虚拟阵列扩展研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基阵的角度分辨力受到基阵孔径的限制,俗称“瑞利限”。本文主要研究虚拟阵列扩展技术,构造虚拟阵元位置处的信号或信息,扩展阵列孔径,提高角度分辨力。
     本文首先简要介绍了常规波束形成的原理和矢量信号处理的基础,并利用常规波束形成对虚拟后的阵元信号进行处理和性能比较。然后研究了三种虚拟阵列扩展方法:四阶累积量法、外推法、内插法。四阶累积量虚拟阵列扩展法能够抑制高斯噪声,将基阵扩展到二倍孔径。论文的工作将该方法推广到矢量阵信号处理上。常规外推法在信噪比较低时性能较差,改进方法利用Bartlett空间谱作为先验知识,使其适合于水声阵列信号处理。常规的内插法主要应用于阵型变换,不适用于线阵的孔径扩展,论文将内插思想与自回归AR模型相结合,使得内插法适用于线阵孔径扩展。本论文的主要内容是对于上述三种方法都进行理论建模、实验仿真,比较它们间的优劣势。
     仿真实验结果表明:四阶累积量法效果好,但计算量大,不能够恢复时域信息;对于两个目标靠得太近时,外推法效果不好,外推性能受到信源个数影响;内插法需要知道信源的个数,扩展能力也受到信源个数影响。最后,利用三种算法分别对实验数据进行处理,验证算法的性能。处理结果表明了三种方法处理效果都较常规波束形成有很大提高。
Angular resolution is limited by the aperture of array, which is called Rayleigh limit. The purpose of this thesis researched the algorithms which can extend array aperture, with which the received signal in the place out of the aperture can be deduced by the real received signals. In other words, it is equal to extend the array aperture, and enhance the angular resolution.
     The principles of beamforming and the foundation of vector array processing is introduced briefly, which is used as post processing when the virtual receive signal is constructed. Secondly, three methods to extending array aperture are researched, which are four-order cumulants, signal extrapolation and array interpolation. The use of cumulants in narrowband signal array processing is interpreted, which can eliminate Gauss noise, and extend aperture two times longer than that of original array. The application of cumulants to vector hydrophone array is proposed in this thesis. Signal extrapolation modified is used in underwater array processing in this thesis, which used Bartlett spatial spectrum as a priori knowledge. Normally, array interpolation is unfit for extending array aperture, and it is just used for virtual array transform. It is shown that a new array interpolation method whose combine with autoregressive models in this thesis can extend array aperture, which can extend array aperture. This thesis has made modeling theoretically, simulating experiment, and compared performance for each algorithm.
     Simulation results verify that effect based on four-order cumulants is best, whereas it need more computation than others. Signal extrapolation could not distinguish two targets when the targets are close to each other, and the precise of signal deduced depend on the number of targets. Array interpolation method also needs information of the number of targets. In the last,the experimental data obtained from lake experimentation was disposed. It is proved that the effect processed with each of three algorithms had much improvement than beamforming did.
引文
[1] Friedlander B,Weiss A J. Direction finding using spatial smoothing with interpolated arrays. IEEE Transactions on Aerospace and Electronic Systems,1992,4(28):574-578P
    [2]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法.清华大学出版社,2005:1-2页,368-370页,390-403页
    [3] Pesavento M,Gershman A B,Luo Z Q.Robust array interpolation using second-order cone programming. IEEE Signal Processing Letters,2002,1:8-11P
    [4] G.J.Cook,B.K.Lau,Y.H.Leung. An alterative approach to interpolated array processing for uniform circular arrays. 2002 Asia-Pacific Conference, 2002,1: 411-414P
    [5] B.K.Lau,M.Viberg,Y.H.Leung. Data-adaptive array interpolation for doa estimation in correlated signal environments. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005,4: 945-948P
    [6] B.K.Lau,M.Viberg,Y.H.Leung. An improved array interpolation approach to doa estimation in correlated signal environments. IEEE International Conference on Acoustics, Speech, and Signal Processing,2004,2:237-40P
    [7] Per Hyberg,Magnus Jansson,Bjorn Ottersten. Array Interpolation and Bias Reduction. IEEE Transactions on Signal Processing, 2004,52(10): 2711-20P
    [8] Per Hyberg,Magnus Jansson,Bjorn Ottersten. Array Interpolation and Doa MSE Reduction. IEEE Transactions on Signal Processing, 2005,53(12):4464-71P
    [9] Benjamin Friedlander,Anthony. Direction finding for wide-band signals using an interpolated array. IEEE Transactions on Signal Processing, 1993,41(4): 1618-1634P
    [10] Gavish M,Weiss A J. Peformance analysis of the VIA-ESPRIT algorithm. IEEE Proceedings F Radar and Signal Processing,1991,39(6):1473-1478P
    [11] Markus buhren,Marius Pesavento,Johann F.Bohme. A new approach to array interpolation by generation for artificial shift invariances:interpolated esprit. 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003,5:V-205-8P
    [12] Dogan M C,Mendel J M. Applicaion of cumulants to array processing -part I: aperture extension and array calibration. IEEE Trans.on SP,1995,43(5):1200-1216
    [13] Poral B,Friedlander B. Direction finding algorithms based on high-order statistics. IEEE Trans.on SP,1991,39(9):2016-2023P
    [14] Pascal Chevalier, Anne Ferréol. On the Virtual Array Concept for the Fourth-Order Direction Finding Problem. IEEE Transactions on Signal Processing ,1999, 47(9):2592– 2595P
    [15] Pascal Chevalier,Laurent Albera, Anne Ferréol,d Pierre Comon. On the Virtual Array Concept for Higher Order Array Processing., IEEE Transactions on Signal Processing ,2005,53(4):1254– 1271P
    [16]陈建,王树勋.基于四阶累积量虚拟阵列扩展的DOA估计.吉林大学学报:信息科学版,2006,24(4):345-350
    [17]武思军,张锦中,张曙.基于四阶累积量进行阵列扩展的算法研究.哈尔滨工程大学学报,2005,26(3):394-397
    [18]唐斌,施太和,肖先赐.基于四阶累积量的空间信号2-D DOA分离估计.电子科学学刊,1998,20(6):745~749
    [19]刘剑,于红旗,黄知涛,周一宇.基于二阶预处理的共轭扩展MUSIC算法.系统工程与电子技术,2008,30(1):57-60
    [20]刘剑,于红旗,黄知涛,周一宇.二阶共轭增强MUSIC算法.信号处理,2008,24(3):411-413
    [21]单志龙,刘学斌,韦岗.一种基于共轭矩阵的阵列扩展技术.通信学报,2004,25(11):151-157
    [22] Anil K,Jain,Surendra ranganth.Extrapolation algorithms for discrete signalswith application in spectral estimation. IEEE Transactions on Acoustics, Speech and Signal Processing, 1981,ASSP-29(4): 830-45P
    [23] Jorge L,C.Sanz,Thomas S.huang. Discrete and Continous Band-Limited Signal Extrapolation. IEEE Transactions on Acoustics, Speech and Signal Processing, 1983,ASSP-31(5):1276-85P
    [24] Satya Dharanipragada,K.S.Arun.Band-limited extrapolation using time-bandwidth dimension. IEEE Transactions on Signal Processing, 1997,45(12):2951-2966P
    [25] Sergio D.Cabrera,Thomas W.Parks.Extrapolation and Spectral Estimation with Iterative Weighted Norm Modification. IEEE Transactions on Signal Processing,1991,39(4):842-51P
    [26] Mauricio D.Sacchi,Tadeusz J.Ulrych,colin J.Walker.Interpolation and extrapolation using a high-resolution discrete fourier Transform. IEEE Transactions on Signal Processing,1998,46(1):31-8P
    [27] Hong fan,EZZ I.EL-Masry,W.Kenneth JenKins.Resolution enhancement of digital beamformers. IEEE Transactions on Acoustics, Speech and Signal Processing,1984,ASSP-32(5):1041-52P
    [28]胡鹏.虚拟阵元波束形成方法研究.西北工业大学硕士论文,2006.
    [29]胡鹏,杨士莪,杨益新.基于最小二乘估计的虚拟阵元波束形成仿真.计算机仿真,2007,24(1):323-325
    [30]马常霖,彭应宁,田立生.基于均匀圆阵模式空间噪声流型的高分辨测向算法.电子学报,1998,26(7):112~116.
    [31]马常霖,彭应宁,田立生,刘建华.均匀圆阵相干信源DOA估计的模式空间的平滑算法.电子学刊, 1998,20(1):14~19
    [32]陈辉,王永良,万山虎.非均匀线阵的模糊问题即方位估计算法.空军雷达学院学报,1999,13(1):7~10
    [33]叶中付.基于四阶累积量的约束最小冗余线阵的ESPRIR波达方位估计方法.信号处理.1997,13(1):28~35
    [34] Harry L.Van Trees著,汤俊译.最优阵列处理技术.清华大学出版社,2008:64-84页
    [35]田坦,刘国枝,孙大军编著.声呐技术.哈尔滨工程大学出版社,2004:63-68页
    [36] R.J.尤立克著,洪申译.水声原理.哈尔滨船舶工程学院出版社.1990:24-33页
    [37]惠俊英,惠娟著.矢量信号处理基础.哈尔滨工程大学出版社.2008:3-6页
    [38]尹世梅.矢量传感器阵时频联合方位估计.哈尔滨工程大学硕士学位论文.2009:8-15页
    [39]张贤达著.时间序列分析.清华大学出版社,1996:232-239页
    [40] Benjamin A.Cray,Victor M.Evora,Albert H.Nuttall.Highly directional acoustic receivers. Journal of the Acoustical Society of America,2003,113(3):1526-32P
    [41] Petre Stoica;Randolph L. Moses著,吴仁彪,韩萍,冯青译.现代信号谱分析.电子工业出版社,2007:96-98页