免疫调控和内皮细胞损伤与重度子痫前期的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:妊娠期高血压疾病(hypertensive disorders complicating pregnancy)是妊娠期特有的疾病,是导致孕产妇和围生儿病率及死亡率增加的常见原因之一。子痫前期(preeclampsia,PE)是妊娠期高血压疾病分类中非常重要的一种,尤其是重度子痫前期(severe preeclampsia, sPE )对母儿危害严重,可以导致多器官功能损害。其病因和发病机制至今尚未完全阐明。免疫适应不良学说(immune maladaptation hypothesis)和血管内皮损伤学说是国际上较为公认的两个学说。本研究包括:1)从免疫调控的角度探讨辅助性T细胞(Th)亚群Th1型细胞因子白介素-2(IL-2)、干扰素-γ(IFN-γ)和Th2型细胞因子白介素-10(IL-10)在重度子痫前期发病中的意义;2)探讨对胎盘滋养细胞浸润有调节能力和免疫抑制中起重要作用的细胞因子转化生长因子-β1(TGF-β1)在sPE发病中所起的作用,并且应用变性高效液相色谱仪(DHPLC)和基因测序研究TGF-β1第一号外显子+869位点T/C和+915位点G/C的基因多态性与TGF-β1的产量和sPE发病的关系。3)从内皮细胞损伤的角度探讨血管紧张素Ⅱ(AngⅡ)和血管内皮收缩因子内皮素(ET)在sPE发病中的作用,并研究它们与免疫细胞因子的相关性。4)研究汉族和少数民族子痫前期发病的不同临床特点和妊娠转归。方法:1)第一部分按照重度子痫前期的纳入标准选取在新疆医科大学第一附属医院产科入院的44例患者作为病例组,同时随机选取同期入院的35例血压正常的妊娠产妇作为对照组,采用双抗体夹心酶联免疫吸附测定法(ELISA法,Enzyme linked immunosorbent assay)测定血浆中IL-2、IFN-γ、IL-10的浓度。同时计算Th1/Th(2IL-2/IL-10和IFN-γ/IL-10)比值。2)第二部分取第一部分的44例重度子痫前期患者作为病例组,同时随机选取同期入院的61例血压正常的妊娠产妇作为对照组,采用变性高效液相色谱(DHPLC)技术和基因测序技术分析TGF-β1第一号外显子+869位点T/C(密码子10)和+915位点G/C(密码子25)的基因多态性,同时采用ELISA法测定44例sPE患者和61例对照组中35例正常妊娠妇女的血浆中TGF-β1水平,病例组及对照组与第一部分为同一群体。3)第三部分与第一部分为同一群体,采用放射免疫法测定血浆中内皮素(ET)和血管紧张素Ⅱ(AngⅡ)的水平,分析ET和AngⅡ与IL-2、IFN-γ、IL-10、TGF-β1、IL-2/IL-10比值、IFN-γ/IL-10比值等各细胞因子之间的相关性。4)第四部分通过对我院2003-2007年间收治的295例子痫前期患者进行回顾性分析,按照民族不同将患者分为汉族和少数民族,再按照子痫前期患者发病时间不同分为早发型和晚发型,共分为汉族早发型、汉族晚发型、少数民族早发型、少数民族晚发型四组,分析汉族和少数民族子痫前期患者的发病率,比较四组患者严重并发症的发生情况、胎(婴)儿死亡率比较、临床检测指标比较,分析子痫前期患者各指标与围产结局的相关性。结果:1)与正常妊娠妇女比较,重度子痫前期患者的血浆IL-2水平显著增高(28.38±5.07 VS 35.26±5.97,t=5.43,P<0.001),而血浆IL-10水平显著降低(109.87±34.66 VS 81.15±27.02,t=4.14,P<0.001),血浆IFN-γ水平没有显著差异(42.13±6.36 VS 42.35±4.83,t= 0.175,P>0.05);sPE患者血浆中IL-2/IL-10比值和血浆IFN-γ/IL-10比值均显著高于血压正常的妊娠妇女(分别为0.474±0.149 VS 0.299±0.115,t=5.703,P<0.001和0.530±0.178 VS 0.428±0.142, t=2.77,P<0.01)。2)sPE患者血浆中的TGF-β1的水平是597.01±99.95 pg/ml,而正常对照组孕妇血浆中TGF-β1的水平是543.07±60.92pg/ml,两组相比,差异有统计学意义(t=2.95,P<0.01)。sPE患者TGF-β1第一号外显子+869位点的基因型TT型、TC型、CC型的基因型频率分别为29.5%、56.8%、13.7%,对照组妇女的相应位点的基因型频率分别为37.7%、57.4%、4.9%,两组TT型与TC+CC型基因型频率进行比较,结果显示差异没有统计学意义( x 2=0.755, P =0.385, P>0.05),sPE孕妇+869位点T等位基因频率为42%,C等位基因频率为58%;对照组孕妇T等位基因频率为33.6%,C等位基因频率为66.4%,对两组等位基因频率进行比较,结果显示差异没有统计学意义( x 2=1.559,P=0.212,P>0.05)。sPE患者TGF-β1第一号外显子+915位点的基因型GG型、GC型、CC型的基因型频率分别为77.3%、13.6%、9.1%,对照组妇女的相应位点的基因型频率分别为88.5%、6.6%、4.9%,两组GG型与GC型+CC型基因型频率进行比较,结果显示差异没有统计学意义( x 2=2.385, P =0.123,P>0.05)。sPE孕妇+915位点G等位基因频率为84.1%,C为15.9%;对照组孕妇等位基因频率G为91.8%,C为8.2%,对两组等位基因频率进行比较,结果显示差异没有统计学意义( x 2=3.004,P=0.083,P>0.05)。sPE组和对照组孕妇TGF-β1+869位点TC+CC型与TT型之间血浆TGF-β1水平比较差异均没有统计学意义(t=0.621,P=0.538, P>0.05和t=-1.883,P=0.069, P>0.05); sPE组和对照组孕妇TGF-β1 +915位点GC+CC型与GG型之间血浆TGF-β1水平比较差异没有统计学意义(t=-0.617,P=0.541, P>0.05和t=-0.607,P=0.548, P>0.05)。3)sPE患者的血浆ET水平比正常妊娠妇女显著增高(98.24±45.04 pg/ml VS 68.90±14.36 pg/ml,t'=4.069,P<0.01);sPE患者的血浆AngⅡ水平与正常妊娠妇女相比差异没有统计学意义(54.69±23.69 pg/ml VS 59.34±13.84 pg/ml,t'=1.089,P>0.05)。相关性分析显示重度子痫前期组的血浆ET水平与血浆中的细胞因子IL-2水平、IL-2/IL-10比值、IFN-γ/IL-10比值的相关性有显著的统计学意义,Pearson相关系数分别为0.494、0.465、0.444。重度子痫前期组的血浆AngⅡ水平与血浆中的细胞因子IL-2水平相关性有显著的统计学意义(P<0.01),Pearson相关系数为0.499。重度子痫前期组的血浆IL-10水平与血浆中的细胞因子IFN-γ水平相关性有统计学意义(P<0.01),Pearson相关系数r为0.425。4)汉族和少数民族子痫前期的发病率相比较,差异有统计学意义(2.81% VS 3.66%, x 2=3.98,P<0.05 ),汉族和少数民族早发型子痫前期的发病率相比较,差异有统计学意义(0.92% VS 2.01%,x 2=16.50,P<0.01),少数民族子痫前期发病率尤其是早发型显著高于汉族。汉族早发型组与少数民族早发型组的严重并发症的发生率没有明显差异(90.4% VS 90%,校正x 2=0.07,P>0.05),但少数民族晚发型型组的严重并发症的发生率显著高于汉族晚发型组的严重并发症的发生率(分别为30.3% VS 14.09%, x 2=5.02,P<0.05);汉族和少数民族早发型组的胎(婴)儿死亡率均显著高于晚发型组(14.63%和22.5% VS 5.77%和3.03%, x 2=5.25,P<0.05和校正x 2=4.27,P<0.05)。汉族和少数民族子痫前期患者的临床检测指标相比较,少数民族患者的白细胞计数比汉族患者显著增高(12.74±5.03 VS 9.83±3.05,P<0.001)。少数民族的血红蛋白值显著低于汉族组(109.52±20.94 VS 116.46±19.03,P<0.01)。少数民族组的血浆总蛋白、白蛋白显著低于汉族组(分别为55.43±9.65 VS 49.70±7.23,P<0.001;25.88±7.21 VS 20.94±5.75,P<0.001)。两组的尿素氮和肌酐相比较,差异有统计学意义(5.84±3.50 VS 3.98±1.44,P<0.001;86.48±59.46 VS 64.24±17.48,P<0.01)。用Logistic法对数据进行统计分析,发现分娩孕周、舒张压水平、血浆白蛋白水平、胎(婴)儿出生体重这四项指标具有统计学意义,与围产儿的结局有相关性。结论:1)重度子痫前期的发生与Th1/Th2免疫失衡有关,免疫应答向Th1型偏移,Th1型细胞因子IL-2水平增高和Th2型细胞因子IL-10水平的降低与重度子痫前期的发病机理相关,血浆IL-2/IL-10比值和IFN-γ/IL-10比值的显著增高提示免疫应答激活和免疫耐受不足共同参与了重度子痫前期的发生和发展。2)血浆中TGF-β1水平的增高可能与重度子痫前期的病理生理学变化有关,TGF-β1的第一号外显子+869位点T/C和+915位点G/C的基因多态性与重度子痫前期的发生没有相关性,相应的等位基因不是重度子痫前期的易感基因。这两个位点与TGF-β1的产量也未见明显的相关性。提示在子痫前期的发生中TGF-β1的变化可能与其他基因位点的多态性有关,+869位点和+915位点的基因多态性可能和重度子痫前期的发生无关。3)血浆中血管内皮收缩因子ET水平增高与重度子痫前期的发生有关,与血浆中细胞因子IL-2水平、IL-2/IL-10比值、IFN-γ/IL-10比值有相关性,而且呈正相关;尽管血浆中AngⅡ水平在重度子痫前期患者中没有显著变化,但是其与IL-2水平有相关性,且呈正相关,提示其在重度子痫前期的发病中可能通过细胞因子网络的调节发挥作用。4)少数民族患者子痫前期的发病率尤其是危害严重的早发型子痫前期的发病率显著高于汉族,提示子痫前期的发病有民族差异性,少数民族子痫前期患者可能是很重要的疾病资源库,值得从基因学角度进一步探讨。少数民族子痫前期患者的白细胞计数显著增高、严重的低蛋白血症和贫血可能是临床出现并发症和不良妊娠结局的主要原因。
Objective: Hypertensive disorders complicating pregnancy is a pregnancy-specific syndrome and is one of the leading cause of maternal and fetal mobidity and mortality. Preeclampsia is the most important type of hypertensive disorders complicating pregnancy range from mild to severe. Severe Preeclampsia (sPE) detriment to maternal and fetal the most and may lead to multiple organ function damaged. Although the etiology and pathogensis of preeclampsia are still not unravel, immune maladaptation hypothesis and vascular endothelium cells lesion hypothesis are two theories accepted by most of researchers. Therefore, the present study shed light on several issues as fellows: 1)To investigate the role of T-helper cell subtype including cytokines interleukin-2 (IL-2) and interferon-γ(IFN-γ) of T-helper-type1 (Th1) and cytokine interleukin-10 (IL-10) of T-helper-type2 (Th2) on the pathogensis of sPE based on the theory of immune regulation; 2)To study the contribution of cytokine transforming growth factor-β1 (TGF-β1) which is regulator of placenta trophoblast cell invasion and immune repression on the development of sPE. To analyze the correlation of polymorphisms of TGF-β1 exon 1 +869T/C (Leu10Pro) and +915G/C (Arg25Pro) genotype with severe preeclampsia and production of TGF-β1 by Denaturing High Performance Liquid Chromatography (DHPLC) and direct sequencing. 3)To investigate the role of angiotensinⅡ(AngⅡ) and endothelin (ET) on the pathogensis of sPE from the point of endothelium lesions and to study the correlation of them with immune cytokines detected in Part 1 and Part 2. 4)To explore the different clincal onset patterns and preinatal outcomes in preeclampsia (PE) of Han nationality and national minorities. Methods: 1) Firstly, select 44 cases of sPE hospitalized in the first affiliated hospital in Xinjiang Medical University between April 2006 and September 2007 according to inclusion and exclusion criteria. 35 healthy pregnant women served as controls by random selection. Plasma cytokine levels including IL-2, IFN-γ, IL-10 were assessed by Enzyme linked immunosorbent assay (ELISA) and calculated Th1/Th2(IL-2/IL-10 and IFN-γ/IL-10)ratios. 2) Secondly, same group as part 1 were measured of plasma TGF-β1 levels by ELASA and polymorphisms of TGF-β1 gene exon 1 +869T/C(Leu10Pro, codon 10)and +915G/C(Arg25Pro, codon25)were examined by denaturing high-performance liquid chromatography (DHPLC) and direct sequencing including 44 cases of sPE and 61 cases of control group. 3) Plasma levels of endothelin (ET) and angiotensinⅡ(AngⅡ) were detected by radioimmunoassay on the same group as the part 1, analysed the correlation of plasma ET and AngⅡlevels with plasma cytokine levels of IL-2、IFN-γ、IL-10、TGF-β1、IL-2/IL-10 ratio and IFN-γ/IL-10 ratio. 4) A retrospective observational study was conducted in 295 cases of PE in our hospital on 2003-2007. They were divided into two groups according to the Han nationality (HN) and national minorities (NM). Then according to the onset of gestational age of PE, early onset of PE (onset≤34 weeks) and late onset of PE (onset>34 weeks), they were subdivided into 4 subgroups: NM early onset (40) and late onset (33) of PE, HN early onset (73) and late onset (149) of PE. Clinical characteristic in each subgroup were evaluated. Analyse the mobidity of PE in Han nationality and national minorities. Compare the incidence of serious maternal complications, perinatal mortality rate and clinical index and analyse the correlation of clinical index with perinatal outcome. Results: 1) Plasma levels of IL-2 were much higher in sPE group than that in control group (35.26±5.97pg/ml VS 28.38±5.07pg/ml, t=5.43,P<0.001); Plasma levels of IL-10 were lower in PE group than that in control group (81.15±27.02pg/ml VS 109.87±34.66pg/ml, t=4.14, P<0.001); There were no difference of plasma levels of IFN-γbetween two groups (42.35±4.83pg/ml VS 42.13±6.36pg/ml, t =0.175, P>0.05); IL-2/IL-10 ratio and IFN-γ/IL-10 ratio of plasma in sPE patients were much higher than those in control group (0.474±0.149 VS 0.299±0.115, t=5.703, P < 0.001 and 0.530±0.178 VS 0.428±0.142, t=2.77, P<0.01, respectively). 2) Plasma levels of TGF-β1 were much higher in sPE group than control group (597.01±99.95pg/ml VS 543.07±60.92pg/ml, t=2.95, P<0.01); The genotype distribution frequencies of TGF-β1 gene exon 1 +869T/C (Leu10Pro, codon 10) TT, TC and CC were 29.5%、56.8%、13.7% in sPE group, respectively, while in accordance with those in control group were 37.7%、57.4%、4.9% respectively. There were no difference concerning about genotype frequencies of TT and TC+CC in two groups ( x 2=0.755, P=0.385, P>0.05); The distributions of alleles T and C of +869T/C between sPE group and control group were similar(42% VS 33.6% and 58% VS 66.4%). The genotype distribution frequencies of TGF-β1 gene exon 1 +915G/C (Leu10Pro, codon 10) GG, GC and CC were 77.3%、13.6%、9.1% in sPE group, respectively, while in accordance with those in control group were 88.5%、6.6%、4.9% respectively. There were no difference concerning about genotype frequencies of GG and GC+CC in two groups ( x 2=2.385, P=0.123, P>0.05); The distributions of alleles G and C of +915T/C between sPE group and control group were similar (84.1% VS 91.8% and 15.9% VS 8.2%, x 2=3.004, P=0.083,P>0.05). The plasma levels of TGF-β1 between TC+CC and TT of TGF-β1 +869 locus were similar and the same result appeared with the +915 locus between GC+CC and GG. 3) Plasma levels of ET were much higher in the sPE group than that in control group (98.24±45.04 pg/ml VS 68.90±14.36 pg/ml, t'=4.069,P<0.01) ; whilst plasma levels of AngⅡwere no difference in two groups (54.69±23.69 pg/ml VS 59.34±13.84 pg/ml,t'=1.089, P>0.05). Plasma ET levels in sPE group had correlation with plasma IL-2 levels, IL-2/IL-10 ratio and IFN-γ/IL-10 ratio and Pearson correlation coefficient were 0.494、0.465、0.444. Plasma AngⅡlevels in sPE group had correlation with plasma IL-2 levels which Pearson correlation coefficient were 0.499 and Plasma IL-10 levels in sPE group had correlation with plasma IFN-γlevels which Pearson correlation coefficient were 0.425. 4) The PE incidence of NM was higher than that of HN (3.66% VS 2.81%, x 2=3.98,P<0.05). Especially the PE incidence of NM early onset was much higher than that of HN (2.01% VS 0.92%, x 2=16.50, P<0.01). The incidence of serious maternal complications was much higher in NM late onset subgroup than that in HN late onset subgroup (30.3% VS 14.09%, x 2=5.02, P<0.01), while the incidence of serious maternal complications was not significantly different between NM and HN early onset subgroups (90% vs 90.4% , correction x 2=0.07, P>0.05). Whether in early onset group or late onset group, the perinatal mortality rate were not significantly different between NM and HN (22.5% vs 14.6% and 3.03% vs 5.77% respectively, P>0.05 ) .If compared the perinatal mortality rate between early onset group and late onset group in NM and HN separately, early onset groups were all higher than late onset groups(22.5 vs 3.03% and 14.6% vs 5.77% respectively, P<0.05). The white blood cell count of PE patients in NM groups were much higher than that in HN groups(12.74±5.03 vs 9.83±3.05, P<0.001),in the mean while, Hemoglobin levels, serum total protein and albumin in NM groups were much lower than those in HN groups(109.52±20.94 vs 116.46±19.03, 49.70±7.23 vs 55.43±9.65, 20.94±5.75 vs 25.88±7.21 respectively, P<0.001). Perinatal outcome were associated with gestational age at birth, Neonatal weight, diastolic pressure, serum albumin levels and erythrocyte count. Conclusion: 1) Immune imbalance of Th1/Th2 might be the crucial component of the development of sPE, the immune system in sPE is changed with a shift towards Th1-type immunity. Increased Th1-type cytokine IL-2 and decreased Th2-type cytokine IL-10 in plasma might involove in the pathogensis of sPE. Both IL-2/IL-10 ratio and IFN-γ/IL-10 ratio increased significantly in the sPE patients suggested that overly immune activation and immune intolerance participate in the gensis and development of sPE. 2) Increased TGF-β1 plasma level in sPE patients manifest its role on the pathophysiological processes of sPE. The development of sPE has no correlation with polymorphisms of gene exon 1 +869T/C and +915G/C. The distribution of corresponding allele T and C of +869T/C or allele G and C of +915 G/C were not susceptible gene of sPE and both were not related to the production of TGF-β1. 3) Markedly increased endothelium derived contracting factor ET in plasma and positive correlate with plasma IL-2 level, IL-2/IL-10 ratio and IFN-γ/IL-10 ratio suggested that ET played important role in the development of sPE and can be considered to be the marker of endothelium lesion. Plasma AngⅡlevel appeared of positive correlate with plasma IL-2 level whereas plasma AngⅡlevel has no difference between sPE and normotensive pregancy women suggested that AngⅡmight involve in the development of sPE by regulation of cytokine network. 4) National minorities may be susceptible to PE, especially have a higher incidence to early onset PE which jeopardize perinatal health. It can be a clue to search for genetic factor of PE. Hypoalbuminemia, anemia and inflammatory over-reactive may be contributor factor to the severity and early onset of PE in NM women and might be the main reason of the high incidence of serious maternal complications and unfavorable perinatal outcome.
引文
[1] Villar J, Say L, Gülmezoglu AM, et al. Eclampsia and preeclampsia: a health problem for 2000 years. In: Critchley H, MacLean A, Poston L, Walker J, eds. Pre-eclampsia. London: RCOG Press, 2003:189-207.
    [2] Sibai BM, Spinnato JA, Watson DL, et al. Pregnancy outcome in 303 cases with severe preeclampsia [J]. Obstet Gynecol, 1984, 64(3): 319-325
    [3] Newstead J, von Dadelszen P, Magee LA. Preeclampsia and future cardiovascular risk [J]. Expert Rev Cardiovasc Ther. 2007, 5(2): 283-294
    [4] Anna-Karin W, Bengt H, Matts O, et al. The risk of maternal ischaemic heart disease after gestational hypertensive disease [J]. BJOG, 2005, 112 (11):1486-1491.
    [5] Cunningham FG, Gant NF, Leveno KJ, et al. Williams Obstetric, 21st edn. New York, McGraw-Hill Medical Publishing Division. 2001.
    [6] Thellin O, Coumans B, Zorzi W, et al. Tolerance to the foeto-placental‘graft’: ten ways to support a child for nine months. Curr Opin Immunol, 2000, 12(6): 731-737
    [7] Dennler S, Goumans MJ, Peter TD. Transforming growth factor beta signal transduction [J]. J Leukocyte Biol, 2002, 71(5): 731-740.
    [8] Ekerfelt C, Lidstrom C, Matthiesent L, et al. Spontaneous secretion of interleukin-4, interleukin-10 and interferon-gamma by first trimester decidual mononuclear cells. Am J Reprod Immunol, 2002, 47(3): 159-166
    [9] Asadullah K, Sterry W, Volk HD. Interleukin-10 therapy-review of a new approach. Pharmacol Rev. 2003;55:241-269
    [10] Muy-Rivera M, Sanchez SE, Vadachkoria S, et al. Transforming growth factor-β1 in plasma is associated with prreclampsia risk in Peruvian women with systemic inflammation. Am J Hypertens, 2004; 17: 334-338
    [11] Enquobahriei DA, Williamsi MA, Qiu CF, et al. Maternal plasma transforming growth factor-β1 concentrations in preeclamptic and normotensive pregnant Zimbabwean women. The Journal of Maternal-Fetal and Neonatal Medicine, 2005; 17(5): 343–348
    [12] Xiang W, Xu X, Chen H. Expression of FGF-beta in placenta of patients with pregnancy-induced with serum VCAM-1 [J]. J Huazhong Univ Sci Technolog (Med Sci), 2005, 25(1):82-84.
    [13] Benian A, Madazli R, Aksu F, et al. Plasma and placental levels of interleukin-10, transforming growth factor-β1 and epithelial-cadherin in preeclampsia [J]. Obstet Gynecol, 2002, 100: 327-331
    [14] Lyall F, Simpson H, Bulmer JN, et al. Transforming growth factor-βexpression in human placenta and placental bed in third trimester normal pregnancy, preeclampsia, and fetal growth restriction [J]. Am J Pathol, 2001, 159:1827-1838.
    [15] Fortunato SJ, Menon R, Lonbardi SJ. Interleukin-10 and transforming growth factor-beta inhibit amniochorion tumor necrosis factor-alpha production by contrasting mechanisms of action:Therapeutic implications in prematurity [J]. Am J Obstet Gyneacol, 1997, 177:803.
    [16] Wilczynski JR, Tchorzewski H, Glowacka E, et al. Cytokine secretion by decidual lymphocytes in transient hypertension of pregnancy and preeclampsia J . Mediators Inflamm, 2002 , 11(2) : 105 - 111.
    [17] Orange S, Horvath J, Hennessy A. Preeclampsia is associated with a reduced interleukin-10 production from peripheral blood mononuclearcells [J]. Hypertens Pregnancy, 2003, 22(1):1-8.
    [18] Rein DT, Breindenbach M, Honscheid B, et al. Preeclamptic women are deficient of interleukin-10 as assessed by cytokine release of trophoblast cells in vitro. Cytokine 2003; 23:119–125.
    [19] Freeman DJ, McManus F, Brown EA, et al. Short- and long-term changes in plasma inflammatory markers associated with preeclampsia. Hypertension 2004; 43:708–714.
    [20] Darmochwal-Kolarz D, Leszcynska-Gorzelak B, Rolinski J, et al. T helper 1- and T helper 2-type cytokine imbalance in pregnant women with preeclampsia. Eur J Obst Gynecol Reprod Biol 1999; 86:165–170.
    [21] Daher S, Denardi KAG, Blotta MHSL, et al. Cytokines in recurrent pregnancy loss. J Reprod Immunol 2004; 62:151–157.
    [22] Kaleli I, Kaleli B, Demir M, et al. Serum levels of neopterin and interleukin-2 receptor in women with severe preeclampsia. J Clin Lab Anal. 2005; 19(2): 36-9
    [23] Dong MY, Shi XL, He J, et al. Imbalance of serum T helper 1- and 2-type cytokines in preeclampsia and gestational hypertension. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2005 ; 34(6): 488-91
    [24] Dong M, He J, Wang Z, et al. Placental imbalance of Th1- and Th2-type cytokines in preeclampsia. Acta Obstet Gynecol Scand. 2005; 84(8): 788-93
    [25] Banerjee S, Smallwood A, Moorhead J, et al. Placental expression of interferon-gamma (IFN-gamma) and its receptor IFN-gamma R2 fail to switch from early hypoxic to late normotensive development in preeclampsia. J Clin Endocrinol Metab. 2005; 90(2): 944-52
    [26] Singh HJ, Rahman A, Larmie ET, et al. Endothelin-l in feto-placental tissues from normotensive pregnant women and women with preeclampsia[J]. Acta Obstet Gynecol Scand, 2001, 80: 99-103.
    [27] Napolitano M, Miceli F, Calce A, et al. Expression and relationship between endothelin-1 messenger ribonucleic acid (mRNA) and inducible/endothelial nitric oxide synthase mRNA isoforms from normal and preeclamptic placentas[J]. J Clin Endocrinol Metab, 2000, 85: 2318-2323.
    [28] Lalu MM, Xu H, Davidge ST. Matrix metallop roteinases: control of vascular function and their potential role in p reeclamp sia [ J ]. Front Biosci, 2007 ;1, 12: 2484 - 93.
    [29] Sharma A, Satyam A, Sharma JB. Lep tin, IL - 10 and inflammatory markers ( TNF - alpha, IL - 6 and IL - 8 ) in p re - eclamptic, normotensive p regnant and healthy non - p regnant women [ J ]. Am J Rep rod Immunol, 2007 ;58 (1) : 21 - 30.
    [30] Ariza AC, Bobadilla NA, Halhali A. Endothelin 1 and angiotensin II in preeeclampsia. Rev Invest Clin. 2007;59(1):48-56
    [31] Bidwell J, Keen L, Gallagher G, et al. Cytokine gene polymorphism in human disease: on line databases. Genes Immun 2001; 1:3–19.
    [32] Hassan MI, Aschner Y, Manning CH, et al. Racial differences in selected cytokine allelic and genotypic frequencies among healthy, pregnant women in North Carolina. Cytokine 2003; 21:10–16.
    [33] Stanczuk GA, Mccoy MJ, Hutchinson IV, et al. The genetic predisposition to produce high levels of TGF-beta1 impacts on the severity of eclampsia/pre-eclampsia. Acta Obstet Gynecol Scand. 2007; 86(8):903-8.
    [34] WHO. Beyond the numbers: Reviewing maternal deaths and complications to make pregnancy safer. Geneva, 2004.
    [35] NHBPEP. Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am J Obstet Gynecol 2000; 183 (1):S1–S22.
    [36] Raghupathy R. Th1-type immunity is incompatible with successful pregnancy. Immunol. 1997;18, 478–482.
    [37] Moore KW, de Waal Malefyt R, Coffman RL, et al. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19, 683–765.
    [38] Wilczynski JR, Tchorzewski H, Banasik M, et al. Lymphocyte subset distribution and cytokine secretion in third trimester decidua in normal pregnancy and preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2003; 109, 8–15.
    [39] Huber A, Hefler L, Tempfer C,et al. Transforming growth factor-beta 1 serum levels in pregnancy and pre-eclampsia. Acta Obstet Gynecol Scand 2002; 81:168–171.
    [40] Elenkov IJ, Chrousos GP, Wilder RL. Neuroendocrine regulation of IL-12 and TNF-alpha/IL-10 balance. Clinical implications [J]. Ann N Y Acad Sci, 2000, 917 (5): 94-105.
    [41] Peters CJ, Simpson GL, Levy H. Spectrum of hantavirus infection: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome [J]. Ann Rev Med. 1999, 50: 531-545.
    [42] Pinsky MR. Dysregulation of the immune response in severe sepsis [J]. Am J Med Sci. 2004, 328 (4): 220-229.
    [43]乐杰主编,妇产科学,第六版.北京:人民卫生出版社, 2004, 115-116
    [44] Saito S, Shiozaki A, Nakashima A, et al. The role of the immune system in preeclampsia. Mol Aspects Med 2007; 28:192–209.
    [45] Yoneyama Y, Suzuki S, Sawa R, et al. Relation between adenosine and T-helper 1/T-helper 2 imbalance in women with preeclampsia. Obstet Gynecol. 2002; 99, 641–646.
    [46] Marzi M, Vigano A, Trabattoni D, et al. Characterization of type 1 and type 2 cytokine production profile in physiologic and pathologic human pregnancy. Clin Exp Immunol. 1996; 106, 127–133.
    [47] Hill JA, Polgar K, Anderson DJ. T-helper 1-type immunity to trophoblast in women with recurrent spontaneous abortion. JAMA. 1995; 273, 1933–1936.
    [48] Jonsson Y, Ruber M, Matthiesen L, et al. Cytokine mapping of sera from women with preeclampsia and normal pregnancies. J. Reprod Immunol. 2006; 70: 83–91.
    [49] Saito S, Sakai M, Sasaki Y, et al. Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio during normal human pregnancy and preeclampsia. Clin Exp Immunol. 1999; 117, 550–555.
    [50] Chaouat G, Assal-Meliani A, Martal J, et al. IL-10 prevents naturally occurring fetal loss in the CBA×DBA/2 mating combination, and local defect in IL-10production in this abortion-prone combination is corrected by in vivo injection of IFN-tau. J Immunol. 1995; 154, 4261–4268.
    [51] Plevyak M, Hanna N, Mayer S, et al. Deficiency of decidual IL-10 in first trimester missed abortion: a lack of correlation with the decidual immune cell profile. Am J Reprod Immunol. 2002; 47, 242–250.
    [52] Dekker GA, Sibai BM. The immunology of preeclampsia. Semin Perinatol. 1999; 23, 24–33.
    [53] Sacks G, Sargent I, Redman C. An innate view of human pregnancy. Immunol Today. 1999; 20, 114–118.
    [54] Azizieh F, Raghupathy R, Makhseed M. Maternal cytokine production patterns in women with preeclampsia. Am J Reprod Immunol 2005; 54:30–37.
    [55] Saito S, Umekage H, Sakamoto Y, et al. Increased T helper-1-type immunity and decreased T-helper-2-type immunity in patients with preeclampsia. Am J Reprod Immunol. 1999; 41, 297–306.
    [56] Heikkinen J, Mottonen M, Komi J, et al. Phenotypic characterization of human decidual macrophages. Clin Exp Immunol 2003; 131:498–505.
    [57] Lidstrom C, Matthiesen L, Berg G, et al. Cytokine secretion patterns of NK cells and macrophages in early human pregnancy decidua and blood: implications for suppressor macrophages in decidua. Am J Reprod Immunol 2003; 50:444–452.
    [58] Hanlon AM, Jang S, Salgame P. Signaling from cytokine receptors that affect Th1 responses. Front Biosci 2002; 7:d1247–d1254.
    [59] Aschkenazi S, Straszewski S, Verwer KM, et al. Differential regulation and function of the Fas/Fas ligand system in human trophoblast cells. Biol Reprod. 2002; 66, 1853–1861.
    [60] Hughes TK, Cadet P, Rady P, et al. Evidence for production and action of interleukin-10 in the pituitary [J]. Cell Mol Neurobiol, 1994, 14:47-67
    [61] Mansouri R, Akbari F, Vodjgani M, et al. Serum cytokines profiles in Iranian patients with preeclampsia. Iran J Immunol. 2007; 4(3): 179-185
    [62] William ZJ, Johnp S. Uncommon but important carotid pathology [J]. Ultrasound Quarterly. 2005, 21 (2):131-140.
    [63] Hara N, Fujii T. Histochemical demonstration of IL-2 indecidua cells of patients with preeclampsia [J]. Am J Obstet Gynecol, 1995, 34(1): 44
    [64] Boehm KD, Kelley MF, Ilan J, et al. The interleukin-2 gene is expressed in the syncytiotrophoblast of human placenta [J]. Proc Natl Acad USA, 1989, 86(2):656-660
    [65] Tao YX, Cao YQ. Modulation of interferon secretion by concanvalin A and interleukin-2 in first trimester placental explants in vitro [J]. J Reprod Immunol, 1993, 24: 201-212
    [66] Hamai Y, Fujii T, Amashita T, et al. The expression of leukocyte antigen G on trophoblasts abolishes the growth suppressing effect of interleukin-2 towards them [J]. Am J Reprod Immunol, 1994,41(2): 153-158
    [67] Romero AT, Ruiz A, Molina VR, et al. Interleukin-2 receptor serum concentrations in normal pregnancy and preeclampsia [J]. Invest Clin, 2002, 43(2): 73-78
    [68] Madazli R, Aydin S, Uludag S, et al. Maternal plasma levels of cytokines in normal and preeclamptic pregnancies and their relationship with diastolic blood pressure and fibronectin levels. Acta Obstet Gynecol Scand, 2003; 82:797–802.
    [69] Borekci B, Aksoy H, Al RA, et al. Maternal serum interleukin-10, interleukin-2 and interleukin-6 in pre-eclampsia and eclampsia. Am J Reprod Immunol, 2007; 58:56–64
    [70] Eneroth E, Remberger M, Vahlne A, et al. Increased serum concentrations of interleukin-2 receptor in the first trimester in women who later developed severe preeclampsia. Acta Obstet Gynecol Scand, 1998; 77:591–593.
    [71] Al-Othman S, Omu AE, Diejomaoh FM, et al. Differential levels of interleukin 6 in maternal and cord sera and placenta in women with pre-eclampsia. Gynecol Obstet Invest, 2001; 52:60–65.
    [72] Olusi SO, Diejomaoh M, Omu A, et al. Interleukins in preeclampsia. Ann Saudi Med, 2000; 20:4
    [73] Wang H, Mengsteab S, Tag CG, et al. Transforming growth factor-β1 gene polymorphisms are associated with progression of liver fibrosis in Caucasians with chronic hepatitis C infection. World J Gastroenterol, 2005; 11(13): 1929-1936
    [74] Reeves WB, Andreoli TE. Transforming growth factor beta contributes to progressive diabetic nephropathy. Proc Natl Acad Sci USA 2000, 97(14):7667-7669.
    [75] Lijnen PJ, Petrov VV, Fagard RH. Association between transforming growth factor beta and hypertension [J] Am J Hypertens, 2003; 16:604-11
    [76] Kurihara H, Yoshizumi M, Sugiyama T. Transforming growth factor-βstimulates the expression of endothelin mRNA by vascular endothelial cells[J] Biochem Biophys Res Commun, 1989; 159:1435-40
    [77] Bonder WA, Noble NA. Interactions of trnsforming growth factor-βand AngⅡinrenal fibrosis. [J] Hypertension,1998; 31:181-8
    [78] Liu ML, Peng JP, Sun QH, et al. The expression of TGF-β1 in uterus and placenta of pregnant rat and its regulation by IFN-γ. Progress in Biochemistry and Biophysics, 2005; 32(5): 413-420
    [79] Tamaki K, Okuda S. Role of TGF-beta in the progression of renal fibrosis. Contrib Nephrol, 2003; 139: 44-65.
    [80] Awad MR, El-Gamel A, Hasleton P, et al. Genotypic variation in the transforming growth factor-β1 gene: association with transforming growth factor-β1 production, fibrotic lung diseases, and graft fibrosis after lung transplantation. Transplantation, 1998; 66: 1014-1020
    [81] Cambien F, Ricard S, Troesch A, et al. Polymorphisms of the transforming growth factor-beta 1 gene in relation to myocardial infarction and blood pressure. The Etude Cas-Temoin de l’Infarctus du Myocarde (ECTIM) Study. Hypertension, 1996; 28: 881-887
    [82] Park BL, Han IK, Lee HS, et al. Identification of novel variants in transforming growth factor-beta1 (TGF-β1) gene and association analysis with bone mineral density. Hum Mutat, 2003; 22: 257-258
    [83] Langdahl BL, Knudsen JY, Jensen HK, et al. A sequence variation: 713-8delC in the transforming growth factor-beta 1 gene has higher prevalence in osteoporotic women than in normal women and is associated with very low bone mass in osteoporotic women and increased bone turnover in both osteoporotic and normal women. Bone, 1997; 20: 289-294
    [84] Watanabe Y, Kinoshita A, Yamada T, et al. A catalog of 106 single-nucleotide polymorphisms (SNPs) and 11 other types of variations in genes for transforming growth factor-β1 (TGF-β1) and its signaling pathway. J Hum Genet, 2002; 47: 478-483
    [85] Grainger DJ, Heathcote K, Chiano M, et al. Genetic control of the circulating concentration of transforming growth factor typeβ1. Hum Mol Genet, 1999; 8: 93-97
    [86] El-Gamel A, Awad MR, Hasleton PS, et al. Transforming growth factor-beta (TGF-β1) genotype and lung allograft fibrosis. J Heart Lung Transplant, 1999; 18: 517-523
    [87] Li B, Khanna A, Sharma V,et al TGF-beta1 DNA polymorphisms, protein levels, and blood pressure. [J] Hypertension. 1999; 33: 271-5
    [88] Yamada Y, Fujisawa M, Ando F, et al. Association of a polymorphism of the transforming growth factor-beta1 gene with blood pressure in Japanese individuals. [J] J Hum Genet, 2002; 47: 243-8
    [89] Madhumathi R, Guo DQ, Bertrand LJ, et al Transforming growth factor-beta 1 gene polymorphisms and cardiovascular disease in hemodialysis patients. kidney international, 2004; 66, 419-427
    [90] Wei YS, Zhu YH, Du B, et al.Association of transforming growth factor-β1 gene polymorphisms with genetic susceptibility to nasopharyngeal carcinoma. Clinica Chimica Acta, 2007; 380 (1-2), 165-169
    [91] Guzowski D, Chandrasekaran, Gawel C, et al. Analysis of Single Nucleotide Polymorphisms in the Promoter Region of Interleukin-10 by Denaturing High-Performance Liquid Chromatography. Journal of Biomolecular Techniques, 2005;16(2): 154–166 .
    [92] Massague J. Receptors for the TGF-beta family [J]. Cell, 1992, 69(7): 1067-1070.
    [93] Weisgarcia F, Massague J. Complementation between kinase-defective and activation-defective TGF-beta receptor cooperation essential for signaling [J]. EMBO J, 1996; 15(2): 276-289.
    [94]朱瑾,韩德民,周锦川. 11例颈动脉体瘤诊断和手术治疗的回顾性分析[J].临床耳鼻咽喉科杂志, 2005; 19(18): 817-819.
    [95] Plukker JTM, Brongers EP, Vermey A, et al. Out come of surgical treatment for carotid body paraganglioma [J]. British Journal of Surgery. 2001; 88 (10):1382-1386.
    [96] Zhang JJ, Liu T, Wang YQ, et al. The influence of transforming growth factor-β1 on barrier function of endothelial cells. Med J Qilu, 2007; 22 (4): 297-301
    [97] Yoshioka K, Takemura T, Murakami K, et al. Transforming growth factor-beta protein and mRNA in glomeruli in normal and diseased human kidneys [J]. Lab Invest, 1993; 68(2): 154-163
    [98] Jinde K, Nikolic-Paterson DJ, Huang XR, et al. Tubular phenotypic change in progress tubulointetitial in human glomerulonephritis [J]. Am J Kidney Dis, 2001; 38(4): 761-769
    [99] Chen S, Hong SW, Iglesias de la Cruz MC, et al. The key role of the transforming growth factor-beta system in the pathogenesis of diabetic nephropathy [J]. Renal Fail, 2001; 23(3-4): 471-475
    [100] Eddy AA. In sights into renal interstitial fibrosis. J Am Soc Nephrol, 1996; 7:249.
    [101] Qi W, Chen X, Polhill TS, et al. TGF-beta1 induces IL-8 and MCP-1 through a connective tissue growth factor-independent pathway [J]. Am J Physiol Renal Physiol, 2006;290(3): F703-709.
    [102] Cheng J, Diaz Encarnacion MM, Warner GM, et al. TGF-beta1 stimulates monocyte chemoattractant protein-1 expression in mesangial cells through a phosphodiesterase isoenzyme 4-dependent process [J]. Am J Physiol Cell Hysiol, 2005; 289(4):c959-970.
    [103] Feinberg MW, Shimizu K, Lebedeva M, et al. Essential role for Smad3 in regulating MCP-1 expression and vascular inflammation [J]. Circ Res, 2004; 94(5): 601-608.
    [104]黄俊,覃国辉,马业新.转化生长因子-β1及其胞内信号通路SMADs在大鼠心肌肥厚中的作用[J].中国病理生理杂志, 2004; 20(9): 1601-1604.
    [105] Touyz RM, Wu XH, He G, et al. Increased angiotensinⅡ-mediated Src signaling via epidermal growth factor receptor transactivation is associated with decreased c-terminal Src kinase activity in vascular smooth muscle cells form spontaneously hypertensive rats [J]. Hypertension, 2002; 39(2): 479-485.
    [106] Shamblin WR, Remine WH, Sheps SG, et al. Carotid body tumor (chemodectoma): clinicopathologic analysis of ninety cases[J]. Am J Surg, 1971; 122: 732-739.
    [107]周清华,苏有平,王允,等.肺癌合并上腔静脉综合征的外科治疗[J].中国胸心血管外科临床杂志, 1997; 8(3): 141.
    [108] Doty Db, Doty JR, Jones KW. By pass of superior vena cava fifteen year’s experience with spiral vein graft for obstruction of superior vena cava caused by benign disease [J]. J Thorac Cardiovasc Surg, 1990; 99: 889.
    [109] Spencer K, Spencer CE, Power M, et al. Screening for chromosomal abnormalities in the first trimester using ultrasound and maternal serum biochemistry in a one-stop clinic: a review of three years prospective experience [J]. BJOG, 2003; 110(3):281-286.
    [110] Khong TY, Pearce JM, Robertson WB. Acute atherosis in preeclampsia: maternal determinants and fetal outcome in the presence of the lesion [J]. Am J obstet Gynecol, 1987; 157(2): 3620-3729.
    [111]康德凡,尚丽新,曲冬颖,等.妊娠高血压综合征患者胎盘组织中TGFβ1的表达及意义[J].中国医学杂志, 2004; 29(7): 889-900.
    [112] Khong TY, De Wolf F, Robertson WB, et al. Inadequte maternal vascular responseto placentation in pregnancies complicted by pre-elampsia and by small-for-gestational age infant [J]. Br J Obstet Gynaecol, 1986; 93 (10): 1049-1059.
    [113] Caniggia I, Grisaru-Gravnosky S, Kuliszewsky M, et al. Inhibition of TGFβ-3 restores the invasive capability of EVTs in preeclamptic pregnancies [J]. J Clin Invest, 1999; 103: 1641-1650.
    [114] Kumagai H, Katoh S, Hirosawa K, et al. Renal tubulointerstitial injury in weanling rats with hyperhomocysteinemia [J]. Kidney Int, 2002; 62 (4): 1219-1228
    [115] Chen HS, Zhang QY, Wang YY, et al. The relationship between the gene polymorphism and serum level of TGF-β1 in patients and renal damage caused by essential hypertension. J Clin Intern Med, 2007; 24(1):57-60
    [116] Zhao C, Wang YY, Xiao ZX, et al. The relationship between the gene polymorphism of TGF-β1 and early renal injury in patients with essential hypertension, and the effect of the gene polymorphism of TGF-β1 on the individual treatment with valsartan. Chin J Med Genet, 2007; 24(4): 428-432
    [117] Haukim N , Bidwell JL, Smith AJ, et al. Cytokine gene polymorphism in human disease: on-line databases, supplement 2. Genes Immun, 2002; 3, 313–330.
    [118] Turner DM, Williams DM, Sankaran, et al. An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet, 1997; 24, 1–8.
    [119] Pravica V, Perrey C, Stevens A, et al. A single nucleotide polymorphism in the first intron of the human IFN-gamma gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN-gamma production. Hum Immunol, 2000; 61, 863–866.
    [120] Schiffrin EL. Vascular endothelin in hypertension. Vascul Pharmacol, 2005; 43(1): 19-29
    [121] Gjorup PH, SadauskieneL, Wessels, J et al. Abnormally increased endothelin-1 in plasma during the night in obstructive sleep apnea: relation to blood pressure and severity of disease. Am J Hypertens, 2007; 20(1): 44-5
    [122] Chade AR, Krier JD, Textor SC, et al. Endothelin-a receptor blockade improves renal microvascular architecture and function in experimental hypercholesterolemia. J Am Soc Nephrol, 2006; 17(12): 3394-403
    [123] Benoit C, Zavecz J, Wang Y. Vasoreactivity of chorionic plate arteries in response to vasoconstrictors produced by preeclamptic placentas. Placenta, 2007; 28(5-6): 498-504
    [124] Hladunewich MA, Derby GC, Lafayette RA. Effect of L-arginine therapy on the glomerular injury of preeclampsia: a randomized controlled trial, Obstet Gynecol. 2006; 107(4): 886-95
    [125] Aydin S, Benian A, Madazli R. Plasma malondialdehyde, superoxide dismutase, sE-selectin, fibronectin, endothelin-1 and nitric oxide levels in women with preeclampsia. Eur J Obstet Gynecol Reprod Biol, 2004; 113(1): 21-5
    [126] Asakura H, Nakai A, Takeshita T. Changes in plasma endothelin-1 after elective cesarean section in women with preeclampsia and the relationship to thrombocytopenia. J Nippon Med Sch, 2003; 70(6): 480-9
    [127] Fiore G, Florio P, Micheli L. Endothelin-1 triggers placental oxidative stress pathways: putative role in preeclampsia. J Clin Endocrinol Metab, 2005 ; 90(7): 4205-10
    [128] Ajne G, Wolff K, Fyhrquist F. Endothelin converting enzyme (ECE) activity in normal pregnancy and preeclampsia. Hypertens Pregnancy, 2003; 22(3): 215-24
    [129] Sagsoz N, Kucukozkan T. The effect of treatment on endothelin-1 concentration and mean arterial pressure in preeclampsia and eclampsia. Hypertens Pregnancy, 2003; 22(2): 185-91
    [130] Cheng ZJ, Vapaatalo H, Mervaala E. Angiotensin II and vascular inflammation. Med Sci Monit, 2005; 11(6): RA194-205
    [131] Karteris E, Goumenou A, KoumantakisE, et al. Reduced expression of corticotropin-releasing hormone receptor type-1 alpha in human preeclamptic and growth-restricted placentas. J Clin Endocrinol Metab, 2003; 88(1): 363-70
    [132] Laskowska M, Leszczynska-Gorzelak B, Laskowska K, et al. Evaluation of the renin-angiotensin-aldosterone system in pregnancy complicated by preeclampsia with and without intrauterine growth retardation. Ann Univ Mariae Curie Sklodowska [Med], 2004; 59(2): 451-6
    [133] Sakamoto A, Yanagisawa M, Sakurai T, et al . Cloning and functional expression of human cDNA for the ETB endothelin receptor[J]. Bio-chem Biophys Res Commun, 1991; 178 (2) : 656-663.
    [134] Kharfi A, Giguere Y, Sapin V, et al. Trophoblastic remodeling in normal and preeclamptic pregnancies: implication of cytokines. Clin-Biochem, 2003 ; 36(5): 323-31
    [135] Nielsen AH, Schauser KH, Poulsen K, et al. The uteroplacental reninangiotensin systern [J]. Placenta, 2000, 21:468-477.
    [136] Shah DM. Role of the renin-angiotensin system in the pathogenesis of preeclampsia. Am J Physiol Renal Physiol, 2005; 288(4): F614-25
    [137] Walther T, Wallukat G, Jank A, et al. Angiotensin II type 1 receptor agonistic antibodies reflect fundamental alterations in the uteroplacental vasculature. Hypertension, 2005; 46(6): 1275-9
    [138] Medawar PD. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symposium of the Society for Experimental Biology, 1953:320.
    [139] Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science, 2005; 308(5728):1592-1594.
    [140] Sibai BM, Dekker G, Kupferminic M. Pre-eclampsia. Lancet, 2005; 365:785–799
    [141] Gammill HS, Roberts JM. Emerging concepts in preeclampsia investigation. Front Biosci, 2007, 12:2403–2411
    [142] Cunningham FG, MacDonald PC, Gant NF, et al. Williams Obstetrics, 20th ed. Norwalk: Appleton and Lange, 1997:713.
    [143] Loke YW, King A. Immunological aspects of human implantation. J Reprod Fertil, 2000; 55:83–90 (suppl.).
    [144] Veenstra van Nieuwenhoven AL, Bouman A, Moes H, et al. Cytokine production in natural killer cells and lymphocytes in pregnant women compared with women in the follicular phase of the ovarian cycle. Fertil Steril, 2002; 77:1032–1037.
    [145] Redman CW, Sargent IL. Pre-eclampsia, the placenta and the maternal systemic inflammatory response—a review. Placenta, 2003; 24 (Suppl A):S21–S27
    [146] Skj?rven R, Gjessing HK, Bakketeig LS. Birthweight by gestational age in Norway. Acta Obstet Gynecol Scand, 2000;79(6):440-449
    [147] Xiong X, Demianczuk NN, Saunders LD, et al. Impact of preeclampsia and gestational hypertension on birth weight by gestational age. Am J Epidemiol, 2002; 155(3): 203-209
    [148] Hall DR, Odendaal HJ, Steyn DW, et al. Expectant management of early onset, severe preeclampsia: maternal outcome. BJOG, 2002; 107: 1252-1257
    [149]杨孜,王伽略,黄萍,等.重度子痫前期终末器官受累不平行性及其围产结局探讨.中华围产医学杂志, 2006; 9:10-14.
    [150] Merviel P, Carbillon L, Chillier JC, et al. Pathophysiology of preeclampsia: links with implantation disorders [J]. European J Obstet Gynecol Reprod Biol, 2004; 115(2):134-147.
    [151] Saftlas AF,Seydoun H, Triche E. Immunogenetic determinants of pre-eclampsia and related pregnancy disorders a systematic review [J]. Obstet Gynecol, 2005; 106(1):162-172.
    [152] Faas MM, Schuiling GA, Baller JFW, et al. A new animal model for human preeclampsia: ultra-low-dose endotoxin infusion in pregnant rats [J]. Am J Obstet Gynecol, 1994; 171(1): 158-164
    [153]周淑,汪雪雁,王超等.中性粒细胞在子痫前期发病中的作用.中国妇幼保健, 2008;23(30)4339-4342
    [154] Pijnenborg R, Bland JM, Robertson WB, et al. Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta, 1983; 4:397–413
    [155] Zhou Y, Damsky CH, Fisher SJ. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phe-notype. One cause of defective endovascular invasion in this syndrome? J Clin Invest, 1997; 99:2152–2164
    [156] Lunell NO, Lewander R, Mamoun I, et al. Uteroplacental blood flow in pregnancy induced hypertension. Scand J Clin Lab Invest Suppl, 1984; 169:S28–S35
    [157] Soleymanlou N, Jurisica I, Nevo O, et al. Molecular evidence of placental hypoxia in preeclampsia. J Clin Endocrinol Metab, 2005; 90:4299–4308
    [158] Taylor RN, Grimwood J, Taylor RS, et al. Longitudinal serum concentrations of placental growth factor: evidence for abnormal placental angiogenesis in pathologic pregnancies. Am J Obstet Gynecol, 2003; 188:177–182
    [159] Nadar SK, Karalis I, Al Yemeni E, et al. Plasma markers of angiogenesis in pregnancy induced hypertension. Thromb Haemost, 2005; 94:1071–1076
    [160] Thadhani R, Mutter WP, Wolf M, et al. First trimester placental growth factor and soluble fms-like tyrosine kinase 1 and risk for preeclampsia. J Clin Endocrinol Metab, 2004; 89:770–775
    [161] Chaiworapongsa T, Romero R, Kim YM, et al. Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia. J Matern Fetal Neonatal Med, 2005; 17:3–18
    [162] Levine RJ, Lam C, Qian C, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med, 2006; 355:992–1005
    [163] Sargent IL, Germain SJ, Sacks GP, et al. Trophoblast deportation and the maternal inflammatory response in preeclampsia. J Reprod Immunol, 2003; 59:153–160
    [164] Levine RJ, Qian C, Leshane ES, et al. Two-stage elevation of cellfree fetal DNA in maternal sera before onset of preeclampsia. Am J Obstet Gynecol, 2004; 190:707–713
    [165] Barden A, Ritchie J, Walters B, et al. Study of plasma factors associated with neutrophil activation and lipid peroxidation in preeclampsia. Hypertension, 2001; 38: 803–808
    [166] Hubel CA, McLaughlin MK, Evans RW, et al. Fasting serum triglycerides, free fatty acids, and malondialdehyde are increased in preeclampsia, are positively correlated, and decrease within 48 hours post partum. Am J Obstet Gynecol, 1996; 174:975–982
    [167] Walker JJ. Antioxidants and inflammatory cell response in preeclampsia. Semin Reprod Endocrinol, 1998; 16:47–55
    [168] Conrad KP, Miles TM, Benyo DF. Circulating levels of immunoreactive cytokines in women with preeclampsia. Am J Reprod Immunol, 1998; 40:102–111
    [169] Benyo DF, Smarason A, Redman CW, et al. Expression of inflammatory cytokines in placentas from women with preeclampsia. J Clin Endocrinol Metab, 2001; 86:2505–2512
    [170] Vince GS, Starkey PM, Austgulen R, et al. Interleukin-6, tumour necrosis factor and soluble tumour necrosis factor receptors in women with pre-eclampsia. Br J Obstet Gynaecol, 1995; 102:20–25
    [171] Ellis J, Wennerholm UB, Bengtsson A, et al. Levels of dimethylarginines and cytokines in mild and severe preeclampsia. Acta Obstet Gynecol Scand, 2001; 80:602–608
    [172] Greer IA, Lyall F, Perera T, et al. Increased concentrations of cytokines interleukin-6 and interleukin-1 receptor antagonist in plasma of women with preeclampsia: a mechanism for endothelial dysfunction? Obstet Gynecol, 1994; 84:937–940
    [173] Takacs P, Green KL, Nikaeo A, et al. Increased vascular endothelial cell production of interleukin-6 in severe preeclampsia. Am J Obstet Gynecol, 2003; 188:740–744
    [174] Kupferminc MJ, Peaceman AM, Aderka D,et al. Soluble tumor necrosis factor receptors and interleukin-6 levels in patients with severe preeclampsia. Obstet Gynecol, 1996; 88: 420–427
    [175] Gojnic M, Petkovic S, Papic M, et al. Plasma albumin level as an indicator ofseverity of preeclampsia. Clin Exp Obstet Gynecol, 2004;31(3): 209-10
    [176] Franceschini N, Savitz DA, Kaufman JS, et al. Maternal urine albumin excretion and pregnancy outcome. Am J Kidney Dis, 2005; 45(6): 1010-8
    1. WHO. Beyond the numbers: Reviewing maternal deaths and complications to make pregnancy safer. Geneva, 2004.
    2. Sibai BM, Dekker G, Kupferminic M: Pre-eclampsia. Lancet 2005, 365:785–799
    3. Zhou Y, Damsky CH, Fisher SJ: Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phe-notype. One cause of defective endovascular invasion in this syndrome? J Clin Invest 1997, 99:2152–2164
    4. Nadar SK, Karalis I, Al Yemeni E, Blann AD, Lip GY: Plasma markers of angiogenesis in pregnancy induced hypertension. Thromb Haemost 2005, 94:1071–1076
    5. Thadhani R, Mutter WP, Wolf M, Levine RJ, Taylor RN, Sukhatme VP, Ecker J, Karumanchi SA: First trimester placental growth factor and soluble fms-like tyrosine kinase 1 and risk for preeclampsia. J Clin Endocrinol Metab 2004, 89:770–775
    6. Chaiworapongsa T, Romero R, Kim YM, Kim GJ, Kim MR, Espinoza J, Bujold E, Goncalves L, Gomez R, Edwin S, Mazor M: Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia. J Matern Fetal Neonatal Med 2005, 17:3–18
    7. Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP, Sibai BM, Epstein FH, Romero R, Thadhani R, Karumanchi SA, CPEP Study Group: Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 2006, 355:992–1005
    8. Barden A, Ritchie J, Walters B, Michael C, Rivera J, Mori T, Croft K, Beilin L: Study of plasma factors associated with neutrophil activation and lipid peroxidation in preeclampsia. Hypertension 2001, 38: 803–808
    9. Jonsson Y, Rube` r M, Matthiesen L, Berg G, Nieminen K, Sharma S, Ernerudh J, Ekerfelt C: Cytokine mapping of sera from women with preeclampsia and normal pregnancies. J Reprod Immunol 2006, 70:83–91
    10. Takacs P, Green KL, Nikaeo A, Kauma SW: Increased vascular endothelial cell production of interleukin-6 in severe preeclampsia. Am J Obstet Gynecol 2003, 188:740–744
    11. Madazli R, Aydin S, Uludag S, Vildan O, Tolun N: Maternal plasma levels of cytokines in normal and preeclamptic pregnancies and theirrelationship with diastolic blood pressure and fibronectin levels. Acta Obstet Gynecol Scand 2003, 82:797–802
    12. Freeman DJ, McManus F, Brown EA, Cherry L, Norrie J, Ramsay JE, Clark P, Walker ID, Sattar N, Greer IA: Short- and long-term changes in plasma inflammatory markers associated with preeclampsia. Hypertension 2004, 44:708–714
    13. Gammill HS, Roberts JM: Emerging concepts in preeclampsia investigation. Front Biosci 2007, 12:2403–2411
    14. Faas MM, Schuiling GA. Pre-eclampsia and the inflammatory response. Eur J Obstet Gynaecol Reprod Biol 2001; 95:213–217.
    15. Sacks GP, Sargent IL, Redman C. Innate immunity in pregnancy. Immunol Today 2000; 21:200–201.
    16. Brown MA, Lindheimer MD, de Swiet M, Van Assche A, Moutquin JM. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy 2001; 20:IX–XIV.
    17. Milting H, Lukas N, Klauke B, et al. Composite polymorphisms in the ryanodine receptor 2 gene associated with arrhythmogenic right ventricular cardiomyopathy. Cardiovasc Res 2006;71:496–505.
    18. Saito S, Shiozaki A, Nakashima A, Sakai M, Sasaki Y: The role of the immune system in preeclampsia. Mol Aspects Med 2007; 28:192–209.
    19. Yoneyama, Y., Suzuki, S., Sawa, R., Yoneyama, K., Power, G.G., Araki, T. Relation between adenosine and T-helper 1/T-helper 2 imbalance in women with preeclampsia. Obstet. Gynecol. 2002; 99, 641–646.
    20. Jonsson, Y., M. Ruber, L. Matthiesen, G. Berg, K. Nieminen, S. Sharma, J. Ernerudh, and C. Ekerfelt. Cytokine mapping of sera from women with preeclampsia and normal pregnancies. J. Reprod. Immunol. 2006; 70: 83–91.
    21. Azizieh F, Raghupathy R, Makhseed M: Maternal cytokine production patterns in women with preeclampsia. Am J Reprod Immunol 2005; 54:30–37.
    22. Rein DT, Breidenbach M, Honscheid B, Friebe-Hoffmann U, Engel H, Gohring UJ, Uekermann L, Kurbacher CM, Schondorf T. Preeclamptic women are deficient of interleukin-10 as assessed by cytokine release of trophoblast cells in vitro. Cytokine 2003; 23:119–125.
    23. Heikkinen J, Mottonen M, Komi J, Alanen A, Lassila O. Phenotypic characterization of human decidual macrophages. Clin Exp Immunol 2003; 131:498–505.
    24. Lidstrom C, Matthiesen L, Berg G, Sharma S, Ernerudh J, Ekerfelt C. Cytokine secretion patterns of NK cells and macrophages in early human pregnancy decidua and blood: implications for suppressor macrophages in decidua. Am J Reprod Immunol 2003; 50:444–452.
    25. Dekker GA, Sibai BM. The immunology of preeclampsia. Seminars Perinat 1999; 23: 24–33.
    26. Hanlon AM, Jang S, Salgame P: Signaling from cytokine receptors that affect Th1 responses. Front Biosci 2002; 7:d1247–d1254.
    27. Aschkenazi, S., Straszewski, S., Verwer, K.M., Foellmer, H., Rutherford, T., Mor, G. Differential regulation and function of the Fas/Fas ligand system in human trophoblast cells. Biol. Reprod. 2002; 66, 1853–1861.
    28. Darmochwal-Kolarz D, Leszcynska-Gorzelak B, Rolinski J, Oleszcuk J: T helper 1- and T helper 2-type cytokine imbalance in pregnant women with preeclampsia. Eur J Obst Gynecol Reprod Biol 1999; 86:165–170.
    29. Daher S, Denardi KAG, Blotta MHSL, Mamoni RL, Reck APM, Camano L, Mattar R: Cytokines in recurrent pregnancy loss. J Reprod Immunol 2004; 62:151–157.
    30. Wilczynski, J.R., Tchorzewski, H., Banasik, M., et al. Lymphocyte subset distribution and cytokine secretion in third trimester decidua in normal pregnancy and preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003; 109, 8–15.
    31. Benian A, Madazli R, Aksu F, Uzun H, Aydin S: Plasma and placental levels of interleukin-10, transforming growth factor-beta1, and epithelial cadherin in preeclampsia. Obstet Gynecol 2002; 100:327–331.
    32. Madazli R, Aydin S, Uludag S, Vildan O, Tolun N: Maternal plasma levels of cytokines in normal and preeclamptic pregnancies and their relationship with diastolic blood pressure and fibronectin levels. Acta Obstet Gynecol Scand 2003; 82:797–802.
    33. Mansouri R. Serum cytokines profiles in Iranian patients with preeclampsia. IranianJournal Of Immunology: IJI [Iran J Immunol], 2007; 4 (3): 179-85
    34. Borekci B, Aksoy H, Al RA, Demircan B, Kadanali S. Maternal serum interleukin-10, interleukin-2 and interleukin-6 in pre-eclampsia and eclampsia. Am J Reprod Immunol 2007; 58:56–64
    35. Eneroth E, Remberger M, Vahlne A, Ringden O: Increased serum concentrations of interleukin-2 receptor in the first trimester in women who later developed severe preeclampsia. Acta Obstet Gynecol Scand 1998; 77:591–593.
    36. Al-Othman S, Omu AE, Diejomaoh FM, Al-Yatama M, Al-Qattan F: Differential levels of interleukin 6 in maternal and cord sera and placenta in women with pre-eclampsia. Gynecol Obstet Invest 2001; 52:60–65.
    37. Olusi SO, Diejomaoh M, Omu A, Abdulaziz A, Prabha K, George S: Interleukins in preeclampsia. Ann Saudi Med, 2000; 20:4.
    38. Shaarawy M, El Meleigy M, Rasheed K: Maternal serum transforming growth factor beta-2 in preeclampsia and eclampsia, a potential biomarker for the assessment of disease severity and fetal outcome. J Soc Gynecol Investig 2001; 8:27–31.
    39. Shaarawy M, El Meleigy M, Rasheed K. Maternal serum transforming growth factor beta-2 in preeclampsia and eclampsia, a potential biomarker for the assessment of the severity and fetal outcome. J Soc Gynecol Invest 2001; 8: 27–31.
    40. Muy-Rivera M, Sanchez SE, Vadachkoria S, Qiu C, Bazul V, Williams MA. Transforming growth factor-beta1 (TGFbeta1) in plasma is associated with preeclampsia risk in Peruvian women with systemic inflammation. Am J Hypertens. 2004; 17: 334-8.
    41. Enquobahrie, DA;Williams, MA; Qiu, C; et al. Maternal plasma transforming growth factor-β1 concentrations in preeclamptic and normotensive pregnant Zimbabwean women. J Matern Fetal Neonatal Med. 2005 ; 17(5): 343-8
    42. Sibai B, Dekker G, Kupferminc M: Pre-eclampsia. Lancet, 2005; 365:785–799
    43. Haukim, N., Bidwell, J.L., Smith, A.J., Keen, L.J., Gallagher, G., Kimberly, R., Huizinga, T., McDermott, M.F., Oksenberg, J., McNicholl, J., Pociot, F., Hardt, C., D’Alfonso, S. Cytokine gene polymorphism in human disease: on-line databases, supplement 2. Genes. Immun, 2002; 3, 313–330.
    44. Stanczuk GA, Mccov MJ, Hutchinson IV, Sibanda EN. The genetic predisposition to produce high levels of TGF-beta1 impacts on the severity of eclampsia/preeclampsia. Acta Obstet Gynecol Scand, 2007;86(8): 903-8
    45. Ozaki K, Leonard WJ: Cytokine and cytokine receptor pleiotropy and redundancy. J Biol Chem, 2002; 277:29355–29358.
    [1] Walker JJ. Pre-eclampsia. Lancet, 2000, 356:1260–1265
    [2] Villar J,Say L, Gülmezoglu AM, et al. Eclampsia and preeclampsia: a health problem for 2000 years. In: Critchley H, MacLean A, Poston L, Walker J, eds. Pre-eclampsia. London: RCOG Press, 2003:189-207.
    [3] Hanson MA, Gluckman PD. Developmental processes and the induction of cardiovascular function: conceptual aspects. J Physiol, 2005; 565:27-34.
    [4] Zandi-Nejad K, Luyckx VA, Brenner BM. Adult hypertension and kidney disease: the role of fetal programming. Hypertension, 2006;47:502-8
    [5] Mittendorf R, Lain KY, Williams MA, et al. Preeclampsia, A nested, case–control study of risk factors and their interactions. J Reprod Med, 1996; 41:491–496.
    [6] Chesley LC, Cooper DW. Genetics of hypertension in pregnancy: possible single gene control of pre-eclampsia and eclampsia in the descendants of eclamptic women. Br J Obstet Gynaecol, 1986; 93:898–908.
    [7] Sibai BM, Mercer B, Sarinoglu C. Severe preeclampsia in the second trimester: recurrence risk and long-term prognosis. Am J Obstet Gynecol, 1991; 165:1408–141
    [8] Brown MA, Mackenzie C, Dunsmuir W, et al. Can we predict recurrence of pre-eclampsia or gestational hypertension? BJOG., 2007; 114(8):984-93.
    [9] Suhonen L, Teramo K. Hypertension and pre-eclampsia in women with gestational glucose intolerance. Acta Obstet Gynecol Scand, 1993; 72:269–272.
    [10] Rey E, Couturier A. The prognosis of pregnancy in women with chronic hypertension. Am J Obstet Gynecol, 1994; 171: 410–416.
    [11] Fink JC, Schwartz SM, Benedetti TJ, et al. Increased risk of adverse maternal and infant outcomes among women with renal disease. Paediatr Perinat Epidemiol, 1998; 12:277–287.
    [12] Ros HS, Cnattingius S, Lipworth L. Comparison of risk factors for preeclampsia and gestational hypertension in a population-based cohort study. Am J Epidemiol 1998; 147:1062–1070.
    [13] Kaaja R, Julkunen H, Ammala P. Hypertension as a risk factor in pregnancies complicated by systemic lupus erythematosus. Acta Obstet Gynecol Scand, 1990; 69:393–396.
    [14] Millar LK, Wing DA, Leung AS, et al. Low birth weight and preeclampsia inpregnancies complicated by hyperthyroidism. Obstet Gynecol, 1994; 84:946–949.
    [15] Dempsey JC, Williams MA, Leisenring WM, et al. Maternal birth weight in relation to plasma lipid concentrations in early pregnancy. American Journal Of Obstetrics And Gynecology, 2004; 190 (5), 1359-1368.
    [16] Robillard PY. Interest in pre-eclampsia for research in reproduction. Journal of Reproductive Immunology, 2002, 53: 279-287.
    [17] Dekker G. The partner’s role in the etiology of pre-eclampsia. Journal of Reproductive Immunology, 2002; 57:203-215.
    [18] Caritis S, Sibai B, Hauth J, et al. Predictors of pre-eclampsia in women at high risk. National Institute of Child Health and Human Development Network of Maternal–Fetal Medicine Units. Am J Obstet Gynecol, 1998; 179:946–951.
    [19] Higgins JR, Walshe JJ, Halligan A, et al. Can 24-hour ambulatory blood pressure measurement predict the development of hypertension in primigravidae? Br J Obstet Gynaecol 1997; 104:356–362.
    [20] Miller RS; Rudra CB; Williams MA. First-trimester mean arterial pressure and risk of preeclampsia. American Journal Of Hypertension: Journal Of The American Society Of Hypertension, 2007; 20 (5), 573-578.
    [21] Phyllis August, Geraldine Helseth, Francis Cook, et al. A prediction model for superimposed preeclampsia in women with chronic hypertension during pregnancy. Americian Journal of Obstetrics and Gynecology, 2004; 191: 1666-1672.
    [22] Von Dadelszen P, Magee LA, Devarakonda RM, et al. The prediction of adverse maternal outcomes in preeclampsia. J Obstet Gynaecol Can, 2004; 26 (10): 871-879.
    [23] Dugoff L, Hobbins JC, Malone FD, et al. Quad Screen as a Predictor of Adverse Pregnancy Outcome. Obstetrics & Gynecology, 2005; 106:260-267
    [24] Roiz-Hernándeza J, Cabello-Martínezb J.deJ, Fernández-Mejíab M. Human chorionic gonadotropin levels between 16 and 21 weeks of pregnancy and prediction of pre-eclampsia. International Journal of Gynecology & Obstetrics, 2006, 92(2) , 101-105
    [25] Smith GCS, Shah I, Crossley JA, et al. Pregnancy-Associated Plasma Protein A and Alpha-fetoprotein and Prediction of Adverse Perinatal Outcome. Obstetrics & Gynecology, 2006; 107:161-166
    [26] Kazerooni T, Khosropananh S. Saudi Medical Journal, 2006; 27 (10): 1526-1529.
    [27] Moretti M, Phillips M, Abouzeid A, et al. Increased breath markers of oxidativestress in normal pregnancy and in preeclampsia. American Journal of Obstetrics and Gynecology, 2004; 90 (5), 1184-1190.
    [28] Das V, Bhargava T, Das SK, et al. Microalbuminuria: a predictor of pregnancy-induced hypertension. Br J Obstet Gynaecol, 1996;103:928–930.
    [29] Shaarawy M, Salem ME. The clinical value of microtransferrinuria and microalbuminuria in the prediction of preeclampsia. Clin Chem Lab Med, 2001; 39:29–34.
    [30] Garovic VD, Wagner SJ, Turner ST, et al. Urinary podocyte excretion as a marker for preeclampsia. Am J Obstet Gynecol. 2007; 196: 320.e1-.e7.
    [31] Emery SP, Levine RJ, Qian C, et al. Twenty-four-hour urine insulin as a measure of hyperinsulinaemia/insulin resistance before onset of pre-eclampsia and gestational hypertension. BJOG, 2005; 112:1479-1485
    [32] Parretti E, Lapolla A, DalfràM, et al. Preeclampsia in lean normotensive normotolerant pregnant women can be predicted by simple insulin sensitivity indexes. Hypertension, 2006; 47 (3), 449-453.
    [33] Levine RJ, Thadhani R, Qian C, et al. Urinary placental growth factor and risk of preeclampsia. The Journal Of The American Medical Association, 2005; 293 (1), 77-85
    [34] Robillard PY. Interest in pre-eclampsia for research in reproduction. Journal of Reproductive Immunology, 2002, 53: 279-287.
    [35] Aquilina J, Barnett A, Thompson O, et al. Second-trimester maternal serum inhibin A concentration as an early marker for preeclampsia. Am J Obstet Gynecol, 1999; 181:131–136.
    [36] Muttukrishna S, North RA, Morris J, et al. Serum inhibin A and activin A are elevated prior to the onset of preeclampsia. Hum Reprod, 2000; 15:1640–1645.
    [37] Ekbom P, Damm P, Andersson AM, et al.Serum levels of activin A and inhibin A are not related to the increased susceptibility to pre-eclampsia in type I diabetic pregnancies.Acta Obstetricia et Gynecologica. 2006; 85: 143-147
    [38] Lo YM, Leung TN, Tein MS, et al. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin Chem, 1999; 45:184–188.
    [39] Al Mufti R, Hambley H, Albaiges G, et al. Increased fetal erythroblasts in women who subsequently develop preeclampsia. Hum Reprod, 2000; 15:1624–1628.
    [40] Guilbert L, Robertson SA, Wegmann TG. The trophoblast as an integral component of a macrophage–cytokine network. Immunol Cell Biol, 1993; 71(part 1):49–57.
    [41] Benyo DF, Miles TM, Conrad KP. Hypoxia stimulates cytokine production by villous explants from the human placenta. J Clin Endocrinol Metab, 1997; 82:1582–1588.
    [42] Kupferminc MJ, Peaceman AM, Wigton TR, et al. Tumor necrosis factor-alpha is elevated in plasma and amniotic fluid of patients with severe preeclampsia. Am J Obstet Gynecol, 1994; 170:1752–1757.
    [43] Vince GS, Starkey PM, Austgulen R, et al. Interleukin-6, tumour necrosis factor and soluble tumour necrosis factor receptors in women with pre-eclampsia. Br J Obstet Gynaecol, 1995; 102:20–25.
    [44] Wang Y, Walsh SW. TNF alpha concentrations and mRNA expression are increased in preeclamptic placentas. J Reprod Immunol, 1996; 32:157–169.
    [45] Rinehart BK, Terrone DA, Lagoo-Deenadayalan S, et al. Expression of the placental cytokines tumor necrosis factor-alpha, interleukin 1beta, and interleukin 10 is increased in preeclampsia. Am J Obstet Gynecol, 1999; 181:915–920.
    [46] Conrad KP, Benyo DF. Placental cytokines and the pathogenesis of preeclampsia. Am J Reprod Immunol, 1997; 37:240–249.
    [47] Williams MA, Farrand A, Mittendorf R, et al. Maternal second trimester serum tumor necrosis factor-alpha-soluble receptor p55 (sTNFp55) and subsequent risk of preeclampsia. Am J Epidemiol, 1999; 149:323–329.
    [48] Livingston JC, Park V, Barton JR , et al. Lack of association of severe preeclampsia with maternal and fetal mutant alleles for tumor necrosis factor alpha and lymphotoxin alpha genes and plasma tumor necrosis factor alpha levels. Am J Obstet gynecol, 2001; 184:1273–1277.
    [49] McCarthy JF, Misra DN, Roberts JM. Maternal plasma leptin is increased in preeclampsia and positively correlates with fetal cord concentration. Am J Obstet Gynecol, 1999; 180:731–736.
    [50] Mise H, Sagawa N, Matsumoto T, et al. Augmented placental production of leptin in preeclampsia: possible involvement of placental hypoxia. J Clin Endocrinol Metab, 1998; 83:3225–3229.
    [51] Anim-Nyame N, Sooranna SR, Steer PJ, et al. Longitudinal analysis of maternal plasma leptin concentrations during norma lpregnancy and pre-eclampsia. Hum Reprod, 2000; 15: 2033–2036.
    [52] Martinez-Abundis E, Gonzalez-Ortiz M, Pascoe-Gonzalez S. Serum leptin levels and the severity of preeclampsia. Arch Gynecol Obstet, 2000; 264:71–73.
    [53] D'Anna R, Baviera G, Corrado F, Giordano D, Benedetto AD, Jasonni VM. Plasma Adiponectin Concentration in Early Pregnancy and Subsequent Risk of Hypertensive Disorders.Obstetrics & Gynecology, 2005; 106:340-344
    [54] Qiu C , Phung T, Vadachkoria S, Muy-rivera M, Sanchez SE, Williams MA. Oxidized Low-Density Lipoprotein (Oxidized LDL) and the Risk of Preeclampsia. Physiol. Res, 2006; 55: 491-500
    [55] Kanani PM, Sinkey CA, Browning RL, et al. Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst(e)inemia in humans. Circulation, 1999; 100: 1161–1168.
    [56] Upchurch GR Jr, Welch GN, Loscalzo J. Homocysteine, EDRF, and endothelial function. J Nutr, 1996; 126:1290S–1294S.
    [57]Powers RW, Evans RW, Ness RB, et al. Homocysteine and cellular fibronectin are increased in preeclampsia, not transient hypertension of pregnancy. Hypertens Pregnancy, 2001; 20:69–77.
    [58] Cotter AM, Molloy AM, Scott JM, et al. Elevated plasma homocysteine in early pregnancy: a risk factor for the development of severe preeclampsia. Am J Obstet Gynecol, 2001; 185:781–785.
    [59] Kupferminc MJ. Thrombophilia and pregnancy. Reprod Biol Endocrinol, 2003;1: 111–133.
    [60] Hietala R, Turpeinen U, Laatikainen T. Serum homocysteine at 16 weeks and subsequent preeclampsia. Obstet Gynecol, 2001; 97:527–529.
    [61]Lachmeijer AM, Arngrimsson R, Bastiaans EJ, et al. Mutations in the gene for methylenetetrahydrofolate reductase, homocysteine levels, and vitamin status in women with a history of preeclampsia. Am J Obstet Gynecol, 2001; 184: 394–402.
    [62] Burrows TD, King A, Loke YW. Expression of adhesion molecules by endovascular trophoblast and decidual endothelial cells: implications for vascular invasion during implantation. Placenta, 1994; 15:21–33.
    [63] Phocas I, Rizos D, Papoulias J, et al. A comparative study of serum soluble vascular cell adhesion molecule-1 and soluble intercellular adhesion molecule-1 in preeclampsia. J Perinatol, 2000; 20:114–119.
    [64] Djurovic S, Schjetlein R, Wisloff F, et al. Increased levels of intercellular adhesion molecules and vascular cell adhesion molecules in pre-eclampsia. Br J Obstet Gynaecol, 1997; 104: 466–470.
    [65] Airoldi L, Gaffuri B, Rossi G, et al. Soluble intercellular adhesion molecule-1serum profile in physiologic and preeclamptic pregnancy. Am J Reprod Immunol 1998; 39:183–188.
    [66] Page NM, Woods RJ, Gardiner SM, et al. Excessive placental secretion of neurokinin B during the third trimester causes pre-eclampsia. Nature, 2000; 405: 797–800.
    [67] Longmore J, Hill RG, Hargreaves RJ. Neurokinin-receptor antagonists: pharmacological tools and therapeutic drugs. Can J Physiol Pharmacol, 1997; 75: 612–621.
    [68] Page NM, Woods RJ, Lowry PJ. A regulatory role for neurokinin B in placental physiology and pre-eclampsia. Regul Pept, 2001; 98:97–104.
    [69]Vartio T, Laitinen L, Narvanen O, et al. Differential expression of the ED sequence-containing form of cellular fibronectin in embryonic and adult human tissues. J Cell Sci, 1987; 88(part 4):419–430.
    [70]Peters JH, Maunder RJ, Woolf AD, et al. Elevated plasma levels of ED1(‘cellular’) fibronectin in patients with vascular injury. J Lab Clin Med, 1989; 113:586–597.
    [71] Ulrich MM, Janssen AM, Daemen MJ, et al. Increased expression of fibronectin isoforms after myocardial infarction in rats. J Mol Cell Cardiol, 1997; 29:2533–2543.
    [72] Peters JH, Ginsberg MH, Bohl BP, et al. Intravascular release of intact cellular fibronectin during oxidant-induced injury of the in vitro perfused rabbit lung. J Clin Invest, 1986; 78:1596–1603.
    [73] Peters JH, Ginsberg MH, Case CM, et al. Release of soluble fibronectin containing an extra type III domain (ED1) during acute pulmonary injury mediated by oxidants or leukocytes in vivo. Am Rev Respir Dis, 1988; 138:167–174.
    [74] Dreyfus M, Baldauf JJ, Ritter J, et al. The prediction of preeclampsia: reassessment of clinical value of increased plasma levels of fibronectin. Eur J Obstet Gynecol Reprod Biol, 1998; 78:25–28.
    [75] Gredmark T, Bergman B, Hellstrom L. Total fibronectin in maternal plasma as a predictor for preeclampsia. Gynecol Obstet Invest, 1999; 47:89–94.
    [76] Sud SS, Gupta I, Dhaliwal LK, et al. Serial plasma fibronectin levels in pre-eclamptic and normotensive women. Int J Gynaecol Obstet, 1999; 66:123–128.
    [77] Chavarria ME, Lara-Gonzalez L, Gonzalez-Gleason A, et al. Maternal plasma cellular fibronectin concentrations in normal and preeclamptic pregnancies: a longitudinal study for early prediction of preeclampsia. Am J Obstet Gynecol, 2002;187:595–601.
    [78] Islami D, Shoukir Y, Dupont P, et al. Is cellular fibronectin a biological marker for pre-eclampsia? Eur J Obstet Gynecol Reprod Biol, 2001; 97:40–45.
    [79] Plymate SR, Matej LA, Jones RE, et al. Inhibition of sex hormone-binding globulin production in the human hepatoma (Hep G2) cell line by insulin and prolactin. J Clin Endocrinol Metab, 1988; 67:460–464.
    [80] O’Leary P, Boyne P, Flett P, et al. Longitudinal assessment of changes in reproductive hormones during normal pregnancy. Clin Chem, 1991; 37:667–672.
    [81] Key TJ, Pike MC, Moore JW, et al. The relationship of free fatty acids with the binding of oestradiol to SHBG and to albumin in women. J Steroid Biochem, 1990; 35:35–38.
    [82] Wolf M, Sandler L, Jimenez-Kimble R, et al. Insulin resistance but not inflammation is associated with gestational hypertension. Hypertension, 2002; 40:886–891.
    [83] Wolf M, Sandler L, Munoz K, et al. First trimester insulin resistance and subsequent preeclampsia: a prospective study. J Clin Endocrinol Metab, 2002; 87:1563–1568.
    [84] Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest, 2003; 111:649-658.
    [85] Hisashi Masuyama, Naoko Suwaki, Hideki Nakatsukasa, et al. Circulating angiogenic factors in preeclampsia, gestational proteinuria, and preeclampsia superimposed on chronic glomerulonephritis.American Journal of Obstetrics and Gynecology, 2006; 194(2):551-556
    [86] Levine RJ, Qian C, Maynard SE, et al. Serum sFlt1 concentration during preeclampsia and mid trimester blood pressure in healthy nulliparous women. Am J Obstet Gynecol, 2006; 194:1034-1041
    [87] McKeeman GC, Ardill JES, Caldwell CM, et al. Soluble vascular endothelial growth factor receptor-1 (sFlt-1) is increased throughout gestation in patients who have preeclampsia develop. American Journal of Obstetrics and Gynecology, 2004; 191: 1240-1246
    [88] Levine RJ, Maynard SE, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 2004; 350:672-683.
    [89] Levine RJ, Thadhani R, Qian C, et al. Urinary placental growth factor and risk ofpreeclampsia. JAMA, 2005; 293:77-85.
    [90] Davison JM, Lindheimer MD. New developments in preeclampsia. Semin Nephrol, 2004; 24:537-625.
    [91] Levine RJ, Lam C, Qian C, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med, 2006; 355:992-1005.
    [92] Lam C;Lim KH;Karumanchi SA. Circulating angiogenic factors in the pathogenesis and prediction of preeclampsia. Hypertension, 2005; 46 (5): 1077-1085.
    [93] Ye YH, Liu L, ZhanY, Peng W. Predictive value of serum soluble fms-like tyrosine kinase 1 concentration in preeclampsia at second trimester. Chinese Journal of Obstetrics and Gynecology, 2006; 41(7):433-435.
    [94] Zhihe L, Zhang Y, Qiming S, et al. Recombinant vascular endothelial growth factor-121 attenuates hypertension in pregnant rats overproducing soluble fms-like tyrosine kinase-1 gene.Hypertens Preg, 2006; 25:Suppl 1:51.
    [95]Venkatesha S, Toporsian M, Lam C, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med, 2006;12:642-649.
    [96] Moore-Simas TA, Crawford SL, Solitro MJ, et al. Angiogenic factors for the prediction of preeclampsia in high-risk women. Am J Obstet Gynecol, 2007; 197(3): 244.e1-8
    [97] Livingston JC, Haddad B, Gorski LA, et al. Placenta growth factor is not an early marker for the development of severe preeclampsia. Am J Obstet Gynecol, 2001; 184:1218–1220.
    [98] Ong CY, Liao AW, Cacho AM, et al. First-trimester materna serum levels of placenta growth factor as predictor of preeclampsia and fetal growth restriction. Obstet Gynecol, 2001; 98:608–611
    [99] Yie SM; Taylor RN; Librach C. Low plasma HLA-G protein concentrations in early gestation indicate the development of preeclampsia later in pregnancy. American Journal Of Obstetrics And Gynecology, 2005; 193 (1), 204-208.
    [100] Robillard PY. Interest in pre-eclampsia for research in reproduction. Journal of Reproductive Immunology, 2002; 53: 279-287
    [101] Al Mufti R, Hambley H, Albaiges G, et al. Increased fetal erythroblasts in women who subsequently develop pre-eclampsia. Hum Reprod, 2000; 15:1624–1628
    [102] Holzgreve W, Li JJ, Steinborn A, et al. Elevation in erythroblast count in maternal blood before the onset of preeclampsia. Am J Obstet Gynecol, 2001; 184:165–168.
    [103] Zhong XY, Laivuori H, Livingston JC, et al. Elevation of both maternal and fetal extracellular circulating deoxyribonucleicacid concentrations in the plasma of pregnant women with preeclampsia. Am J Obstet Gynecol, 2001; 184:414–419.
    [104] Zhong XY, Holzgreve W, Hahn S. The levels of circulatory cell free fetal DNA in maternal plasma are elevated prior to the onset of preeclampsia. Hypertens Pregnancy, 2002; 21: 77–83.
    [105] Leung TN, Zhang J, Lau TK, et al. Increased maternal plasma fetal DNA concentrations in women who eventually develop preeclampsia. Clin Chem, 2001; 47: 137–139.
    [106] Lo YM, Leung TN, Tein MS, et al. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin Chem, 1999; 45:184–188.
    [107] Zhong XY, Holzgreve W, Hahn S. Cell-free fetal DNA in the maternal circulation does not stem from the transplacental passage of fetal erythroblasts. Mol Hum Reprod, 2002; 8:864–870.
    [108] Farina A, Sekizawa A, Sugito Y, et al. Fetal DNA in maternal plasma as a screening variable for preeclampsia. Prenatal Diagnosis, 2004; 24 (2), 83-86.
    [109] Florio P, Imperatore A, Sanseverino F, et al. The measurement of maternal plasma corticotropin-releasing factor (CRF) and CRF-binding protein improves the early prediction of preeclampsia. The Journal Of Clinical Endocrinology And Metabolism, 2004; 89 (9), 4673-4677.
    [110] Laigaard J, S?rensen T, Placing S, et al. Reduction of the Disintegrin and Metalloprotease ADAM12 in Preeclampsia. Obstetrics & Gynecology, 2005; 106:144-149
    [111] Rogers M. Oxidative stress in midpregnancy predicts gestational hypertension. BJOG: An International Journal of Obstetrics and Gynecology, 2006; 113: 1053-1059
    [112] Chafetz I, Kuhnreich I, Sammar M, et al. First-trimester placental protein 13 screening for preeclampsia and intrauterine growth restriction. Am J Obstet Gynecol, 2007; 197(1): 35.e1-7
    [113] Sven Magnus Carlsen, P?l Romundstad, Geir Jacobsen. Early second-trimester maternal hyperandrogenemia and subsequent preeclampsia: a prospective study. Acta Obstetricia et Gynecologica Scandinavica, 2005; 84 (2): 117
    [114] Chesley LC, Cooper DW. Genetics of hypertension in pregnancy: possible single gene control of pre-eclampsia and eclampsia in the descendants of eclampticwomen. Br J Obstet Gynaecol, 1986; 93:898–908.
    [115] Soderstrom-Anttila V, Tiitinen A, Foudila T, et al. Obstetric and perinatal outcome after oocyte donation: comparison with in-vitro fertilization pregnancies. Hum Reprod, 1998; 13: 483–490.
    [116] Sheffer-Mimouni G, Mashiach S, Dor J, et al. Factors influencing the obstetric and perinatal outcome after oocyte donation. Hum Reprod, 2002; 17:2636–2640.
    [117] Salha O, Sharma V, Dada T, et al. The influence of donated gametes on the incidence of hypertensive disorders of pregnancy. Hum Reprod, 1999; 14: 2268–2273.
    [118] Lie RT, Rasmussen S, Brunborg H, et al. Fetal and maternal contributions to risk of pre-eclampsia: population based study. BMJ, 1998; 316:1343–1347.
    [119] Dekker GA, Sibai BM. Etiology and pathogenesis of preeclampsia: current concepts. Am J Obstet Gynecol, 1998; 179:1359–1375.
    [120] Cincotta RB, Brennecke SP. Family history of pre-eclampsia as a predictor for pre-eclampsia in primigravidas. Int J Gynaecol Obstet, 1998; 60:23–27.
    [121] Esplin MS, Fausent MB, Fraser A, et al. Paternal and maternal components of the predisposition to pre-eclampsia. The New England Journal of Medicine, 2001; 344: 867-876.
    [122] Haddad T. Update on pre-eclampsia. International Anesthesiology Clinics, 2002; 40:115-135
    [123] Arngrimsson R, Geirsson RT, Cooke A, et al. Renin gene restriction fragment length polymorphisms do not show linkage with preeclampsia and eclampsia. Acta Obstet Gynecol Scand, 1994; 73:10–13.
    [124] Moses EK, Lade JA, Guo G, et al. A genome scan in families from Australia and New Zealand confirms the presence of a maternal susceptibility locus for pre-eclampsia, on chromosome 2. Am J Hum Genet, 2000; 67:1581–1585.
    [125] Kahn SR. Severe preeclampsia associated with coinheritance of factor V Leiden mutation and protein S deficiency. Obstet Gynecol, 1998; 91:812–814
    [126] Livingston JC, Barton JR, Park V, et al. Maternal and fetal inherited thrombophilias are not related to the development of severe preeclampsia. Am J Obstet Gynecol, 2001; 153–157.
    [127] Myers JE, Baker PN. Hypertensive disease and eclamps. Current Opinion of Obstetrics and Gynecology, 2002, 14: 119-125.
    [128] Bloomenthal D, Von Dadelszen P, Liston R, et al. The effect of factor V Leidencarriage on maternal and fetal health. CMAJ, 2002; 167: 48-54.
    [129] Morrison ER, Miedzybrodzka ZH, Campheet DM, et al. Prothrombotic genotypes are not associated with pre-eclampsia and gestational hypertension: results from a large population-based study and systematic review. Thrombosis and haemostasis, 2002; 87: 779-785.
    [130] Lin J, August P. Genetic.Thrombophilias and Preeclampsia: A Meta-Analysis. Obstetrics & Gynecology, 2005; 105:182-192.
    [131] Yoshimura T, Yoshimura M, Tabata A, et al. Association of the missense Glu298Asp variant of the endothelial nitric oxide synthase gene with severe preeclampsia. J Soc Gynecol Investig, 2000; 7:238–241.
    [132] Bashford MT, Hefler LA, Vertrees TW, et al. Angiotensinogen and endothelial nitric oxide synthase gene polymorphisms among Hispanic patients with preeclampsia. Am J Obstet Gynecol, 2001; 184:1345–1350.
    [133] Savvidou MD, Vallance PJ, Nicolaides KH, et al. Endothelial nitric oxide synthase gene polymorphism and maternal vascular adaptation to pregnancy. Hypertension, 2001; 38:1289–1293.
    [134] Ward K, Hata A, Jeunemaitre X, et al. A molecular variant of angiotensinogen associated with preeclampsia. Nat Genet, 1993; 4:59–61.
    [135] Arngrimsson R, Purandare S, Connor M, et al. Angiotensinogen: a candidate gene involved in preeclampsia? Nat Genet, 1993; 4:114–115.
    [136] Sohda S, Arinami T, Hamada H, et al. Methylenetetrahydro-folate reductase polymorphism and pre-eclampsia. Am J Med Genet, 1997; 34:525–526.
    [137] Grandone E, Margaglione M, Colaizzo D, et al. Factor V Leiden, C/T MTHFR polymorphism and genetic susceptibility to preeclampsia. Thromb Haemost, 1997; 77:1052–1054.
    [138] Zusterzeel PL, Peters WH, Visser W, et al. A polymorphism in the gene for microsomal epoxide hydrolase is associated with pre-eclampsia. Am J Med Genet, 2001; 38:234–237.
    [139] Heiskanen J, Romppanen EL, Hiltunen M, et al. Polymorphism in the tumor necrosis factor-alpha gene in women with preeclampsia. J Assist Reprod Genet, 2002; 19:220–223.
    [140] Daher S, Sass N, Oliveira LG, Mattar R. Cytokine genotyping in preeclampsia. Am J Reprod Immunol, 2006; 55:130–135
    [141] Tempfer CB, Jirecek S, Riener EK,et al. Polymorphisms of thrombophilic andvasoactive genes and severe preeclampsia: a pilot study. Journal Of The Society For Gynecologic Investigation, 2004; 11 (4), 227-231.
    [142] Dhanjal MK, Owen EP, Anthony JA, et al. Association of pre-eclampsia with the R563Q mutation of theβ-subunit of the epithelial sodium channel. BJOG: An International Journal of Obstetrics & Gynaecology, 2006;113(5):595
    [143] Vásárhelyi B, Csehá, Kocsis I, et al. Three mechanisms in the pathogenesis of pre-eclampsia suggested by over-represented transcription factor-binding sites detected with comparative promoter analysis. Molecular Human Reproduction, 2006 12(1):31-34
    [144]Aardema MW, Oosterhof H, Timmer A, et al. Uterine artery Doppler flow and uteroplacental vascular pathology in normal pregnancies and pregnancies complicated by preeclampsia and small for gestational age fetuses. Placenta, 2001; 22:405–411.
    [145] Harrington K, Kurdi W, Aquilina J, et al. A prospective management study of slow-release aspirin in the palliation of uteroplacental insufficiency predicted by uterine artery Doppler at 20 weeks. Ultrasound Obstet Gynecol. 2000; 15:13–18.
    [146] Chien PF, Arnott N, Gordon A, et al. How useful is uterine artery Doppler flow velocimetry in the prediction of pre-eclampsia, intrauterine growth retardation and perinatal death? An overview. BJOG, 2000; 107:196–208.
    [147] Papageorghiou AT,Campbell. First trimester screening for preeclampsia. Current Opinion In Obstetrics & Gynecology, 2006; 18 (6), 594-600
    [148] Torricelli M, Reis FM, Florio P, et al. Low-molecular-weight heparin improves the performance of uterine artery Doppler velocimetry to predict preeclampsia and small-for-gestational age infant in women with gestational hypertension. Ultrasound In Medicine & Biology, 2006; 32 (9), 1431-1435.
    [149] Parra M, Rodrigo R, Barja P, et al. Screening test for preeclampsia through assessment of uteroplacental blood flow and biochemical markers of oxidative stress and endothelial dysfunction. American Journal Of Obstetrics And Gynecology, 2005; 193 (4), 1486-1491.