基于矢量水听器的水下瞬态信号检测及特征提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对物体空投入水产生的水下瞬态信号的研究分析有着极其重要的意义,如果能够较早的检测到该信号,那么就可以及时的防御空投目标的袭击。本文主要工作是结合矢量水听器技术对物体空投入水信号进行研究,对物体空投入水信号进行检测和特征提取,为防御空投目标的袭击进行有益的探索。
     本文首先阐述了矢量信号处理技术的基本原理,包括单矢量水听器和矢量阵对目标方位的估计原理,并对一种重要的空间谱估计理论——MUSIC算法做了仿真分析。通过仿真分析可知,矢量水听器比声压水听器在处理水声信号上具有优势,MUSIC在目标方位估计上具有较高的分辨力。希尔伯特黄变换是一种处理非平稳信号的理论,通过仿真分析可知该理论比其它时频方法具有很大的优点。EMD能够将多分量信号分解为单分量信号,利用EMD的这个特性,将EMD分解方法应用到矢量信号处理当中,在方位估计和矢量阵波束形成上进行了信号仿真分析,通过仿真分析可知,该方法能够降低噪声的影响,有效地检测到弱目标,提高了方位估计的分辨力。
     针对鱼雷空投入水产生的水下瞬态信号,对信号组成部分及物体入水过程做了简要的分析,并根据实测瞬态信号,对其进行了数学建模,给出了瞬态信号模型在声压、振速和加速度上的数学模型,基于该模型利用矢量阵波束形成技术进行了方位估计仿真分析,取得了较好的效果。本文最后对试验数据进行了处理,对空投物体入水信号进行了方位估计,利用时域、频域和时频域结合的方法对瞬态信号特征进行了分析,完成了对物体空投入水信号的检测和特征提取。
As aircraft torpedo is a menace of submarine, researching the underwater instantaneous signal produced by launching a torpedo is very important. So if we find the torpedo by detecting the underwater instantaneous signal in time, defending against the torpedo attack is easy. Given that the condition of ocean is complicated, it is a hard spot to research in this domain. Presented in this thesis are a study of the underwater instantaneous signal with vector signal processing technology and testing out theories by experiment.
     In the first part, basic principle of vector signal processing technology and common methods of signal analysis based on the time-frequency field are introduced. Hilbert-huang transform is particularly introduced because it has advantages in processing the non-stationary signals. In this thesis,Hilbert-huang transformis used to analysis the frequency contents of instantaneous signal. Meanwhile, EMD decomposing in Hilbert-huang transform is applied to vector signal processing, then simulation and analysis are made on DOA estimation and vector array beam forming. Through simulation and analysis, it is proved that this method can reduce the impact of the niose , effectively detect weak targets and enhance resolution of the DOA estimation, vector hydrophone is superior in acoustic signal processing to acoustic pressure hydrophone.
     A mathematical model is made based on the analysis of the underwater instantaneous signal, which is produced when aircraft torpedo is dropping into water.this mathematical model includes the acoustic pressure ,velocity, and acceleration of the underwater instantaneous signal. We provide a theory of underwater instantaneous signal processing by deducing the mathematical model with vector signal processing technology. Finally, a series of experiments which were designed for testing the theory, the experimental data was processed based on energy detection and short-time fourier transform. What is more, signal detection and feature extraction of acoustic signal of target were completed.
引文
[1]王国伟,王文友.水下综合防御武器系统框架方案设计报告中国船舶工业科研报告.船舶系统工程部.2002.8
    [2]水面舰艇和潜艇反鱼雷防御系统和技术.情报指挥控制系统与仿真技术.2001,2
    [3]李杨.水下瞬态信号特征提取与多分类器融合.哈尔滨工程大学硕士学位论文. 2009
    [4]李芬.矢量水听器确定声源目标方位技术研究.哈尔滨工程大学硕士学位论文. 2004
    [5] Worthington A M. Impact with a liquid surface studied by the aid of instantaneous photography. Philosophical Transactions of the Royal Society of London,1900, 194(A):175-199P
    [6] Von Karman T. The impact of seaplane floats during landing. Washington DC, USA: National Advisory Committee for Aeronautics, NACA Technical Notes 321,1929
    [7] Watanabe S. Impact resistance upon water surface [R]. Institute Phys &Chem. Res. (Tokyo), Scient paper,1929, 12 (226); 1930, 14 (268); 1933, 23 (477); 1933-34, 23 (484); 1936, 23 (488)
    [8]严忠汉.试论鱼雷入水问题.中国造船,2002,43(3):88-91页
    [9]王永虎,石秀华.入水冲击问题研究的现状与进展.爆炸与冲击,2008,28(3):276-279页
    [10] Richardson E G. The sound impact of a solid on a liquid surface. Proc. Phys. Soc. (London),1955,68:541-547P
    [11] May A, Woodhull J C. The virtual mass of sphere entering water vertically. Applied Physics,1950,21:1285-1289P
    [12] Franz G J. Splashes as sources of sound in liquids. J.A.S.A. 1959,31(8):1080-1096P
    [13] McMillen J H. Shock wave pressures in water produced by impact of smallspheres. Physical Review,1945,68:198-209P
    [14] Leslie C B. Underwater noise produced by bullet entry. J.A.S.A, 1964,36(6):1138-1144P
    [15]汤渭霖.水下噪声学原理.哈尔滨:哈尔滨船舶工程学院.1984:98-139页
    [16]汤渭霖.击水声特性研究.哈尔滨船舶工程学院学报.1981,1:27-39页
    [17]陈九锡,颜开.用MAC方法计算平头物体垂直等速入水空泡.水动力学研究与进展,1985,1:17-26页
    [18]陈先富.弹丸入水空穴的实验研究.爆炸与冲击,1984,5(4):70-73页
    [19]陈学农,何友声.平头物体三维带空泡入水的数值模拟.力学学报,1990,22(2):129-137页
    [20]叶取源.锥头物体垂直入水空泡的发展和闭合.水动力学研究与进展,1989,4(2):33-41页
    [21]时胜国,王三德,刘星等.低速物体入水溅落声特性研究.舰船科学技术,2005,27(5):51-54页
    [22] Hunag N E,Shen Z,Long S R et al.Ther empirical mode decomposition and the Hilbert spectrum for nonlinerr and nonstation time series analysis.Proc Soc,1998,454(A):903-995P
    [23]张贤达.保铮.非平稳信号分析处理.国防工业出版社,1998
    [24] Qian S.Chen D. Joint Time-Frequency Analysis:Methods and Applications. Englewood Cliffs, NJ: Prentice Hall,1996
    [25]葛哲学,陈仲生.时频分析技术及其应用.人民邮电出版社,2006,:9-15页
    [26] Mallat S.A theory for multi-resolution signal decomposition the wavelet representation. IEEE Trans. On Pattern Analysis and Machine Intel 1,1989,11(7):674-693P.
    [27] Daubechier L.Orthonormal Bases of Compactly Supported Wavelets.Comm.Pure and Appl.Math,1988,41(7):906-996P
    [28] Coifman R R, Wickerhauser M W. Entroy-based-Algorithms for BestBasis-Selection. IEEE Tran. Information Theory,1992,38(2):713-718P
    [29]皇甫堪,陈建文,楼生强.现代数字信号处理.第1版.电子工业出版社,2004:392一395页
    [30] N E Huang. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Froc. R. Soc. Lond. A, 1998,454(1):903-995P
    [31]惠俊英,惠娟.适量信号处理,哈尔滨工程大学,2008
    [32]惠俊英,刘宏等.声压振速信息联合处理及其物理基础探索.声学学报,2000,25(4):303-307页
    [33]李关防.海空对抗声纳信号处理若干关键技术研究.哈尔滨工程大学博士学位论文. 2009
    [34]姚直象,惠俊英,蔡平,殷敬伟.单矢量水听器方位估计的柱状图方法.应用声学,2006,25(3):161-167页
    [35]田坦,刘国枝,孙大军.声呐技术.哈尔滨工程大学出版社,2000:63-119页
    [36]吕成刚.水下瞬态信号特性获取与分析.哈尔滨工程大学硕士学位论文2009
    [37] Carson J R,Fry T C.Variable frequency electric circuit theory with application to the theory fo frequency modulation.Bell S.Tech.J.,1973,16:513-540P
    [38] Ville J,Theorie et application de la notion de signal analytique. Cables et Transmission, Pairs,1948,2A(1):61-74P
    [39] L.科恩.白居宪译.时频分析:理论与应用.西安交通大学出版社,1998:1P,32-33P,57-67P
    [40]钟佑明.希尔伯特-黄变换局瞬信号分析理论的研究.重庆大学博士学位论文.2002
    [41] G A Carpenter, S Grossberg. The ART of Adaptive Pattern Recognition by a Self-organizing Neural Network. Trans. IEEE on Computer, 1988, 21(3):77-88P
    [42]王逸林.希尔伯特黄变换在矢量信号中的应用研究.哈尔滨工程大学博士学位论文. 2006
    [43] M Strasberg. Gas Bubbles as Sources of Sound in Liquids. J.A.S.A., 1956,28(1):20-26P