高粱中一个DREB类转录因子基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱、盐碱和冻害等非生物逆境严重影响了植物的生长发育。在逆境胁迫下,植物可以启动或增强两类基因的表达来抵御不利环境的危害:(1)基因编码的产物包括传递信号和调控基因表达的转录因子,如bZIP转录因子、MYC转录因子、MYB转录因子及DREB转录因子等;感应和转导胁迫信号的蛋白激酶(如MAP激酶、核糖体蛋白激酶和转录调控蛋白激酶等);以及在信号转导中起重要作用的蛋白酶(如磷酸醋酶、磷脂酶C等)。(2)基因编码的产物包括一些功能蛋白和酶类,如LEA蛋白、水通道蛋白、脯氨酸合成酶等,使细胞各种生理生化代谢活动能维持正常进行。由于植物基因的表达调控大多发生在转录水平上,主要受控于顺式作用元件和反式作用因子。尤其是转录因子基因的表达可提高其下游一系列抗逆功能基因的表达水平,从而提高植物的综合抗逆性,在抗逆转基因育种中具有重要功能价值。因此,分离和筛选鉴定优异的转录因子基因是当前抗逆分子生物学研究的重点。
     本研究中,以不同基因型高粱为材料,利用简并引物和RACE技术及RT-PCR研究了一个高粱中由高盐诱导的DREB类转录因子基因。首先根据GenBank中多种植物AP2/EREBP转录因子氨基酸序列的保守区段设计了一对简并引物,通过RT-PCR扩增出一条117 bp的cDNA片段。经Blast比较及测序验证其正确性后,根据此片段序列设计3’端特异性引物,利用3’RACE得到949bp的3’端cDNA片段,命名为SbDREB1001,并对其进行了相关的生物信息学分析。该序列包括789 bp的开放阅读框,编码262个氨基酸,该肽段分子量为28.6 kDa,理论等电点为5.52。生物信息学分析显示该基因具有C端疏水区,并且它的蛋白序列在第83~138氨基酸处包含一个保守的AP2结构域。DREB氨基酸序列与其他植物DREB类基因有很高的同源性,其序列经Blast软件进行同源性分析,表明与已知的植物DREB基因的序列具有很高的同源性,该基因与玉米的一个DREB类基因(No.:NM-001158997.1)同源性高达88%。利用实时定量PCR技术,分析了该基因在高盐胁迫条件下转录表达情况。分析结果表明,DREB类基因参与了高粱对高盐非生物胁迫的应答反应,但在不同物种或胁迫处理下的表达模式不同,其中623B在高盐胁迫下出现了明显较快的应答反应,在623B中的表达量高峰比河农16提早2h左右。推测DREB类转录因子在高粱受到盐胁迫条件下发挥重要功能。
Abiotic stresses such as drought,salt and freezing could produce severe damages on growth and development of plants. Genes upregulated upon these stress conditions were basically classified into two groups:those that directly protect against environmental stresses,and those that regulate gene expression and signal transduction upon stress conditions. The first group of gene products includes transcription factors,protein kinases,and enzymes involved in phosphoinositide metabolism,such as bZIP, MYC,MYB,DREB,MAP, Phosphoric acid vinegar enzyme, et al.The second group includes proteins and enzymes that likely function by protecting cells from dehydration,such as late- embryogenesis-abundant (LEA)proteins,enzymes required for biosynthesis of proline,and aquaporins (AQP), et al, making the cell various physiological and biochemical activity can maintain normal metabolism. In the past few years,scientists have showed great interest in the second group of genes.In plants,the expression of many genes were regulated at transcriptional level,and mostly it’s realized through cis- and trans-acting elements. Therefore,transcription factors could play a key role in stress prevention in plants.
     In this study, we obtained a DREB gene from Sorghum bicolor(L.) by RT-PCR using degenerate primers and RACE techonolgy. Through the multiply alignment of amino acid sequences and nucleotide acid sequences of several plant AP2/EREBP in GenBank, a pair of degenerate primers were designed against the conserved regions that was used for RT-PCR to amplify a 117 bp cDNA fragment from Sorghum bicolor(L.). Base on the sequence of the cDNA fragment, primers were designed for 3’RACE and a 949 bp cDNA fragment was amplified. It was named SbDREB1001, and was analyzed with relative bioinformatics methods. The DREB cDNA sequence was 949 bp long with an ORF (open reading frame) of 789 bp, encoding a predicted polypeptide of 262 amino acid with a calculated MW of 28.6 kDa and pI of 5.52. It contain a C-terminal hydrophobic domain. In addition, one AP2 domain between 83 and 138 amino acid. The amino acid sequence compared by NCBI_Blast revealed high homology with that of other plant DREB genes, and the similarity to ethylene response factor 2 of Zea mays(GeneBank Accession No.:NM-001158997.1)was 88%. The real-time fluorescence quantitative PCR was performed to reveal transcript level of DREB under different abiotic stresses. Real-time quantitative polymerase chain reaction (PCR) expression analysis results showed that DREB gene was involved in sorghum response to salt stress, but the response in speed was different in different materials under stress condiction.The response was 2 hours faster in 623B than HN16 under salt stress. The DREB gene insorghum play an important function under salt stress condition.
引文
[1] Agarwal P K, Agarwal P, Reddy M K, et al. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants[J].Plant Cell Reports,2006, 25(12): 1263-1274.
    [2] SaiboNJM, Loureno T, Oliveira M M. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses [J].Annals of Botany,2009, 103(4):609-623.
    [3]王平荣,邓晓建,高晓玲,等.DREB转录因子研究进展[J].遗传, 2006, 28(3):369-374.
    [4]陈金焕,夏新莉,尹伟伦,等.植物DREB转录因子及其转基因研究进展[S].分子植物育种, 2007, 5(6) : 29-35.
    [5]徐莎,胡军,陈宇红,等.DREB转录因子研究进展[J].农业生物技术学报, 2008, 16(4):706-713.
    [6]刘强,赵南明, Yamaguchi-Shinozaki K,等. DREB转录因子在提高植物抗逆性中的作用.科学通报, 2000,45 (1):11-16.
    [7] Fowler S and Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold accimation in addition to the CBF cold response pathway. Plant Cell, 2002,14(8):1675-1690.
    [8]高峰,熊爱生,彭日荷,等.抗逆相关DREB转录因子的研究进展及应用[J].上海农业学报, 2008, 24(1): 118-123.
    [9] Chen M, Xu Z, Xia L, et al. Cold-induced modulation and functional analyses of the DRE-binding transcription factorgene, GmDREB3, in soybean(Glycine maxL.). Journal of Experimental Botany, 2009, 60(1): 121-135.
    [10] Chen M,Wang Q Y, Cheng X G, et al. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communications, 2007, 353(2): 299-305.
    [11] Gao S Q, Chen M, Xia L Q, et al .A cotton (Gossypium hirsutum)DRE-binding transcription factor gene,GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Reports, 2005, 28(2): 301-311.
    [12] Sakuma Y, Liu Q, DubouzetJ G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression[J]. Biochemica land Biophysical Research Communications, 2002, 290(3): 998-1009.
    [13] Wang Q, Guan Y, Wu Y, et al. Over expression of a rice Os-DREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice[J].Plant Molecular Biology, 2008, 67(6): 589-602.
    [14] Okamuro J K, Caster B, Villarroel R. The AP2 domain of APETALA2 define a large new family of DNA binding protein in Arabidopsis. Proc Natl Acad Sci USA, 1997, 94(13): 7076?7081.
    [15] Cao ZF, Li J, Chen F, et al. Effect of two conserved amino acid residues on DREB1A function. Biochemistry(Moscow), 2001, 66(6):623-627.
    [16] Dubouzet J G, Sakuma Y, et al. OsDREB genes in rice (Oryza satica L.) encode transcriptionactivators that function in drought, high-salt and cold-responsive gene expression [J]. Plant Journal, 2003, 33(4):751-763.
    [17] Tian X H, Li X P, Zhou H L, et al. OsDREB4 genes in rice encode AP2 -containing protein that bind specifically to the dehydration-responsive element[J]. Acta Botanica Sinica, , 2005,47(4):467-476.
    [18]刘强,等.DREB转录因子在提高植物抗逆性中的作用[J].科学通报, 2000, 45(1):11-16.
    [19]王红雷,等.植物DREB转录因子的研究进展[J].黑龙江农业科学, 2008, 3:22-24
    [20] Shinozaki K, Dennis E S. Cell signaling and gene regulation global analyses of signal transduction and gene expression profiles. Current Opinion in Plant Biology, 2003, 6(5): 405-409.
    [21] Matsukura S, Mizoi J, Yoshida D, et al. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Molecular Genetics and Genomics, 2010, 283(2): 185-196.
    [22] Chen M, Xu Z, Xia L, et al Cold-induced modulation and functional analyses of the DRE-binding transcription factorgene,GmDREB3, in soybean(Glycinemax L. ). Journal of Experimental Botany, 2009, 60(1): 121-135.
    [23] Shen Y G, Zhang W K, He S J, et al. An EREBP/AP2-type protein in-Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. TAG Theoretical and Applied Genetics, 2003, 106(5): 923-930.
    [24] Egawa C, Kobayashi F, Ishibash M, et al. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes and Genetic Systems(Japan), 2006, 81(2): 77-91.
    [25] Oh S J, Kwon C W, Choi D W, et al. Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnology Journal 2007, 5(5): 646-656
    [26] Shan D P, Huang J G, Yang Y T, et al. Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid.New Phytologist, 2007, 176(1): 70-81.
    [27] Qin F, Sakuma Y, Li J, et al. Cloning and functional analysis of a novel DREB1 /CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant and Cell Physiology,2004, 45(8): 1042-1052.
    [28] Islam M S, Wang M H. Expression of dehydration responsive element-binding protein-3(DREB3)under different abiotic stresses in tomato. BMB Reports, 2009, 42(9): 611-616.
    [29] Chen J H, Xia X L, Yin WL. Expression profiling and functional characterization ofaDREB2-type gene from Populus euphratica. Biochemical and Biophysical Research Communications, 2009, 378(3): 483-487.
    [30] Benedict C, Skinner J S, Meng R, et al. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell and Environment,2006, 29(7): 1259-1272.
    [31] Sakuma Y, Maruyama K, Qin F, et al. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA,2006, 103(49): 18822-18827.
    [32] Qin F, Kakimoto M, Sakuma Y, et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant Journal 2007, 50(1): 54-69.
    [33] Chen J Q, Meng X P, Zhang Y, et al. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnology Letters, 2008, 30(12): 2191-2198.
    [34] Zhao L, Hu Y, Chong K, Wang T. ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice. Annals of Botany, 2010, 105(3): 401-409.
    [35] Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. Combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant and Cell Physiology, 2004, 45(3):346-350.
    [36] Huang J G, Yang M , Liu P, et al. GhDREB1 enhances abiotic stress tolerance, delays GA-mediated development and represses cytokine in signalling in transgenic Arabidopsis. Plant Cell and Environment, 2009, 32(8): 1132-1145.
    [37] Kobayashi F, Ishibashi M, Takumi S. Transcriptional activation of Cor/Lea genes and increase in abiotic stress tolerance through expression of a wheatDREB2 homolog in transgenic tobacco. Transgenic Research, 2008, 17(5): 755-767.
    [38] Liu N, Zhong N Q ,Wang G L, et al. Cloning and functional characterization ofPpDBF1gene encoding DRE-binging transcription factor from Physcomitrella patens Planta , 2007, 226(4): 827-838.
    [39] Chen M, Wang Q Y, Cheng X G, et al. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communications, 2007, 353(2): 299-305.
    [40] Zhang Y, Chen C, Jin X F, et al. Expression of a rice DREB1 gene,OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis. BMB Reports, 2009, 31(8): 486-492.
    [41] Xu Z S, NiZY, LiZY, et al. Isolation and functional characterization of HvDREB1-a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. Journal of Plant Research, 2009, 122(1): 121-130.
    [42] Wang Q, Guan Y, Wu Y, et al. Overexpression of a rice OsDREB1Fgene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology, 2008, 67 ( 6 ):589-602.
    [43] Dubouzet J G, Sakuma Y, ItoY, et al. OsDREB genes in rice, OryzasativaL., encode transcription activators that function in drought-,high-salt-and cold-responsive gene expression. Plant Journal 2003, 33(4): 751-763.
    [44] Gao S Q, Chen M, Xia L Q, et al. A cotton(Gossypium hirsutum)DRE-binding transcription factor gene, GhDREB , confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Reports , 2005, 28(2): 301-311.
    [45] Hightower R, Baden C.1991.Expression of antifreeze proteins in transgenic plants.Plant Mol Biol, 17:1013-1021
    [46] Gilmour S J, Zarka D G, Stockinger E J, et al. l998.Low temperature regulation of theArabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J,6:433-442
    [47] Liu Q, Kasuga M, Sakuma Y, et al.1998.Two transcription factors, DREB 1 and DREB2,with an EREBP/AP2DNA binding do-main separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression respectively in Arabidopsis. Plant Cell,10:1391-1406
    [48] Singh K B, Foley R C, Oiiate-Sánchez L.2002.Transcription factors in plant defense and stress responses. Curr Opinion Plant Biol, 5:430-436
    [49] Jeong Mee Park, Chang Jin, et al. Over expression of the Tobacco Tsi1 Gene Encoding an EREBP/AP2-Type Transcription Factor Enhances Resistance against Pathogen Attack and Osmotic Stress in Tobacco [J]. Plant Cell, 2001, 13(5):1035-1046.
    [50] Bartels D, Sunkar R. Drought and salt tolerance in plants. Critical Reviews in PlantSciences, 2005, 24: 23-58.
    [51]Yamaguchi-ShinozakiK,ShinozakiK.Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses.Annual Review of Plant Biology, 2006, 57: 781-803.
    [52] NakashimaK, ItoY,Yamaguchi-ShinozakiK.Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 2009, 149: 88-95.
    [53] Shou H, Bordallo P, Fan J B, et al. Expression of an active tobaccomito-gen-activated protein kinase enhances freezing tolerance in transgenic maize. ProcNatlAcad of Sci USA, 2004, 101(9):3298-3303.
    [54]李亚青,葛荣朝,赵保存,等. RT-PCR法半定量检测不同逆境胁迫下TaGSK1基因的表达[J].华北农学报, 2007, 22(1):83-85.
    [55]石琰璟.利用SMART RACE克隆STGA3 cDNA的5′末端[J].青岛科技大学学报,2006,27(1):16-19.
    [56]胡晓艳.野牛草的有性繁殖特性研究及其抗旱转录因子DREB的克隆[D].西北农林科技大学博士学位论文, 2007, (06).
    [57]谢永丽,王自章,刘强,等.草坪草狗牙根中抗逆基因BeDREB的克隆及功能鉴定[J].中国生物化学与分子生物学学报, 2005, 21(4):521-527.
    [58]阳文龙,刘敬梅,刘强,等.高羊茅DREB类转录因子基因的分离及鉴定分析[J].核农学报, 2006, 20(3):187-192.
    [59]田秀红.水稻DREB转录因子基因的克隆及相关研究[D].中国农业大学博士学位论文, 2004.
    [60] SuzukiT, HigginsP J, Crawford D. Control selection for RNA quantitation[J]. Biotechniques, 2000, 29: 332-337.
    [61] Bustin S A. Quantification of mRNA using real-time reverse transcription PCRRT-PCR: trends and problems[J]. J Mol Endocrinol, 2002, 29: 23-29.
    [62] Dheda K, Huggett J F, Bustin S A, et al.Validation of housekeeping genes for normalizing RNA expression in real-time PCR[J]. Biotechniques, 2004, 37: 112-119.
    [63] Kim B R, Nam H Y, Kim S U, et al.Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice[J]. Biotechnol Lett. 2003, 25: 1869-1872.
    [64] XIE Xiu-Zhi, CHEN Zhao-Ping, WANG Xiao-Jing. Cloning and Expression Analysis of CRY2 Gene in Sorghum bicolor. Journal of Plant Physiology and Molecular Biology,2005, 31 (3): 261-268.
    [65] Liu J Y. Real-time PCR technique and its application in quantification of plant nucleic acid molecule[J]. Acta Botanica Sinica, 2003 ,45(6): 631-637.
    [66] Julie L Kirstin E Nick S. Real-Time PCR current technology and applications[M]. Norfolk: Caister Academic Press ,2009.
    [67] Huggett J, Dheda K, Bustin S, et al. Real-time RT-PCR normalisation; strategies and considerations[ J]. Genes and Immunity, 2005, 6: 279-284.
    [68] Radonic A, Thulke S, Mackay I M, et al. Guideline for reference gene selection for quantitative real-time PCR [ J].Biochem. Biophys Res Commun, 2004, 313: 856-862.
    [69]朱捷,杨成君,王军等.实时定量PCR技术及其在科研中的应用[J].生物技术通报, 2009, 2:73-76.
    [70]张中保,李会勇,石云素等.应用实时定量PCR技术分析玉米水分胁迫诱导基因的表达模式[J].植物遗传资源学报, 2007,8(4):421-425.
    [69]牛艳梅,沈文涛,卢雅薇,等.番木瓜果实扩展蛋白Cp-EXP1基因表达的实时定量PCR分析[J].生物技术通讯, 2008, 19(1):84-86.
    [71]叶嘉良,陈健,吕正兵,等.家蚕泛肽-核糖体蛋白S27a的表达及功能研究[J].蚕业科学, 2007, 33(3):394-402.
    [73]吴明生.紫花苜蓿液泡膜Na/H逆转运蛋白基因的克隆及其表达分析[D].硕士学位论文,重庆大学, 2004.
    [74]李亚青,葛荣朝,赵保存,等. RT-PCR法半定量检测不同逆境胁迫下TaGSK1基因的表达[J].华北农学报, 2007, 22(1):83-85.
    [75]胡庆宏,刘明峽,栾树清,等. RT-PCR方法半定量在基因表达水平检测中的应用[J].实用临床医学, 2004, 5(6):627-629.