMAN MS. CHOP plus rituximab chemoimmunotherapy of indolent B-cell lymphoma[J]. Seminars in oncology,1999,26 (5 Suppl 14):88-96.
    [20]MARTY M, COGNETTI F, MARANINCHI D et al. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment:the M77001 study group[J]. J Clin Oncol,2005,23 (19):4265-4274.
    [21]RABEN D, HELFRICH B, CHAN DC et al. The effects of cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer[J]. Clin Cancer Res,2005,11 (2 Pt 1):795-805.
    [22]FERRARA N, HILLAN KJ, NOVOTNY W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy[J]. Biochemical and biophysical research communications,2005,333 (2):328-335.
    [23]LEACH DR, KRUMMEL MF, ALLISON JP. Enhancement of antitumor immunity by CTLA-4 blockade[J]. Science (New York, NY,1996,271 (5256):1734-1736.
    [24]KAPADIA D, FONG L. CTLA-4 blockade:autoimmunity as treatment[J]. J Clin Oncol,2005,23 (35):8926-8928.
    [25]RUTGEERTS P, VAN ASSCHE G, VERMEIRE S. Review article:Infliximab therapy for inflammatory bowel disease--seven years on[J]. Alimentary pharmacology & therapeutics,2006,23 (4):451-463.
    [26]CUPPOLETTI A, PEREZ-VILLA F, VALLEJOS I, ROIG E. Experience with single-dose daclizumab in the prevention of acute rejection in heart transplantation[J]. Transplantation proceedings,2005,37 (9):4036-4038.
    [27]LIOSSIS SN, TSOKOS GC. Monoclonal antibodies and fusion proteins in medicine[J]. The Journal of allergy and clinical immunology,2005,116 (4):721-729; quiz 730.
    [28]CHATENOUD L. Monoclonal antibody-based strategies in autoimmunity and transplantation[J]. Methods in molecular medicine,2005,109:297-328.
    [29]CHAMBERS SA, ISENBERG D. Anti-B cell therapy (rituximab) in the treatment of autoimmune diseases[J]. Lupus,2005,14 (3):210-214.
    [30]LOONEY RJ. B cell-targeted therapy in diseases other than rheumatoid arthritis[J]. The Journal of rheumatology,2005,73:25-28; discussion 29-30.
    [31]DEBAUN MR. Issues regarding study design for initial clinical trials using decitabine[J]. Seminars in hematology,2004,41 (4 Suppl 6):23-27.
    [32]ILANTZIS C, DEMARTE L, SCREATON RA, STANNERS CP. Deregulated expression of the human tumor marker CEA and CEA family member CEACAM6 disrupts tissue architecture and blocks colonocyte differentiation[J]. Neoplasia (New York, NY,2002, 4(2):151-163.
    [33]BLUMENTHAL RD, OSORIO L, HAYES MK et al. Carcinoembryonic antigen antibody inhibits lung metastasis and augments chemotherapy in a human colonic carcinoma xenograft[J]. Cancer Immunol Immunother,2005,54 (4):315-327.
    [34]JAIN RK. Transport of molecules, particles, and cells in solid tumors[J]. Annual review of biomedical engineering,1999,1:241-263.
    [35]FUJIMORI K, COVELL DG, FLETCHER JE, WEINSTEIN JN. A modeling analysis of monoclonal antibody percolation through tumors:a binding-site barrier[J]. J Nucl Med,1990,31 (7):1191-1198.
    [36]ADAMS GP, SCHIER R, MCCALL AM et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules[J]. Cancer research,2001,61 (12):4750-4755.
    [37]BLUMENTHAL RD, FAND I, SHARKEY RM et al. The effect of antibody protein dose on the uniformity of tumor distribution of radioantibodies:an autoradiographic study[J]. Cancer Immunol Immunother,1991,33 (6):351-358.
    [38]KOHLER G, MILSTEIN C. Continuous cultures of fused cells secreting antibody of predefined specificity[J]. Nature,1975,256 (5517):495-497.
    [39]SEARS HF, HERLYN D, STEPLEWSKI Z, KOPROWSKI H. Phase Ⅱ clinical trial of a murine monoclonal antibody cytotoxic for gastrointestinal adenocarcinoma[J]. Cancer research,1985,45 (11 Pt 2):5910-5913.
    [40]HOUGHTON AN, MINTZER D, CORDON-CARDO C et al. Mouse monoclonal IgG3 antibody detecting GD3 ganglioside:a phase I trial in patients with malignant melanoma[J]. Proceedings of the National Academy of Sciences of the United States of America,1985,82 (4):1242-1246.
    [41]GOODMAN GE, BEAUMIER P, HELLSTROM I, FERNYHOUGH B, HELLSTROM KE. Pilot trial of murine monoclonal antibodies in patients with advanced melanoma[J]. J Clin Oncol,1985,3 (3):340-352.
    [42]WALDMANN H, HALE G. CAMPATH:from concept to clinic[J]. Philosophical transactions of the Royal Society of London,2005,360 (1461):1707-1711.
    [43]MORRISON SL, JOHNSON MJ, HERZENBERG LA, OI VT. Chimeric human antibody molecules:mouse antigen-binding domains with human constant region domains[J]. Proceedings of the National Academy of Sciences of the United States of America,1984,81 (21):6851-6855.
    [44]JONES PT, DEAR PH, FOOTE J, NEUBERGER MS, WINTER G. Replacing the complementarity-determining regions in a human antibody with those from a mouse[J]. Nature,1986,321 (6069):522-525.
    [45]QU Z, GRIFFITHS GL, WEGENER WA et al. Development of humanized antibodies as cancer therapeutics [J]. Methods (San Diego, Calif,2005,36 (1):84-95.
    [46]ANGENENDT P. Progress in protein and antibody microarray technology[J]. Drug discovery today,2005,10 (7):503-511.
    [47]WENG WK, LEVY R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma[J]. J Clin Oncol,2003,21 (21):3940-3947.
    [48]MCLAUGHLIN P, GRILLO-LOPEZ AJ, LINK BK et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma:half of patients respond to a four-dose treatment program[J]. J Clin Oncol,1998,16 (8):2825-2833.
    [49]DAVIS TA, GRILLO-LOPEZ AJ, WHITE CA et al. Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin's lymphoma:safety and efficacy of re-treatment[J]. J Clin Oncol,2000,18 (17):3135-3143.
    [50]HAINSWORTH JD, LITCHY S, SHAFFER DW et al. Maximizing therapeutic benefit of rituximab:maintenance therapy versus re-treatment at progression in patients with indolent non-Hodgkin's lymphoma--a randomized phase Ⅱ trial of the Minnie Pearl Cancer Research Network[J]. J Clin Oncol,2005,23 (6):1088-1095.
    [51]COIFFIER B. First-line treatment of follicular lymphoma in the era of monoclonal antibodies[J]. Clin Adv Hematol Oncol,2005,3 (6):484-491,505.
    [52]COIFFIER B. Rituximab in diffuse large B-cell lymphoma[J]. Clin Adv Hematol Oncol,2004,2 (3):156-157.
    [53]FEUGIER P, VIRION JM, TILLY H et al. Incidence and risk factors for central nervous system occurrence in elderly patients with diffuse large-B-cell lymphoma:influence of rituximab[J]. Ann Oncol,2004,15 (1):129-133.
    [54]BYRD JC, MURPHY T, HOWARD RS et al. Rituximab using a thrice weekly dosing schedule in B-cell chronic lymphocytic leukemia and small lymphocytic lymphoma demonstrates clinical activity and acceptable toxicity[J]. J Clin Oncol,2001,19 (8): 2153-2164.
    [55]O'BRIEN SM, KANTARJIAN H, THOMAS DA et al. Rituximab dose-escalation trial in chronic lymphocytic leukemia[J]. J Clin Oncol,2001,19 (8):2165-2170.
    [56]LEONARD JP, COLEMAN M, KETAS JC et al. Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin's lymphoma:phase Ⅰ/Ⅱ clinical trial results[J]. Clin Cancer Res,2004,10 (16):5327-5334.
    [57]LEONARD JP, COLEMAN M, KETAS J et al. Combination antibody therapy with epratuzumab and rituximab in relapsed or refractory non-Hodgkin's lymphoma[J]. J Clin Oncol,2005,23 (22):5044-5051.
    [58]YOUNES A, HARIHARAN K, ALLEN RS, LEIGH BR. Initial trials of anti-CD80 monoclonal antibody (Galiximab) therapy for patients with relapsed or refractory follicular lymphoma[J]. Clinical lymphoma,2003,3 (4):257-259.
    [59]CZUCZMAN MS, THALL A, WITZIG TE et al. Phase Ⅰ/Ⅱ study of galiximab, an anti-CD80 antibody, for relapsed or refractory follicular lymphoma[J]. J Clin Oncol,2005,23 (19):4390-4398.
    [60]REFF ME, CARNER K, CHAMBERS KS et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20[J]. Blood,1994,83 (2):435-445.
    [61]GOLAY J, LAZZARI M, FACCHINETTI V et al. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59[J]. Blood,2001,98 (12):3383-3389.
    [62]SHAN D, LEDBETTER JA, PRESS OW. Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies[J]. Blood,1998,91 (5):1644-1652.
    [63]GOLAY J, ZAFFARONI L, VACCARI T et al. Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro:CD55 and CD59 regulate complement-mediated cell lysis[J]. Blood,2000,95 (12):3900-3908.
    [64]TREON SP, MITSIADES C, MITSIADES N et al. Tumor Cell Expression of CD59 Is Associated With Resistance to CD20 Serotherapy in Patients With B-Cell Malignancies[J]. J Immunother (1991),2001,24 (3):263-271.
    [65]WENG WK, LEVY R. Expression of complement inhibitors CD46, CD55, and CD59 on tumor cells does not predict clinical outcome after rituximab treatment in follicular non-Hodgkin lymphoma[J]. Blood,2001,98 (5):1352-1357.
    [66]MANCHES O, LUI G, CHAPEROT L et al. In vitro mechanisms of action of rituximab on primary non-Hodgkin lymphomas[J]. Blood,2003,101 (3):949-954.
    [67]UCHIDA J, HAMAGUCHI Y, OLIVER JA et al. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy[J]. The Journal of experimental medicine,2004,199 (12): 1659-1669.
    [68]HERNANDEZ-ILIZALITURRI FJ, JUPUDY V, OSTBERG J et al. Neutrophils contribute to the biological antitumor activity of rituximab in a non-Hodgkin's lymphoma severe combined immunodeficiency mouse model[J]. Clin Cancer Res,2003,9 (16 Pt 1): 5866-5873.
    [69]PRESTA LG. Engineering antibodies for therapy[J]. Current pharmaceutical biotechnology,2002,3 (3):237-256.
    [70]SHIELDS RL, LAI J, KECK R et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity[J]. The Journal of biological chemistry,2002,277 (30):26733-26740.
    [71]HODONICZKY J, ZHENG YZ, JAMES DC. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro [J]. Biotechnology progress, 2005,21 (6):1644-1652.
    [72]CARTRON G, DACHEUX L, SALLES G et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene[J]. Blood,2002,99 (3):754-758.
    [73]KAKINOKI Y, KUBOTA H, YAMAMOTO Y. CD64 surface expression on neutrophils and monocytes is significantly up-regulated after stimulation with granulocyte colony-stimulating factor during CHOP chemotherapy for patients with non-Hodgkin's lymphoma[J]. International journal of hematology,2004,79 (1):55-62.
    [74]PARIHAR R, DIERKSHEIDE J, HU Y, CARSON WE. IL-12 enhances the natural killer cell cytokine response to Ab-coated tumor cells[J]. The Journal of clinical investigation, 2002,110 (7):983-992.
    [75]ANSELL SM, WITZIG TE, KURTIN PJ et al. Phase 1 study of interleukin-12 in combination with rituximab in patients with B-cell non-Hodgkin lymphoma[J]. Blood,2002, 99(1):67-74.
    [76]PRESTA LG, SHIELDS RL, NAMENUK AK, HONG K, MENG YG. Engineering therapeutic antibodies for improved function[J]. Biochemical Society transactions,2002,30 (4):487-490.
    [77]VACCARO C, ZHOU J, OBER RJ, WARD ES. Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels[J]. Nature biotechnology,2005,23 (10):1283-1288.
    [78]IDUSOGIE EE, WONG PY, PRESTA LG et al. Engineered antibodies with increased activity to recruit complement[J]. J Immunol,2001,166 (4):2571-2575.
    [79]STOCKMEYER B, ELSASSER D, DECHANT M et al. Mechanisms of G-CSF- or GM-CSF-stimulated tumor cell killing by Fc receptor-directed bispecific antibodies [J]. Journal of immunological methods,2001,248 (1-2):103-111.
    [80]BEVAART L, JANSEN MJ, VAN VUGT MJ et al. The high-affinity IgG receptor, FcgammaRI, plays a central role in antibody therapy of experimental melanoma[J]. Cancer research,2006,66 (3):1261-1264.
    [81]SLAMON DJ, LEYLAND-JONES B, SHAK S et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2[J]. The New England journal of medicine,2001,344 (11):783-792.
    [82]PICCART-GEBHART MJ, PROCTER M, LEYLAND-JONES B et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer[J]. The New England journal of medicine,2005,353 (16):1659-1672.
    [83]ROMOND EH, PEREZ EA, BRYANT J et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer[J]. The New England journal of medicine,2005,353 (16):1673-1684.
    [84]IZUMI Y, XU L, DI TOMASO E, FUKUMURA D, JAIN RK. Tumour biology: herceptin acts as an anti-angiogenic cocktail [J]. Nature,2002,416 (6878):279-280.
    [85]GENNARI R, MENARD S, FAGNONI F et al. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2[J]. Clin Cancer Res,2004,10 (17):5650-5655.
    [86]WARBURTON C, DRAGOWSKA WH, GELMON K et al. Treatment of HER-2/neu overexpressing breast cancer xenograft models with trastuzumab (Herceptin) and gefitinib (ZD1839):drug combination effects on tumor growth, HER-2/neu and epidermal growth factor receptor expression, and viable hypoxic cell fraction[J]. Clin Cancer Res,2004, 10 (7):2512-2524.
    [87]NEGRO A, BRAR BK, LEE KF. Essential roles of Her2/erbB2 in cardiac development and function[J]. Recent progress in hormone research,2004,59:1-12.
    [88]GARRATT AN, OZCELIK C, BIRCHMEIER C. ErbB2 pathways in heart and neural diseases[J]. Trends in cardiovascular medicine,2003,13 (2):80-86.
    [89]EWER MS, VOOLETICH MT, DURAND JB et al. Reversibility of trastuzumab-related cardiotoxicity:new insights based on clinical course and response to medical treatment[J]. J Clin Oncol,2005,23 (31):7820-7826.
    [90]TAN-CHIU E, YOTHERS G, ROMOND E et al. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer:NSABP B-31[J]. J Clin Oncol,2005,23 (31): 7811-7819.
    [91]NORMANNO N, BIANCO C, DE LUCA A, MAIELLO MR, SALOMON DS. Target-based agents against ErbB receptors and their ligands:a novel approach to cancer treatment[J]. Endocrine-related cancer,2003,10(1):1-21.
    [92]GUAN H, JIA SF, ZHOU Z, STEWART J, KLEINERMAN ES. Herceptin down-regulates HER-2/neu and vascular endothelial growth factor expression and enhances taxol-induced cytotoxicity of human Ewing's sarcoma cells in vitro and in vivo[J]. Clin Cancer Res,2005,11 (5):2008-2017.
    [93]BONNER JA, HARARI PM, GIRALT J et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck[J]. The New England journal of medicine, 2006,354 (6):567-578.
    [94]PEREZ-SOLER R, SALTZ L. Cutaneous adverse effects with HER1/EGFR-targeted agents:is there a silver lining?[J]. J Clin Oncol,2005,23 (22):5235-5246.
    [95]BASELGA J, NORTON L, ALBANELL J, KIM YM, MENDELSOHN J. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts[J]. Cancer research,1998,58 (13):2825-2831.
    [96]GORSKI DH, BECKETT MA, JASKOWIAK NT et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation[J]. Cancer research,1999,59 (14):3374-3378.
    [97]DE GRAMONT A, VAN CUTSEM E. Investigating the potential of bevacizumab in other indications:metastatic renal cell, non-small cell lung, pancreatic and breast cancer[J]. Oncology,2005,69 Suppl 3:46-56.
    [98]D'ADAMO DR, ANDERSON SE, ALBRITTON K et al. Phase II study of doxorubicin and bevacizumab for patients with metastatic soft-tissue sarcomas [J]. J Clin Oncol,2005,23 (28):7135-7142.
    [99]BRUNS I, FOX F, REINECKE P et al. Complete remission in a patient with relapsed angioimmunoblastic T-cell lymphoma following treatment with bevacizumab [J]. Leukemia, 2005,19(11):1993-1995.
    [100]GORDON MS, CUNNINGHAM D. Managing patients treated with bevacizumab combination therapy[J]. Oncology,2005,69 Suppl 3:25-33.
    [101]WITZIG TE, GORDON LI, CABANILLAS F et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma[J]. J Clin Oncol,2002,20 (10):2453-2463.
    [102]DAVIS TA, KAMINSKI MS, LEONARD JP et al. The radioisotope contributes significantly to the activity of radioimmunotherapy [J]. Clin Cancer Res,2004,10 (23): 7792-7798.
    [103]SILVERSTEIN AM. Labeled antigens and antibodies:the evolution of magic markers and magic bullets[J]. Nature immunology,2004,5 (12):1211-1217.
    [104]GOLDENBERG DM. Perspectives on oncologic imaging with radiolabeled antibodies[J]. Cancer,1997,80 (12 Suppl):2431-2435.
    [105]LARSON SM, PENTLOW KS, VOLKOW ND et al. PET scanning of iodine-124-3F9 as an approach to tumor dosimetry during treatment planning for radioimmunotherapy in a child with neuroblastoma[J]. J Nucl Med,1992,33 (11):2020-2023.
    [106]WONG JY, CHU DZ, WILLIAMS LE et al. Pilot trial evaluating an 1231-labeled 80-kilodalton engineered anticarcinoembryonic antigen antibody fragment (cT84.66 minibody) in patients with colorectal cancer[J]. Clin Cancer Res,2004,10 (15):5014-5021.
    [107]MCBRIDE WJ, ZANZONICO P, SHARKEY RM et al. Bispecific antibody pretargeting PET (immunoPET) with an 1241-labeled hapten-peptide[J]. J Nucl Med,2006,47 (10):1678-1688.
    [108]SHARKEY RM, GOLDENBERG DM. Perspectives on cancer therapy with radiolabeled monoclonal antibodies[J]. J Nucl Med,2005,46 Suppl 1:115S-127S.
    [109]ROBERSON PL, BUCHSBAUM DJ. Reconciliation of tumor dose response to external beam radiotherapy versus radioimmunotherapy with 131 iodine-labeled antibody for a colon cancer model [J]. Cancer research,1995,55 (23 Suppl):5811s-5816s.
    [110]HERNANDEZ MC, KNOX SJ. Radiobiology of radioimmunotherapy with 90Y ibritumomab tiuxetan (Zevalin)[J]. Seminars in oncology,2003,30 (6 Suppl 17):6-10.
    [111]KASSIS AI, ADELSTEIN SJ. Radiobiologic principles in radionuclide therapy[J]. J Nucl Med,2005,46 Suppl 1:4S-12S.
    [112]KOTZERKE J, BUNJES D, SCHEINBERG DA. Radioimmunoconjugates in acute leukemia treatment:the future is radiant[J]. Bone marrow transplantation,2005,36 (12): 1021-1026.
    [113]MICHEL RB, BRECHBIEL MW, MATTES MJ. A comparison of 4 radionuclides conjugated to antibodies for single-cell kill[J]. J Nucl Med,2003,44 (4):632-640.
    [114]OLAFSEN T, KENANOVA VE, SUNDARESAN G et al. Optimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging[J]. Cancer research,2005, 65 (13):5907-5916.
    [115]KENANOVA V, OLAFSEN T, CROW DM et al. Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments [J]. Cancer research,2005,65 (2):622-631.
    [116]BEHR TM, GOLDENBERG DM, BECKER W. Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy:present status, future prospects and limitations[J]. European journal of nuclear medicine,1998,25 (2):201-212.
    [117]SHARKEY RM, KARACAY H, CARDILLO TM et al. Improving the delivery of radionuclides for imaging and therapy of cancer using pretargeting methods[J]. Clin Cancer Res,2005,11 (19 Pt 2):7109s-7121s.
    [118]SHARKEY RM, CARDILLO TM, ROSSI EA et al. Signal amplification in molecular imaging by pretargeting a multivalent, bispecific antibody[J]. Nature medicine, 2005,11 (11):1250-1255.
    [119]KARACAY H, BRARD PY, SHARKEY RM et al. Therapeutic advantage of pretargeted radioimmunotherapy using a recombinant bispecific antibody in a human colon cancer xenograft[J]. Clin Cancer Res,2005,11 (21):7879-7885.
    [120]ROSSI EA, GOLDENBERG DM, CARDILLO TM et al. Stably tethered multifunctional structures of defined composition made by the dock and lock method for use in cancer targeting[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103 (18):6841-6846.
    [121]LIN Y, PAGEL JM, AXWORTHY D et al. A genetically engineered anti-CD45 single-chain antibody-streptavidin fusion protein for pretargeted radioimmunotherapy of hematologic malignancies[J]. Cancer research,2006,66 (7):3884-3892.
    [122]GOLDENBERG DM, SHARKEY RM, PAGANELLI G, BARBET J, CHATAL JF. Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy [J]. J Clin Oncol,2006,24 (5):823-834.
    [123]SHEN S, FORERO A, LOBUGLIO AF et al. Patient-specific dosimetry of pretargeted radioimmunotherapy using CC49 fusion protein in patients with gastrointestinal malignancies[J]. J Nucl Med,2005,46 (4):642-651.
    [124]CHATAL JF, CAMPION L, KRAEBER-BODERE F et al. Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy:a collaborative study with the French Endocrine Tumor Group[J]. J Clin Oncol,2006,24 (11):1705-1711.
    [125]CHESON BD. The role of radioimmunotherapy with yttrium-90 ibritumomab tiuxetan in the treatment of non-Hodgkin lymphoma[J]. BioDrugs,2005,19 (5):309-322.
    [126]GORDON LI, MOLINA A, WITZIG T et al. Durable responses after ibritumomab tiuxetan radioimmunotherapy for CD20+ B-cell lymphoma:long-term follow-up of a phase 1/2 study [J]. Blood,2004,103 (12):4429-4431.
    [127]WISEMAN GA, WITZIG TE. Yttrium-90 (90Y) ibritumomab tiuxetan (Zevalin) induces long-term durable responses in patients with relapsed or refractory B-Cell non-Hodgkin's lymphoma[J]. Cancer biotherapy & radiopharmaceuticals,2005,20 (2): 185-188.
    [128]FISHER RI, KAMINSKI MS, WAHL RL et al. Tositumomab and iodine-131 tositumomab produces durable complete remissions in a subset of heavily pretreated patients with low-grade and transformed non-Hodgkin's lymphomas[J]. J Clin Oncol,2005,23 (30): 7565-7573.
    [129]KAMINSKI MS, TUCK M, ESTES J et al.1311-tositumomab therapy as initial treatment for follicular lymphoma[J]. The New England journal of medicine,2005,352 (5): 441-449.
    [130]HACKSHAW A, SWEETENHAM J, KNIGHT A. Are prophylactic haematopoietic growth factors of value in the management of patients with aggressive non-Hodgkin's lymphoma?[J]. British journal of cancer,2004,90 (7):1302-1305.
    [131]BENNETT JM, KAMINSKI MS, LEONARD JP et al. Assessment of treatment-related myelodysplastic syndromes and acute myeloid leukemia in patients with non-Hodgkin lymphoma treated with tositumomab and iodine I131 tositumomab[J]. Blood, 2005,105 (12):4576-4582.
    [132]ANSELL SM, RISTOW KM, HABERMANN TM, WISEMAN GA, WITZIG TE. Subsequent chemotherapy regimens are well tolerated after radioimmunotherapy with yttrium-90 ibritumomab tiuxetan for non-Hodgkin's lymphoma[J]. J Clin Oncol,2002,20 (18): 3885-3890.
    [133]CONNORS JM. Radioimmunotherapy--hot new treatment for lymphoma[J]. The New England journal of medicine,2005,352 (5):496-498.
    [134]GOPAL AK, GOOLEY TA, MALONEY DG et al. High-dose radioimmunotherapy versus conventional high-dose therapy and autologous hematopoietic stem cell transplantation for relapsed follicular non-Hodgkin lymphoma:a multivariable cohort analysis[J]. Blood, 2003,102 (7):2351-2357.
    [135]NADEMANEE A, FORMAN S, MOLINA A et al. A phase 1/2 trial of high-dose yttrium-90-ibritumomab tiuxetan in combination with high-dose etoposide and cyclophosphamide followed by autologous stem cell transplantation in patients with poor-risk or relapsed non-Hodgkin lymphoma[J]. Blood,2005,106 (8):2896-2902.
    [136]LEONARD JP, COLEMAN M, KOSTAKOGLU L et al. Abbreviated chemotherapy with fludarabine followed by tositumomab and iodine I131 tositumomab for untreated follicular lymphoma[J]. J Clin Oncol,2005,23 (24):5696-5704.
    [137]CHESON BD. Radioimmunotherapy of non-Hodgkin lymphomas[J]. Blood,2003, 101 (2):391-398.
    [138]LINDEN O, HINDORF C, CAVALLIN-STAHL E et al. Dose-fractionated radioimmunotherapy in non-Hodgkin's lymphoma using DOTA-conjugated,90Y-radiolabeled, humanized anti-CD22 monoclonal antibody, epratuzumab[J]. Clin Cancer Res,2005,11 (14): 5215-5222.
    [139]CHEN S, YU L, JIANG C et al. Pivotal study of iodine-131-labeled chimeric tumor necrosis treatment radioimmunotherapy in patients with advanced lung cancer[J]. J Clin Oncol,2005,23 (7):1538-1547.
    [140]SHARKEY RM, PYKETT MJ, SIEGEL JA et al. Radioimmunotherapy of the GW-39 human colonic tumor xenograft with 1311-labeled murine monoclonal antibody to carcinoembryonic antigen[J]. Cancer research,1987,47 (21):5672-5677.
    [141]BLUMENTHAL RD, SHARKEY RM, HAYWOOD L et al. Targeted therapy of athymic mice bearing GW-39 human colonic cancer micrometastases with 1311-labeled monoclonal antibodies[J]. Cancer research,1992,52 (21):6036-6044.
    [142]LIERSCH T, MELLER J, KULLE B et al. Phase Ⅱ trial of carcinoembryonic antigen radioimmunotherapy with 1311-labetuzumab after salvage resection of colorectal metastases in the liver:five-year safety and efficacy results[J]. J Clin Oncol,2005,23 (27): 6763-6770.
    [143]REARDON DA, AKABANI G, COLEMAN RE et al. Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors:phase Ⅱ study results[J]. J Clin Oncol,2006,24 (1):115-122.
    [144]ALVAREZ RD, HUH WK, KHAZAELI MB et al. A Phase Ⅰ study of combined modality (90)Yttrium-CC49 intraperitoneal radioimmunotherapy for ovarian cancer[J]. Clin Cancer Res,2002,8 (9):2806-2811.
    [145]MAHE MA, FUMOLEAU P, FABBRO M et al. A phase Ⅱ study of intraperitoneal radioimmunotherapy with iodine-131-labeled monoclonal antibody OC-125 in patients with residual ovarian carcinoma[J]. Clin Cancer Res,1999,5 (10 Suppl):3249s-3253s.
    [146]DENARDO SJ, KUKIS DL, KROGER LA et al. Synergy of Taxol and radioimmunotherapy with yttrium-90-labeled chimeric L6 antibody:efficacy and toxicity in breast cancer xenografts[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94 (8):4000-4004.
    [147]TSCHMELITSCH J, BARENDSWAARD E, WILLIAMS C, JR. et al. Enhanced antitumor activity of combination radioimmunotherapy (1311-labeled monoclonal antibody A33) with chemotherapy (fluorouracil)[J]. Cancer research,1997,57 (11):2181-2186.
    [148]CLARKE K, LEE FT, BRECHBIEL MW et al. Therapeutic efficacy of anti-Lewis(y) humanized 3S193 radioimmunotherapy in a breast cancer model:enhanced activity when combined with taxol chemotherapy[J]. Clin Cancer Res,2000,6 (9): 3621-3628.
    [149]BURKE PA, DENARDO SJ, MIERS LA, KUKIS DL, DENARDO GL. Combined modality radioimmunotherapy. Promise and peril[J]. Cancer,2002,94 (4 Suppl):1320-1331.
    [150]GOLD DV, MODRAK DE, SCHUTSKY K, CARDILLO TM. Combined 90Yttrium-DOTA-labeled PAM4 antibody radioimmunotherapy and gemcitabine radiosensitization for the treatment of a human pancreatic cancer xenograft[J]. International journal of cancer,2004,109 (4):618-626.
    [151]GOLD DV, SCHUTSKY K, MODRAK D, CARDILLO TM. Low-dose radioimmunotherapy ((90)Y-PAM4) combined with gemcitabine for the treatment of experimental pancreatic cancer[J]. Clin Cancer Res,2003,9 (10 Pt 2):3929S-3937S.
    [152]GRAVES SS, DEARSTYNE E, LIN Y et al. Combination therapy with Pretarget CC49 radioimmunotherapy and gemcitabine prolongs tumor doubling time in a murine xenograft model of colon cancer more effectively than either monotherapy[J]. Clin Cancer Res,2003,9 (10 Pt 1):3712-3721.
    [153]KRAEBER-BODERE F, SAI-MAUREL C, CAMPION L et al. Enhanced antitumor activity of combined pretargeted radioimmunotherapy and paclitaxel in medullary thyroid cancer xenograft[J]. Molecular cancer therapeutics,2002,1 (4):267-274.
    [154]BAUMANN M, KRAUSE M. Targeting the epidermal growth factor receptor in radiotherapy:radiobiological mechanisms, preclinical and clinical results[J]. Radiother Oncol, 2004,72 (3):257-266.
    [155]MATHE G, LOC T, BERNARD J. Effet sur la leucemie 1210 de la souris d'une combinaison par diazotation d'A-methopterine et de y-globulines de hamsters porteurs de cette leucemie par heterogreffe[J]. C R Acad Sci,1958,246:1626-1628.
    [156]BROSS PF, BEITZ J, CHEN G et al. Approval summary:gemtuzumab ozogamicin in relapsed acute myeloid leukemia[J]. Clin Cancer Res,2001,7 (6):1490-1496.
    [157]LARSON RA, SIEVERS EL, STADTMAUER EA et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence [J]. Cancer,2005,104 (7):1442-1452.
    [158]CHEVALLIER P, ROLAND V, MAHE B et al. Administration of mylotarg 4 days after beginning of a chemotherapy including intermediate-dose aracytin and mitoxantrone (MIDAM regimen) produces a high rate of complete hematologic remission in patients with CD33+ primary resistant or relapsed acute myeloid leukemia[J]. Leukemia research,2005,29 (9):1003-1007.
    [159]AMADORI S, SUCIU S, STASI R et al. Gemtuzumab ozogamicin (Mylotarg) as single-agent treatment for frail patients 61 years of age and older with acute myeloid leukemia: final results of AML-15B, a phase 2 study of the European Organisation for Research and Treatment of Cancer and Gruppo Italiano Malattie Ematologiche dell'Adulto Leukemia Groups[J]. Leukemia,2005,19 (10):1768-1773.
    [160]ARCECI RJ, SANDE J, LANGE B et al. Safety and efficacy of gemtuzumab ozogamicin in pediatric patients with advanced CD33+ acute myeloid leukemia[J]. Blood, 2005,106(4):1183-1188.
    [161]WU AM, SENTER PD. Arming antibodies:prospects and challenges for immunoconjugates[J]. Nature biotechnology,2005,23 (9):1137-1146.
    [162]CHEN J, JARACZ S, ZHAO X, CHEN S, OJIMA I. Antibody-cytotoxic agent conjugates for cancer therapy[J]. Expert opinion on drug delivery,2005,2 (5):873-890.
    [163]GOVINDAN SV, GRIFFITHS GL, HANSEN HJ, HORAK ID, GOLDENBERG DM. Cancer therapy with radiolabeled and drug/toxin-conjugated antibodies[J]. Technology in cancer research & treatment,2005,4 (4):375-391.
    [164]SMITH SV. Technology evaluation:cantuzumab mertansine, ImmunoGen[J]. Current opinion in molecular therapeutics,2004,6 (6):666-674.
    [165]LAW CL, CERVENY CG, GORDON KA et al. Efficient elimination of B-lineage lymphomas by anti-CD20-auristatin conjugates [J]. Clin Cancer Res,2004,10 (23): 7842-7851.
    [166]TORGOV MY, ALLEY SC, CERVENY CG, FARQUHAR D, SENTER PD. Generation of an intensely potent anthracycline by a monoclonal antibody-beta-galactosidase conjugate[J]. Bioconjugate chemistry,2005,16 (3):717-721.
    [167]HAMANN PR, HINMAN LM, BEYER CF et al. A calicheamicin conjugate with a fully humanized anti-MUC1 antibody shows potent antitumor effects in breast and ovarian tumor xenografts[J]. Bioconjugate chemistry,2005,16 (2):354-360.
    [168]BURTON JD, ELY S, REDDY PK et al. CD74 is expressed by multiple myeloma and is a promising target for therapy [J]. Clin Cancer Res,2004,10(19):6606-6611.
    [169]GRIFFITHS GL, MATTES MJ, STEIN R et al. Cure of SCID mice bearing human B-lymphoma xenografts by an anti-CD74 antibody-anthracycline drug conjugate[J]. Clin Cancer Res,2003,9 (17):6567-6571.
    [170]SAPRA P, STEIN R, PICKETT J et al. Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys [J]. Clin Cancer Res, 2005,11 (14):5257-5264.
    [171]CHANG CH, SAPRA P, VANAMA SS et al. Effective therapy of human lymphoma xenografts with a novel recombinant ribonuclease/anti-CD74 humanized IgG4 antibody immunotoxin[J]. Blood,2005,106 (13):4308-4314.
    [172]JEDEMA I, BARGE RM, VAN DER VELDEN VH et al. Internalization and cell cycle-dependent killing of leukemic cells by Gemtuzumab Ozogamicin:rationale for efficacy in CD33-negative malignancies with endocytic capacity[J]. Leukemia,2004,18 (2):316-325.
    [173]LESLIE EM, DEELEY RG, COLE SP. Multidrug resistance proteins:role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense[J]. Toxicology and applied pharmacology,2005,204 (3):216-237.
    [174]NAITO K, TAKESHITA A, SHIGENO K et al. Calicheamicin-conjugated humanized anti-CD33 monoclonal antibody (gemtuzumab zogamicin, CMA-676) shows cytocidal effect on CD33-positive leukemia cell lines, but is inactive on P-glycoprotein-expressing sublines[J]. Leukemia,2000,14 (8):1436-1443.
    [175]HAMANN PR, HINMAN LM, BEYER CF et al. An anti-MUC1 antibody-calicheamicin conjugate for treatment of solid tumors. Choice of linker and overcoming drug resistance[J]. Bioconjugate chemistry,2005,16 (2):346-353.
    [176]HAMANN PR, HINMAN LM, BEYER CF et al. An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker[J]. Bioconjugate chemistry,2002,13 (1):40-46.
    [177]SHARMA SK, BAGSHAWE KD, BEGENT RH. Advances in antibody-directed enzyme prodrug therapy[J]. Curr Opin Investig Drugs,2005,6 (6):611-615.
    [178]FRANCIS RJ, SHARMA SK, SPRINGER C et al. A phase Ⅰ trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumours[J]. British journal of cancer,2002,87 (6):600-607.
    [179]MAYER A, SHARMA SK, TOLNER B et al. Modifying an immunogenic epitope on a therapeutic protein:a step towards an improved system for antibody-directed enzyme prodrug therapy (ADEPT)[J]. British journal of cancer,2004,90 (12):2402-2410.
    [180]CORTEZ-RETAMOZO V, BACKMANN N, SENTER PD et al. Efficient cancer therapy with a nanobody-based conjugate[J]. Cancer research,2004,64 (8):2853-2857.
    [181]EKLUND JW, KUZEL TM. Denileukin diftitox:a concise clinical review[J]. Expert review of anticancer therapy,2005,5 (1):33-38.
    [182]FRANKEL AE, KREITMAN RJ, SAUSVILLE EA. Targeted toxins[J]. Clin Cancer Res,2000,6 (2):326-334.
    [183]PASTAN I. Immunotoxins containing Pseudomonas exotoxin A:a short history[J]. Cancer Immunol Immunother,2003,52 (5):338-341.
    [184]NEWTON DL, HANSEN HJ, MIKULSKI SM, GOLDENBERG DM, RYBAK SM. Potent and specific antitumor effects of an anti-CD22-targeted cytotoxic ribonuclease: potential for the treatment of non-Hodgkin lymphoma[J]. Blood,2001,97 (2):528-535.
    [185]VITETTA ES, FULTON RJ, MAY RD, TILL M, UHR JW. Redesigning nature's poisons to create anti-tumor reagents[J]. Science (New York, NY,1987,238 (4830): 1098-1104.
    [186]GADINA M, NEWTON DL, RYBAK SM, WU YN, YOULE RJ. Humanized immunotoxins[J]. Therapeutic immunology,1994,1 (1):59-64.
    [187]AMLOT PL, STONE MJ, CUNNINGHAM D et al. A phase Ⅰ study of an anti-CD22-deglycosylated ricin A chain immunotoxin in the treatment of B-cell lymphomas resistant to conventional therapy [J]. Blood,1993,82 (9):2624-2633.
    [188]SAUSVILLE EA, HEADLEE D, STETLER-STEVENSON M et al. Continuous infusion of the anti-CD22 immunotoxin IgG-RFB4-SMPT-dgA in patients with B-cell lymphoma:a phase Ⅰ study [J]. Blood,1995,85 (12):3457-3465.
    [189]STONE MJ, SAUSVILLE EA, FAY JW et al. A phase Ⅰ study of bolus versus continuous infusion of the anti-CD 19 immunotoxin, IgG-HD37-dgA, in patients with B-cell lymphoma[J]. Blood,1996,88 (4):1188-1197.
    [190]SMALLSHAW JE, GHETIE V, RIZO J et al. Genetic engineering of an immunotoxin to eliminate pulmonary vascular leak in mice[J]. Nature biotechnology,2003, 21 (4):387-391.
    [191]KREITMAN RJ, SQUIRES DR, STETLER-STEVENSON M et al. Phase Ⅰ trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies [J]. J Clin Oncol,2005,23 (27):6719-6729.
    [192]POSEY JA, KHAZAELI MB, BOOKMAN MA et al. A phase Ⅰ trial of the single-chain immunotoxin SGN-10 (BR96 sFv-PE40) in patients with advanced solid tumors[J]. Clin Cancer Res,2002,8 (10):3092-3099.
    [193]HELLSTROM I, GARRIGUES HJ, GARRIGUES U, HELLSTROM KE. Highly tumor-reactive, internalizing, mouse monoclonal antibodies to Le(y)-related cell surface antigens[J]. Cancer research,1990,50 (7):2183-2190.
    [194]NAKAMURA Y, SODA H, OKA M et al. Randomized phase Ⅱ trial of irinotecan with paclitaxel or gemcitabine for non-small cell lung cancer:association of UGT1A1*6 and UGT1A1*27 with severe neutropenia[J]. J Thorac Oncol,6 (1):121-127.
    [195]KODERA Y, IMANO M, YOSHIKAWA T et al. A randomized phase Ⅱ trial to test the efficacy of intra-peritoneal paclitaxel for gastric cancer with high risk for the peritoneal metastasis (INPACT trial)[J]. Japanese journal of clinical oncology,41 (2):283-286.
    [196]JEMAL A, SIEGEL R, WARD E et al. Cancer statistics,2006[J]. CA:a cancer journal for clinicians,2006,56 (2):106-130.
    [197]SUN S, SCHILLER JH, GAZDAR AF. Lung cancer in never smokers--a different disease[J]. Nature reviews,2007,7 (10):778-790.
    [198]BACH PB, KELLEY MJ, TATE RC, MCCRORY DC. Screening for lung cancer:a review of the current literature [J]. Chest,2003,123 (1 Suppl):72S-82S.
    [199]HENSCHKE CI, YANKELEVITZ DF, LIBBY DM et al. Survival of patients with stage I lung cancer detected on CT screening[J]. The New England journal of medicine,2006, 355(17):1763-1771.
    [200]DING L, GETZ G, WHEELER DA et al. Somatic mutations affect key pathways in lung adenocarcinoma[J]. Nature,2008,455 (7216):1069-1075.
    [201]WEIR BA, WOO MS, GETZ G et al. Characterizing the cancer genome in lung adenocarcinoma[J]. Nature,2007,450 (7171):893-898.
    [202]THOMAS RK, BAKER AC, DEBIASI RM et al. High-throughput oncogene mutation profiling in human cancer[J]. Nature genetics,2007,39 (3):347-351.
    [203]WISTUBA, II, BEHRENS C, VIRMANI AK et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints [J]. Cancer research,2000,60 (7):1949-1960.
    [204]YATABE Y, KOSAKA T, TAKAHASHI T, MITSUDOMI T. EGFR mutation is specific for terminal respiratory unit type adenocarcinoma[J]. The American journal of surgical pathology,2005,29 (5):633-639.
    [205]SONG P, SEKHON HS, FU XW et al. Activated cholinergic signaling provides a target in squamous cell lung carcinoma[J]. Cancer research,2008,68 (12):4693-4700.
    [206]WEINSTEIN IB, JOE A. Oncogene addiction[J]. Cancer research,2008,68 (9): 3077-3080; discussion 3080.
    [207]HECHT SS. Tobacco smoke carcinogens and lung cancer[J]. Journal of the National Cancer Institute,1999,91 (14):1194-1210.
    [208]SCHWARTZ AG, PRYSAK GM, BOCK CH, COTE ML. The molecular epidemiology of lung cancer[J]. Carcinogenesis,2007,28 (3):507-518.
    [209]PAZ-ELIZUR T, SEVILYA Z, LEITNER-DAGAN Y et al. DNA repair of oxidative DNA damage in human carcinogenesis:potential application for cancer risk assessment and prevention[J]. Cancer letters,2008,266 (1):60-72.
    [210]ZHOU W, LIU G, MILLER DP et al. Polymorphisms in the DNA repair genes XRCC1 and ERCC2, smoking, and lung cancer risk[J]. Cancer Epidemiol Biomarkers Prev, 2003,12 (4):359-365.
    [211]HUNG RJ, MCKAY JD, GABORIEAU V et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25[J]. Nature,2008,452 (7187):633-637.
    [212]YOUNG RP, HOPKINS RJ, HAY BA et al. Lung cancer gene associated with COPD:triple whammy or possible confounding effect?[J]. Eur Respir J,2008,32 (5): 1158-1164.
    [213]AMOS CI, XU W, SPITZ MR. Is there a genetic basis for lung cancer susceptibility?[J]. Recent results in cancer research Fortschritte der Krebsforschung,1999, 151:3-12.
    [214]BAILEY-WILSON JE, AMOS CI, PINNEY SM et al. A major lung cancer susceptibility locus maps to chromosome 6q23-25[J]. American journal of human genetics, 2004,75 (3):460-474.
    [215]ROBINSON DR, WU YM, LIN SF. The protein tyrosine kinase family of the human genome[J]. Oncogene,2000,19 (49):5548-5557.
    [216]SHARMA SV, BELL DW, SETTLEMAN J, HABER DA. Epidermal growth factor receptor mutations in lung cancer[J]. Nature reviews,2007,7 (3):169-181.
    [217]ROWINSKY EK. The erbB family:targets for therapeutic development against cancer and therapeutic strategies using monoclonal antibodies and tyrosine kinase inhibitors [J]. Annual review of medicine,2004,55:433-457.
    [218]HIRSCH FR, VARELLA-GARCIA M, BUNN PA, JR. et al. Epidermal growth factor receptor in non-small-cell lung carcinomas:correlation between gene copy number and protein expression and impact on prognosis[J]. J Clin Oncol,2003,21 (20):3798-3807.
    [219]NICHOLSON RI, GEE JM, HARPER ME. EGFR and cancer prognosis[J]. Eur J Cancer,2001,37 Suppl 4:S9-15.
    [220]SHIGEMATSU H, GAZDAR AF. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers [J]. International journal of cancer,2006,118 (2): 257-262.
    [221]EBERHARD DA, JOHNSON BE, AMLER LC et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib[J]. J Clin Oncol,2005,23 (25):5900-5909.
    [222]GAZDAR AF, SHIGEMATSU H, HERZ J, MINNA JD. Mutations and addiction to EGFR:the Achilles 'heal' of lung cancers?[J]. Trends in molecular medicine,2004,10 (10): 481-486.
    [223]SHIGEMATSU H, TAKAHASHI T, NOMURA M et al. Somatic mutations of the HER2 kinase domain in lung adenocarcinomas[J]. Cancer research,2005,65 (5):1642-1646.
    [224]SOUNG YH, LEE JW, KIM SY et al. Somatic mutations of the ERBB4 kinase domain in human cancers[J]. International journal of cancer,2006,118 (6):1426-1429.
    [225]NAOKI K, CHEN TH, RICHARDS WG, SUGARBAKER DJ, MEYERSON M. Missense mutations of the BRAF gene in human lung adenocarcinoma[J]. Cancer research, 2002,62 (23):7001-7003.
    [226]SAMUELS Y, WANG Z, BARDELLI A et al. High frequency of mutations of the PIK3CA gene in human cancers[J]. Science (New York, NY,2004,304 (5670):554.
    [227]YAMAMOTO H, SHIGEMATSU H, NOMURA M et al. PIK3CA mutations and copy number gains in human lung cancers[J]. Cancer research,2008,68 (17):6913-6921.
    [228]MOON A. Differential functions of Ras for malignant phenotypic conversion[J]. Archives of pharmacal research,2006,29 (2):113-122.
    [229]MOLINA JR, ADJEI AA. The Ras/Raf/MAPK pathway [J]. J Thorac Oncol,2006,1 (1):7-9.
    [230]FUKUOKA M, YANO S, GIACCONE G et al. Multi-institutional randomized phase Ⅱ trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected][J]. J Clin Oncol,2003,21 (12):2237-2246.
    [231]KRIS MG, NATALE RB, HERBST RS et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer:a randomized trial[J]. Jama,2003,290 (16):2149-2158.
    [232]SHEPHERD FA, RODRIGUES PEREIRA J, CIULEANU T et al. Erlotinib in previously treated non-small-cell lung cancer[J]. The New England journal of medicine,2005, 353 (2):123-132.
    [233]LYNCH TJ, BELL DW, SORDELLA R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib[J]. The New England journal of medicine,2004,350 (21):2129-2139.
    [234]PAEZ JG, JANNE PA, LEE JC et al. EGFR mutations in lung cancer:correlation with clinical response to gefitinib therapy[J]. Science (New York, NY,2004,304 (5676): 1497-1500.
    [235]PAO W, MILLER V, ZAKOWSKI M et al. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101 (36):13306-13311.
    [236]URAMOTO H, MITSUDOMI T. Which biomarker predicts benefit from EGFR-TKI treatment for patients with lung cancer?[J]. British journal of cancer,2007,96 (6): 857-863.
    [237]KOBAYASHI S, BOGGON TJ, DAYARAM T et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib[J]. The New England journal of medicine,2005, 352 (8):786-792.
    [238]WU JY, WU SG, YANG CH et al. Lung cancer with epidermal growth factor receptor ex on 20 mutations is associated with poor gefitinib treatment response[J]. Clin Cancer Res,2008,14 (15):4877-4882.
    [239]SHIGEMATSU H, LIN L, TAKAHASHI T et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers[J]. Journal of the National Cancer Institute,2005,97 (5):339-346.
    [240]SHEPHERD FA, ROSELL R. Weighing tumor biology in treatment decisions for patients with non-small cell lung cancer[J]. J Thorac Oncol,2007,2 Suppl 2:S68-76.
    [241]ZHU CQ, DA CUNHA SANTOS G, DING K et al. Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21[J]. J Clin Oncol,2008,26 (26):4268-4275.
    [242]CAPPUZZO F, VARELLA-GARCIA M, SHIGEMATSU H et al. Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients[J]. J Clin Oncol,2005,23 (22): 5007-5018.
    [243]CAPPUZZO F, TOSCHI L, DOMENICHINI I et al. HER3 genomic gain and sensitivity to gefitinib in advanced non-small-cell lung cancer patients[J]. British journal of cancer,2005,93 (12):1334-1340.
    [244]PAO W, WANG TY, RIELY GJ et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib[J]. PLoS medicine,2005,2 (1):e17.
    [245]ZHANG J, IWANAGA K, CHOI KC et al. Intratumoral epiregulin is a marker of advanced disease in non-small cell lung cancer patients and confers invasive properties on EGFR-mutant cells[J]. Cancer prevention research (Philadelphia, Pa,2008,1 (3):201-207.
    [246]YONESAKA K, ZEJNULLAHU K, LINDEMAN N et al. Autocrine production of amphiregulin predicts sensitivity to both gefitinib and cetuximab in EGFR wild-type cancers[J]. Clin Cancer Res,2008,14 (21):6963-6973.
    [247]ZHOU BB, PEYTON M, HE B et al. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer[J]. Cancer cell,2006,10 (1):39-50.
    [248]GAZDAR AF, MINNA JD. Deregulated EGFR signaling during lung cancer progression:mutations, amplicons, and autocrine loops[J]. Cancer prevention research (Philadelphia, Pa,2008,1 (3):156-160.
    [249]JI H, WANG Z, PERERA SA et al. Mutations in BRAF and KRAS converge on activation of the mitogen-activated protein kinase pathway in lung cancer mouse models[J]. Cancer research,2007,67 (10):4933-4939.
    [250]DHOMEN N, MARAIS R. New insight into BRAF mutations in cancer[J]. Current opinion in genetics & development,2007,17 (1):31-39.
    [251]SAMUELS Y, DIAZ LA, JR., SCHMIDT-KITTLER O et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells[J]. Cancer cell,2005,7 (6): 561-573.
    [252]GARNIS C, LOCKWOOD WW, VUCIC E et al. High resolution analysis of non-small cell lung cancer cell lines by whole genome tiling path array CGH[J]. International journal of cancer,2006,118 (6):1556-1564.
    [253]INAMURA K, TAKEUCHI K, TOGASHI Y et al. EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers[J]. J Thorac Oncol,2008,3 (1):13-17.
    [254]MEYERSON M. Cancer:broken genes in solid tumours[J]. Nature,2007,448 (7153):545-546.
    [255]SODA M, CHOI YL, ENOMOTO M et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer[J]. Nature,2007,448 (7153):561-566.
    [256]MAEDA Y, DAVE V, WHITSETT JA. Transcriptional control of lung morphogenesis[J]. Physiological reviews,2007,87 (1):219-244.
    [257]TANAKA H, YANAGISAWA K, SHINJO K et al. Lineage-specific dependency of lung adenocarcinomas on the lung development regulator TTF-1[J]. Cancer research,2007, 67(13):6007-6011.
    [258]LOCKWOOD WW, CHARI R, COE BP et al. DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers[J]. Oncogene,2008,27 (33): 4615-4624.
    [259]GAZZERI S, BRAMBILLA E, CARON DE FROMENTEL C et al. p53 genetic abnormalities and myc activation in human lung carcinoma[J]. International journal of cancer, 1994,58(1):24-32.
    [260]GAZZERI S, BRAMBILLA E, CHAUVIN C et al. Analysis of the activation of the myc family oncogene and of its stability over time in xenografted human lung carcinomas [J]. Cancer research,1990,50 (5):1566-1570.
    [261]OLIVIER M, PETITJEAN A, MARCEL V et al. Recent advances in p53 research: an interdisciplinary perspective [J]. Cancer gene therapy,2009,16 (1):1-12.
    [262]BRAMBILLA E, GAZZERI S, LANTUEJOUL S et al. p53 mutant immunophenotype and deregulation of p53 transcription pathway (Bcl2, Bax, and Wafl) in precursor bronchial lesions of lung cancer[J]. Clin Cancer Res,1998,4 (7):1609-1618.
    [263]JEANMART M, LANTUEJOUL S, FIEVET F et al. Value of immunohistoche-mical markers in preinvasive bronchial lesions in risk assessment of lung cancer[J]. Clin Cancer Res,2003,9 (6):2195-2203.
    [264]EYMIN B, GAZZERI S, BRAMBILLA C, BRAMBILLA E. Mdm2 overexpression and p14(ARF) inactivation are two mutually exclusive events in primary human lung tumors[J]. Oncogene,2002,21 (17):2750-2761.
    [265]EYMIN B, CLAVERIE P, SALON C et al. p14ARF activates a Tip60-dependent and p53-independent ATM/ATR/CHK pathway in response to genotoxic stress[J]. Molecular and cellular biology,2006,26 (11):4339-4350.
    [266]GAZZERI S, DELLA VALLE V, CHAUSSADE L et al. The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancer[J]. Cancer research,1998,58 (17):3926-3931.
    [267]KNUDSON AG, JR., HETHCOTE HW, BROWN BW. Mutation and childhood cancer:a probabilistic model for the incidence of retinoblastoma[J]. Proceedings of the National Academy of Sciences of the United States of America,1975,72 (12):5116-5120.
    [268]GOUYER V, GAZZERI S, BOLON I et al. Mechanism of retinoblastoma gene inactivation in the spectrum of neuroendocrine lung tumors[J]. American journal of respiratory cell and molecular biology,1998,18 (2):188-196.
    [269]BRAMBILLA E, MORO D, GAZZERI S, BRAMBILLA C. Alterations of expression of Rb, p16(INK4A) and cyclin D1 in non-small cell lung carcinoma and their clinical significance[J]. The Journal of pathology,1999,188 (4):351-360.
    [270]BRAMBILLA E, GAZZERI S, MORO D et al. Alterations of Rb pathway (Rb-p16INK4-cyclin D1) in preinvasive bronchial lesions[J]. Clin Cancer Res,1999,5 (2): 243-250.
    [271]JI H, RAMSEY MR, HAYES DN et al. LKB1 modulates lung cancer differentiation and metastasis[J]. Nature,2007,448 (7155):807-810.
    [272]MATSUMOTO S, IWAKAWA R, TAKAHASHI K et al. Prevalence and specificity of LKB1 genetic alterations in lung cancers[J]. Oncogene,2007,26 (40):5911-5918.
    [273]HOUGHTON AM, MOUDED M, SHAPIRO SD. Common origins of lung cancer and COPD[J]. Nature medicine,2008,14 (10):1023-1024.
    [274]DANIAL NN. BCL-2 family proteins:critical checkpoints of apoptotic cell death[J]. Clin Cancer Res,2007,13 (24):7254-7263.
    [275]BRAMBILLA E, NEGOESCU A, GAZZERI S et al. Apoptosis-related factors p53, Bcl2, and Bax in neuroendocrine lung tumors[J]. The American journal of pathology,1996, 149(6):1941-1952.
    [276]CHENG EH, KIRSCH DG, CLEM RJ et al. Conversion of Bcl-2 to a Bax-like death effector by caspases[J]. Science (New York, NY,1997,278 (5345):1966-1968.
    [277]HERBST RS, FRANKEL SR. Oblimersen sodium (Genasense bcl-2 antisense oligonucleotide):a rational therapeutic to enhance apoptosis in therapy of lung cancer[J]. Clin Cancer Res,2004,10 (12 Pt 2):4245s-4248s.
    [278]OLTERSDORF T, ELMORE SW, SHOEMAKER AR et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours[J]. Nature,2005,435 (7042):677-681.
    [279]VIARD-LEVEUGLE I, VEYRENC S, FRENCH LE, BRAMBILLA C, BRAMBILLA E. Frequent loss of Fas expression and function in human lung tumours with overexpression of FasL in small cell lung carcinoma[J]. The Journal of pathology,2003,201 (2):268-277.
    [280]EYMIN B, GAZZERI S, BRAMBILLA C, BRAMBILLA E. Distinct pattern of E2F1 expression in human lung tumours:E2F1 is upregulated in small cell lung carcinoma[J]. Oncogene,2001,20 (14):1678-1687.
    [281]SALON C, EYMIN B, MICHEAU O et al. E2F1 induces apoptosis and sensitizes human lung adenocarcinoma cells to death-receptor-mediated apoptosis through specific downregulation of c-FLIP(short)[J]. Cell death and differentiation,2006,13 (2):260-272.
    [282]MERDZHANOVA G, EDMOND V, DE SERANNO S et al. E2F1 controls alternative splicing pattern of genes involved in apoptosis through upregulation of the splicing factor SC35[J]. Cell death and differentiation,2008,15 (12):1815-1823.
    [283]MEYERSON M. Role of telomerase in normal and cancer cells[J]. J Clin Oncol, 2000,18 (13):2626-2634.
    [284]BARTKOVA J, HOREJSI Z, KOED K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis[J]. Nature,2005,434 (7035):864-870.
    [285]GORGOULIS VG, VASSILIOU LV, KARAKAIDOS P et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions[J]. Nature, 2005,434 (7035):907-913.
    [286]NUCIFORO PG, LUISE C, CAPRA M, PELOSI G, D'ADDA DI FAGAGNA F. Complex engagement of DNA damage response pathways in human cancer and in lung tumor progression[J]. Carcinogenesis,2007,28 (10):2082-2088.
    [287]NAKANISHI K, KAWAI T, KUMAKI F et al. Expression of human telomerase RNA component and telomerase reverse transcriptase mRNA in atypical adenomatous hyperplasia of the lung[J]. Human pathology,2002,33 (7):697-702.
    [288]LANTUEJOUL S, SORIA JC, MORAT L et al. Telomere shortening and telomerase reverse transcriptase expression in preinvasive bronchial lesions[J]. Clin Cancer Res,2005,11 (5):2074-2082.
    [289]HIYAMA K, HIYAMA E, ISHIOKA S et al. Telomerase activity in small-cell and non-small-cell lung cancers[J]. Journal of the National Cancer Institute,1995,87 (12): 895-902.
    [290]LANTUEJOUL S, SORIA JC, MORO-SIBILOT D et al. Differential expression of telomerase reverse transcriptase (hTERT) in lung tumours[J]. British journal of cancer,2004, 90 (6):1222-1229.
    [291]DIKMEN ZG, GELLERT GC, JACKSON S et al. In vivo inhibition of lung cancer by GRN163L:a novel human telomerase inhibitor[J]. Cancer research,2005,65 (17): 7866-7873.
    [292]ESTELLER M. Epigenetics in cancer[J]. The New England journal of medicine, 2008,358(11):1148-1159.
    [293]SHAMES DS, GIRARD L, GAO B et al. A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies[J]. PLoS medicine,2006,3(12):e486.
    [294]HANAHAN D, WEINBERG RA. The hallmarks of cancer[J]. Cell,2000,100 (1): 57-70.
    [295]ZOCHBAUER-MULLER S, FONG KM, VIRMANI AK et al. Aberrant promoter methylation of multiple genes in non-small cell lung cancers[J]. Cancer research,2001,61 (1): 249-255.
    [296]ZOCHBAUER-MULLER S, LAM S, TOYOOKA S et al. Aberrant methylation of multiple genes in the upper aerodigestive tract epithelium of heavy smokers[J]. International journal of cancer,2003,107 (4):612-616.
    [297]DE FRAIPONT F, MORO-SIBILOT D, MICHELLAND S et al. Promoter methylation of genes in bronchial lavages:a marker for early diagnosis of primary and relapsing non-small cell lung cancer?[J]. Lung cancer (Amsterdam, Netherlands),2005,50 (2): 199-209.
    [298]BROCK MV, HOOKER CM, OTA-MACHIDA E et al. DNA methylation markers and early recurrence in stage I lung cancer[J]. The New England journal of medicine,2008, 358(11):1118-1128.
    [299]GIBBONS RJ. Histone modifying and chromatin remodelling enzymes in cancer and dysplastic syndromes[J]. Human molecular genetics,2005,14 Spec No 1:R85-92.
    [300]ESTELLER M. Cancer epigenomics:DNA methylomes and histone-modification maps[J]. Nature reviews,2007,8 (4):286-298.
    [301]JENUWEIN T, ALLIS CD. Translating the histone code[J]. Science (New York, NY, 2001,293(5532):1074-1080.
    [302]GROTH A, ROCHA W, VERREAULT A, ALMOUZNI G. Chromatin challenges during DNA replication and repair[J]. Cell,2007,128 (4):721-733.
    [303]KOUZARIDES T. Chromatin modifications and their function[J]. Cell,2007,128 (4):693-705.
    [304]FRAGA MF, BALLESTAR E, VILLAR-GAREA A et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer[J]. Nature genetics,2005,37 (4):391-400.
    [305]VAN DEN BROECK A, BRAMBILLA E, MORO-SIBILOT D et al. Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer[J]. Clin Cancer Res,2008,14 (22):7237-7245.
    [306]BARLESI F, GIACCONE G, GALLEGOS-RUIZ MI et al. Global histone modifications predict prognosis of resected non small-cell lung cancer[J]. J Clin Oncol,2007, 25 (28):4358-4364.
    [307]COWLAND JB, HOTHER C, GRONBAEK K. MicroRNAs and cancer[J]. Apmis, 2007,115(10):1090-1106.
    [308]BARBAROTTO E, SCHMITTGEN TD, CALIN GA. MicroRNAs and cancer: profile, profile, profile[J]. International journal of cancer,2008,122 (5):969-977.
    [309]BOYD SD. Everything you wanted to know about small RNA but were afraid to ask[J]. Laboratory investigation; a journal of technical methods and pathology,2008,88 (6): 569-578.
    [310]TAKAMIZAWA J, KONISHI H, YANAGISAWA K et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival[J]. Cancer research,2004,64 (11):3753-3756.
    [311]YANAIHARA N, CAPLEN N, BOWMAN E et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis[J]. Cancer cell,2006,9 (3):189-198.
    [312]NANA-SINKAM SP, GERACI MW. MicroRNA in lung cancer[J]. J Thorac Oncol, 2006,1 (9):929-931.
    [313]CALIN GA, SEVIGNANI C, DUMITRU CD et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101 (9):2999-3004.
    [314]EDER M, SCHERR M. MicroRNA and lung cancer[J]. The New England journal of medicine,2005,352 (23):2446-2448.
    [315]HAYASHITA Y, OSADA H, TATEMATSU Y et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation[J]. Cancer research,2005,65 (21):9628-9632.
    [316]HE L, HE X, LOWE SW, HANNON GJ. microRNAs join the p53 network-another piece in the tumour-suppression puzzle[J]. Nat Rev Cancer,2007,7 (11): 819-822.
    [317]BOMMER GT, GERIN I, FENG Y et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes[J]. Curr Biol,2007,17 (15):1298-1307.
    [318]HARRIS KS, ZHANG Z, MCMANUS MT, HARFE BD, SUN X. Dicer function is essential for lung epithelium morphogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103 (7):2208-2213.
    [319]CHIOSEA S, JELEZCOVA E, CHANDRAN U et al. Overexpression of Dicer in precursor lesions of lung adenocarcinoma[J]. Cancer research,2007,67 (5):2345-2350.
    [320]CHATTERJEE A, MAMBO E, SIDRANSKY D. Mitochondrial DNA mutations in human cancer[J]. Oncogene,2006,25 (34):4663-4674.
    [321]KAGAN J, SRIVASTAVA S. Mitochondria as a target for early detection and diagnosis of cancer[J]. Critical reviews in clinical laboratory sciences,2005,42 (5-6): 453-472.
    [322]ZHOU S, KACHHAP S, SUN W et al. Frequency and phenotypic implications of mitochondrial DNA mutations in human squamous cell cancers of the head and neck[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104 (18):7540-7545.
    [323]SUI G, ZHOU S, WANG J et al. Mitochondrial DNA mutations in preneoplastic lesions of the gastrointestinal tract:a biomarker for the early detection of cancer[J]. Molecular cancer,2006,5:73.
    [324]SUZUKI M, TOYOOKA S, MIYAJIMA K et al. Alterations in the mitochondrial displacement loop in lung cancers[J]. Clin Cancer Res,2003,9 (15):5636-5641.
    [325]SHEDDEN K, TAYLOR JM, ENKEMANN SA et al. Gene expression-based survival prediction in lung adenocarcinoma:a multi-site, blinded validation study [J]. Nature medicine,2008,14 (8):822-827.
    [326]MOTOI N, SZOKE J, RIELY GJ et al. Lung adenocarcinoma:modification of the 2004 WHO mixed subtype to include the major histologic subtype suggests correlations between papillary and micropapillary adenocarcinoma subtypes, EGFR mutations and gene expression analysis[J]. The American journal of surgical pathology,2008,32 (6):810-827.
    [327]MIURA K, BOWMAN ED, SIMON R et al. Laser capture microdissection and microarray expression analysis of lung adenocarcinoma reveals tobacco smoking-and prognosis-related molecular profiles[J]. Cancer research,2002,62 (11):3244-3250.
    [328]TAKEUCHI T, TOMIDA S, YATABE Y et al. Expression profile-defined classification of lung adenocarcinoma shows close relationship with underlying major genetic changes and clinicopathologic behaviors[J]. J Clin Oncol,2006,24 (11):1679-1688.
    [329]KWEI KA, KIM YH, GIRARD L et al. Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer[J]. Oncogene,2008,27 (25):3635-3640.
    [330]WISNIEWSKI JR. Mass spectrometry-based proteomics:principles, perspectives, and challenges [J]. Archives of pathology & laboratory medicine,2008,132 (10):1566-1569.
    [331]HANASH SM, PITTERI SJ, FACA VM. Mining the plasma proteome for cancer biomarkers[J]. Nature,2008,452 (7187):571-579.
    [332]CONRAD DH, GOYETTE J, THOMAS PS. Proteomics as a method for early detection of cancer:a review of proteomics, exhaled breath condensate, and lung cancer screening[J]. Journal of general internal medicine,2008,23 Suppl 1:78-84.
    [333]SAIJO N. Advances in the treatment of non-small cell lung cancer[J]. Cancer treatment reviews,2008,34 (6):521-526.
    [334]GRIDELLI C. Targeted therapy developments in the treatment of non-small cell lung cancer:a promising but long and winding road[J]. Current opinion in oncology,2008,20 (2):145-147.