中国股市的分形研究与遗传算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Fractal Analysis and Genetic Algorithm Study on Chinese Stock Market
  • 作者:姚刚
  • 论文级别:博士
  • 学科专业名称:数量经济学
  • 学位年度:2008
  • 导师:赵振全
  • 学科代码:020209
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-04-01
摘要
证券市场效率问题始终是学术界和投资者的研究领域。本文重点从系统论的角度围绕中国股票市场线形和中国股票非线性两个方面探讨了中国股票市场。股票市场投资的目的是获取最大投资收益,然而收益与风险相伴,在收益与风险之间决策常常是不容易的。传统的股票投资理论认为股票市场是有效的,均衡的,收益是风险的线性函数,收益的波动符合布朗运动,收益的分布是独立同分布的,方差和均值是稳定的,即是线性的。实际情况却是股票市场影响因素以及各因素之间相互作用关系复杂,受投资者个人及群体心理因素影响明显,股票的波动以及收益与风险的关系常常是非线性的,非均衡的,收益的方差和均值是自相关的、不稳定的,收益的波动符合分形布朗运动,表现出非线性(分形和混沌)的特征。
     论文首先从系统的分类与特性出发,基于有效市场理论和分形市场理论,通过复杂性深入讨论股票市场的动力学机制,将分形分析和遗传算法应用于股市预测中,最终提供证券组合的优化方案,力求在最小风险的情况下,获得最大限度的收益。在市场分形分析中,我们分别针对上海证券市场、深圳证券市场,通过不同时间标度,通过布朗运动、分形维以及Hurst指数的估算等系统、详尽的刻画各个市场特征,及其内在作用机制,并且对市场效率进行比较研究,以揭示市场运行规律。在市场投资组合研究中,通过遗传算法,借鉴物种进化原理,从证券市场基本理论出发,借助财务指标、价格指标、宏观经济指标等等,提出建立具有演化功能和适应性的动态投资组合方法和框架。
Securities market efficiency is the longstanding objective in the research domain of the academe and investors. It is mainly from two aspects to analyze Chinese stock market on the view of System Theory. One aspect is called the linear feature of Chinese stock market and the other is non-linear feature. The purpose of investing in the stock market is to maximize the benefits. However, it’s always not easy to keep the balance of risk and return because there is a positive correlation between them. In the opinions of traditional stock investment theories, the stock market is of efficiency and equilibration. The return is the linear function of the risk. The volatility in stock return moves in the Brownian motion. Distribution of stock returns is independent and identical distribution. And the variance and average of stock return are steady with the linear correlation. In fact, the impact factors on stock market and their reciprocity are completely complicated. The mentality factor of individual and group investors plays the obviously part on stock market. There exists non-linear and nonequilibrium feature of stock price fluctuation and between risk and return. The variance and average of stock return are based on self-reference and unstable. The volatility in stock return moves in Fractional Brownian Motion (FBM) with non-linear, fractal and chaos characters.
     Classification and characters of system are discussed at the beginning of the paper. Then on the basis of effective market theory and fractal market theory, the optimization model of the securities combination is established due to the deep research on dynamics mechanism of stock market, and the application of fractal analysis and Genetic Algorithm to stock prediction, in order to maximize the benefits in minimum risk. The characters and internal operation mechanisms of Shanghai and Shenzhen securities market are expounded systematically and detailedly by means of estimating Brownian motion, fractal dimension and Hurst index in time series. Meanwhile, by comparison of market efficiency, market operation rules and regulations are showed up. The purpose of investment combinations research is to find out a dynamic investment combinations method and model with the functions of evolvement and adaptability, according to the Genetic Algorithm, species evolvement theory and basic securities market theories, and supported by financial index, price index, macroeconomic index and so on.
     Chapter One Introduction
     Firstly, the research results and trends home and overseas in related domain are reviewed. Then, the necessity of further research and its intending trend are demonstrated because there still exist some limitations on received results according to conclusions of received results and references of latest research. Thirdly, the research ideas and methods are introduced. Last but not least, the structure and innovations of this paper are given.
     Chapter Two Classification and Characters of System
     Learning form the research experiences and results, I give the definition of system according to the theories of dialectical materialism and modern system. System has multi-characters and it is the unification of variety and otherness. System is composed of many elements and groups with rules. These elements and groups are related and concerned with each other and system, so no independent exits in system. They interdepend, inter-effect, inter-inspirit, inter-repair and inter-restrict each other with some particular rules which differ from another system. Integration is an attribute of system.
     I expatiate on the definition of system in detail from the aspects of structure, hierarchy and emergence. The system is divided to Little System, Large System, Simple Giant System and Complex Giant System by its scale and structure. And features in different system are concluded in its features, functions, behaviors and so on. Among different kinds of systems, Open Giant System is paid much more attention.
     Chapter Three Efficient Market Hypothesis (EMH)
     Efficient Market Hypothesis (EMH) is the foundation of Modern Finance, and also the good application of Rational Expectations Theory (Economics).In the opinion of EMH, all the assets information are reflected on securities price. Effective price change is random and unpredicted. In fact, the agreement has lasted over ten years whether EMH is true or not in academe. Behavioral Finance becomes the center of the agreement as pioneer. Scholars have found some unusual phenomena which are opposite to EMH, such as over-volatility of the market, changeable clustering, Scale Effect, over-reaction and under-reaction. Actually, these unusual phenomena are the general representation of bubbles and its burst.
     Chapter Four the Fractal Analysis and Dynamic Mechanism of Chinese Stock Market
     If EMH was true, there must be some kind of dynamic mechanism to support this hypothesis. The inter-mechanism has become the focus of theory horizon again since unusual phenomena occur. The facts have been realized that there is long-term memory of market yield, and the distribution is not accorded with Normality Distribution but fat tail and distinct pinnacle distribution. These facts make me to reset my thinking and try to find out a new model to explain some questions which can’t be solved by EMH. The development of the Fractal Geometry is one of the most useful and charming discovery in mathematics this century. Fractal Theory is very important to the modern study on the complexity of science theories and impresses deeply on human’s Natural Philosophy, Philosophy of Science, Scientific Method, scientific thinking and so on.
     Fractal Market Hypothesis (FMH) comes into being after Fractal Theory is applied to capital market. In the opinions of FMH, the capital market is like a feedback system with critical level. The time series of securities price and yield is accorded with fractal distribution. Assets prices deviate from its balance state and are sensitive to initial conditions
     In Fractal Theory, Rescaled Range Analysis (R/S) is non-parameter statistic analysis. It doesn’t matter if latency distribution is accorded with Gaussian distribution or one, while one assumption is a must that latency distribution is dependent. So objective of R/S is not only Normality Distribution, but also non-Gaussian independent processes. Hurst exponent is an important method of R/S and can be calculated by constant regression and non-constant regression.
     Dynamic Mechanism of stock market is made with the thinking of Complex System. Investors predict by inductive logic and keep learning to make various decisions which are not perfect. It is dynamic and made by the structure. And its equilibrium is evolving rather than perfect.
     Chapter Five the Study on Genetic Algorithm of Portfolio in Chinese Stock Market
     Genetic Algorithm (GA) is a kind of Global Optimization Search Algorithm by simulating evolution process with the features of random, iteration, evolution and parallel search. The general idea of GA is to search from a group of basic feasible solutions at random, called“population”. Every unit is called“chromosome”and regarded as a solution to the problem. The quality of chromosome is up to its fitness value. The larger the chromosome fitness value is, and the higher its probability to be chosen is. On the opposite side, probability for smaller value is lower. These chosen chromosomes go into next generation and produce new chromosomes called“offspring”by crossover, mutation and other genetic manipulations. From generation to generation, GA makes it to converge at best chromosome which stands for the optimal solution or sub-optimal solution.
     Thinking of the complexity of Chinese stock market, I apply GA to the research on single index and multi-index algorithm, according to modern financial knowledge, securities investment technique analysis theory, macroeconomics initial index. Then Optimal Portfolio can be selected out on the basis of the research. And the efficiency of portfolio is discussed on the conditions of different index.
     Conclusions
     The study on complexity of Chinese stock market is the focus of securities market study. It reveals the internal operation rules of Chinese stock market system on Systems Methodology research, and gives a new view on the study about complexity of Chinese stock market. What’s more important meaning, it proves the fractal feature of Chinese stock market after learning form the former research, and selected out the Optimal Portfolio referring to the features of random, iteration, evolution and parallel search on GA.
     1、Learning from former results, I describe the classification and features of system, scientific identification of complexity, essential features of Complexity Science, pedigree of Complexity, and basic theory of Complexity. I demonstrate that Chinese stock market is a Complex Giant System by conditions, behavior, state, and evolvement of Chinese stock market’s operation.
     2、The shortages of statistical structure assumption are proved in EMH. EMH use statistical structure to describe the market so it is accorded with Normality Distribution. Asymptotic normality of price change can not reflect the true market features. So that’s one of the reasons to prove that EMH can not be applied to stock market.
     3、The linear model used in EMH can simply the complexity of problems. But it will reach the wrong conclusions if the linear methods are applied in non-linear fields such as stock market. So it’s another reason to believe that EMH is not suitable to stock market
     4、The practical R/S research on Shanghai and Shenzhen composite indexes shows, there is long-term persistence for 5DMA (Day Moving Average), 10DMA and 20DMA have long-term. It gives the evidence that Chinese stock market yield has non-linear feature and it isn’t accorded with random process. So it is the proof that there are rescaled range and chaos dynamics features in Chinese stock market.
     5、The conclusion can be reached by the practical research on Fractal that the duration of stock price in Shenzhen securities market is longer than in Shanghai’s.
     6、On the qualitative research of Chinese stock market, single index and multi-index investment models are established according to GA, investment strategy, Chaos Theory, and securities investment analysis theory. Demonstrations show that these models are helpful to deal with whole emergence in Chinese stock market to increase investors’yield.
引文
[1] Abarbanel H.D., Brown R., Sidorowich J.J., et al, The analysis of observed chaotic date in physical systems[J], Rev mod phys, 1993, 65(4):1331~1392.
    [2] Abhyankar A., Copeland L. S., Nonlinear dynamics in real time equity market indices[R], Working paper, 1994.
    [3] Abry P., Veitch D., Wavelet analysis of long rang dependence traffic[J], IEEE Trans. Inform. Theory, 1996, 44(1): 2~15.
    [4] Alvarez-Ramirez J., Cisneros M., Ibarra-Valdez C., Mulitifractal Hurst analysis of crude oil prices[J], Physica A, 2002(313): 651~670.
    [5] Andreadis I., Serletis A., Evidence of a random multifractal turbulent structure in the Dow Jones industrial average[J], Chaos, solitons and fractals, 2002, 13(6): 1309~1315.
    [6] Ansgar Richter, Sandra Niewiem, The changing balance of power in the consulting market[J], Bussiness strategy review, 2004,15: 8~13.
    [7] Anis A.A., Llogy E.H., The expected value of the adjusted rescaled Hurst range of independent national summands[J], Biometrical, 1996, 63.
    [8] Arneodo A., Manneville S., Muzy J. F., Towards log-normal statistics in high Reynolds number turbulence[J], Eur. Phys J B, 1998(1): 129~140.
    [9] Ausloos M., Vandewalle N., Boveroux P.H., et al, Applications of statistical physics to economic and financial topics[J], Physica A, 1999, (2): 229~240.
    [10] Azriel Levy and Miles livingstion. The gains from diversification reconsidered: Transaction Costs and Superior Information.Financial. Markets,Institution and Instruments[M]. New York: University Salomon Center,1995.
    [11] Bacry E., Delour J., Muzy J., Multifractal random walks[J], Phys Rev E, 2001, 64: 26103~26106.
    [12] Bahram Adrangi. Arjun Chatrath, Ravindra Kamath et al, Emerging market equity prices and chaos: evidence from Thailand exchange[J], International Journal of Business, 2004, 9(2): 53~87.
    [13] Barabasi A. L., Vicsek T., Multifractality of self-affine fractals[J], Phys Rev A, 1991(44): 2730-2733
    [14] Barberis, Shleifer and Vishny. A Model of Investor Sentiment[J]. Journal of Finance, 1997, (51):1681-1713.
    [15] Beder T. VaR:Seductive but Dangerous[J]. Financial Analysts Journal, 1995, (9/10):12-24.
    [16] Black F., Scholes M. The pricing of options and corporate liabilities[J].Journal of Political.
    [17] Bollerslev, T., A Conditional Heteroskedastic Time Series Model for Speculative Prices and Rates of Return. Review of Economic and Statistics, 1987. 69(3): p. 542-547.
    [18] Broomhead D. S., King G. P., Extracting qualitative dynamics from experimental data[J], Physica D, 1986, 20(2-3): 217-236.
    [19] Calvet L., Fisher A., Multifractality in asset returns: theory and evidence[J], The reviews of economics and statistics, 2002(84): 381~406.
    [20] Catherine Kyrtsou, Michel Terraza, Stochastic chaos or ARCH effects in stcok series? A comparative study[J], International review of financial analysis, 2002, (11):407~431.
    [21] Chueng Y. K., Lai K. S., Do gold market returns have long memory? [J], The financial review, 1993, (2): 181~202.
    [22] Constantinedes M. M. Portfolio selection with transaction costs[J]. Journal of Economic theory,1976, (13): 245-363.
    [23] Corazza M., Malliaris A.G., Searching for fractal structure in agricultural futures markets[J], The journal of futures markets, 1997(4): 433~473
    [24] Cornelis A. Los, Measuring the degree of financial market efficiency: An essay[R], Working paper, New York, SSRN, id614544, 2004.
    [25] Daniel, Hirshleifer and Subrahmanyam. Investor Psychology and Security Market Under – Overreactions[J]. Journal of Finance, 1998, (53):1839-1886.
    [26] Daniela Federici, Giancarlo Gandlfo, Chaos and the exchange rate[J], Journal ofinternational trade and economic development, 2002, 11(2):111-142.
    [27] Davis L. Handbook of Genetic Algorithms,Van Nostrand Reinhold, New York,1991.
    [28] Debondt W., Thaler R., Does the stock overreact? [J], Journal of finance, 1986, 160(1): 35-42.
    [29] De Jong K.A. An analysis of the behavior of a class of genetic adaptive systems (Ph.D Dissertation). University of Michigan,1975.
    [30] Ding, Z., Granger, C. W. J. and Engle, R. F.: 1993, A long memory property of stock market returns and a new model, Journal of Empirical Finance 1, 83—106.
    [31] Eldrige R.M., Coleman M.P., The Britain FTSE-100 index: chaotically deterministic or random? [R], Working Paper, University of Michigan, 1991
    [32] Elton E J,Gruber M J.Modern. Portfolio Theory and Investment Analysis[M],4th edition.New York: John Wiley and Sons, 1991, 284-285.
    [33] Fama E.The behavior of stock market prices[J].Journal of Business,1965, 38(1): 34-105.
    [34] Fama E. F., Efficient capital markers: A review of theory and empirical work[J], Journal of Finance, 1970(25):383-417.
    [35] Falconer K. J, The geometry: mathematical foundation and application[M], New York: Wiley press, 1990.
    [36] Fillol, Jerome, Multifractality: theory and evidence an application to the French stock market[J], Economics bulletin, 2003, 6(31): 1~12.
    [37] Ghashghaie S., Breymann W., Peinke J., et al, Turbulence and financial markets[J], Natures, 1996( 381): 767~770.
    [38] Goldberg D.E. Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.
    [39] Grassberger P., Procaccia I., Estimation of the kolmogorov entropy from a chaotic signal[J], Physica Rev, 1983, 28A(4): 2591~2593.
    [40] Grassberger P., Procaccia I, Measuring the strangeness or strange attractors[J], Physica D, 1983, 9(1~2): 189~208.
    [41] Gooiejer J. G. D., Testing non-linearity in world stock prices[J], Economics letters, 1986, 131(4): 41~52.
    [42] Hai Chin Yu, Probability distribution among six stock markets[R], Working paper, New York, SSRN, 2004.
    [43] Hai Chin Yu, Ming Chang Huang, Statistical Properties of Volatility in Fractal Dimension and Probability Distribution among Six Stock Markets[J] , Applied financial economics, 2004,14(15):1~33.
    [44] Hesieh D., Testing for nonlinear dependence in daily foreign exchange rates[J], Journal of business, 1989, 62(3): 339-359.
    [45] Hesieh D., Chaos and nonlinear dynamics: financial market[J], Journal of Finance, 1991, 47.
    [46] Higuchi T., Approach to an irregular time series on the basis of the fractal theory[J], Physica D, 1988, 31: 277-283.
    [47] Huang B., Yang C.W., The fractal structure in multinational stock returns[J], Applied economics letters, 1995(2):67~71.
    [48] Hurst H. E., Long term storage capacity of reservoirs[J], Transactions of the American society of civil engineers, 1951(116): 770-808.
    [49] Jorge L., Urrutia, Joseph D., Vu, Paul L., Gronewoller, et al, Nonlinearity and low deterministic chaotic behavior in insurance portfolio stock returns[J], The journal of risk and insurance, 2002, (69): 537~554.
    [50] Lorenz. E., Deterministic nonperiodic flow[J], Atmospheric sciences, 1963 (20):130-141.
    [51] Kamin J.Optimal portfolio revision with a proportional transaction costs[J]. Management Science, 1975, (7): 1263-1271.
    [52] Kantelhardt J.W., Stephan A.Z., Eva K.B., et al, Multifractal detrended fluctuation analysis of nonstationary time series[J], Physica A, 2002(316): 87~114.
    [53] Kennel M., Brown R., Abarbanel H., Determining embedding dimension for phase-space reconstruction using a geometrical construction[J], Physical Review A, 1992, 45(6): 3403~3411.
    [54] Klaasjan Visscher, Arie Rip, Coping with chaos in change processes[J], Creativity and innovation management, 2003,1(6): 121~128.
    [55] Konno H.,Yamazaki H. Mean Absolute Deviation Portfolio Model and Its Application to Tokyo Market[J]. Management Science. 1991, (37):519-531.
    [56] Kugiumtzis D., Lingarder O. C., Christophersen N., Regularized local prediction of chaostic time series[J], Physica D, 1998, 112(3): 344~360.
    [57] Laurent E. Calvet, Adlai J. Fisher, How to forecast long-run volatility: regime switching and the estimation of multifractal processes[J], Journal of financial econometrics, 2004, 2(1): 49~83.
    [58] Lintner J. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics, 1965, 47(2): 13-37.
    [59] Mallat S., Hwang W. L., Singularity detection and proceeding with wavelets[J], IEEE trans on information theory, 1992, 38(2): 617~643.
    [60] Mandelbrot B. B., New methods in statistical economics[J], Journal of political economy, 1963(71): 421-440.
    [61] Mandelbrot B. B., The variation of certain speculative prices[J], Journal of business, 1963(36):394-419.
    [62] Mandelbrot B. B., Van Ness J.W., Fractional Brownian Motion, Fractional noise and application, SLAM Rev, 1968(10):422-437.
    [63] Mandelbrot B. B., Forecasts of futures prices and unbiased markets[J], Journal of business of the university of Chicago, 1969(39): 1102-1117.
    [64] Mandelbrot B. B., Statistical methodology for non-periodic cycles: from the covariance to R/S analysis[J], Annals of economic and social measurement, 1972: 1259-1290.
    [65] Mandelbrot B. B., Taqqu M. S., Robust R/S analysis of long-run serial correlation[J], Bulletin of the international statistical institute, 1979, 48: 69-99.
    [66] Markowitz M H. Portfolio selection[J]. Journal of Finance, 1952, 7(1): 77-91.
    [67] Matia K., Ashkenazy Y., Multifractal properties of price fluctuation of stocks andcommodities[J], Europhys, lett, 2003, 61(3): 422~428.
    [68] Matsushita, Raul, Iram, et al, Fratcal structure in the Chinese yuan/US dollar rate[J], Economics bulletin, 2003(7): 1~13.
    [69] May R. M., Simple mathematical models with very complicated dynamics[J], Nature, 1976, 261:459-467.
    [70] Mckay R.and Keefer T.E. VaR is a Dangerous Technique[J]. Corporate Financial Searching for Systems Integration Supplement, 1996, (9):30.
    [71] McNames James, Local averaging optimization for chaotic time series prediction[J], Neurocomputing, 2002, 48(10): 279~297.
    [72] Michael D., Mckenzie, Non-periodic Australian stock market cycles: evidence from rescaled range analysis[J], The economic record, 2001, (11): 393~406.
    [73] Mikael Bask, Ramazan Gencay, Testing chaotic dynamics via Lyapunov exponents[J], Physica D, 1998, (4):1~2.
    [74] Modiglian F.Miller M. The cost of capital, corporation finance and the theory of investment[J]. American Economic Review, 1956, 48(1): 261-297.
    [75] Mossin J.Equilibrium in a capital asset market[J].Economica,1966, 34(4):768-783.
    [76] Mototsugu Shintani, Oliver B. Linton, Is there chaos in the world economy? A nonparametric test using consistent standard errors [J], International economic review, 2003, 44(1): 331~357.
    [77] Mottison, Practical method for determining the minimum embedding dimension of a scalar time series[J], Physica D, 1997, (110): 43~50.
    [78] Nelson, D.B., Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 1991. 59(2): p. 347-370.
    [79] Packard, N.H., Grutchfield, J.P., Farmer, J.D. and Shaw, R.S., Geometry from a Time Series [J], Physical. Review Letters, 1980(45): 712~716.
    [80] Peng C. K., Havilin S., Stanley H. E., et al, Qualitification of scaling exponents and crossover phenomena in nonstationary heartbeat time series[J], Chaos, 1995, 5(1): 82~87.
    [81] Peitgen H O, Jugens H, Saupe D, Chaos and fractals[M], New York: Springer,1992.
    [82] Pettgen H. O., Henrioues J. M.., Penedo, L F., Fractals in the fundamental and applied sciences[J], New York, Elsevier, 1991.
    [83] Ralf Oestermark. Solving a Non-Convex Trim Loss Problem with a Genetic Hybrid Algorithm[J]. Computer and Operation Research, 1999, 26: 623-635.
    [85] Richard H. Day, Oleg V. Pavlov, Computing economic chaos[J], Computational economics, 2004, 23(4): 289~301.
    [86] Robert H.Statistical versus clinical prediction of stock market.Unpublished Manuscript[D], CRSP, Chicago:University of Cihicago, May, 1967.
    [87] Robert J. Gordon, Two centuries of economic growth: Europe chasing the American frontier[R], NBER working paper No. W10662, 2004.
    [88] Ross S. The arbitrage theory of capital asset pricing[J]. Journal of Economics Theory,1976,13(3):341-360.
    [89] Scheinkman L.A., LeBaron B., Nonlinear dynamics and stock returns[J], Journal of Bussiness, 1989, 162(2): 311-337.
    [90] Serletis A., Gogas P., Chaos in east European black-market exchange rates[J], Research in economics, 1997(51):359~385.
    [91] Sharpe W. Capital asset prices:a theory of market equilibrium under conditions of risk[J]. Journal of Finance, 1964, 19: 425-442.
    [92] Rosenstein M. T., Collins J. J., De L. C., A practical method for calculating largest lyapunov exponents from small data sets[J], Physica D, 1993,65: 117~134.
    [93] Silchenko A., Hu C. K., Multifractal characterization of stochastic resonance[J], Phys Rev E, 2001, (63): 041105~041115.
    [94] Sterge A. J., On the distribution of financial futures prices changes[J], Financial analysis journal, May/June 1989.
    [95] Stambaugh F. Risk and Value at Risk[J]. European Management Journal.1996, (14): 612-621.
    [96] Stutzer M.T., Chotic dynamics and bifurcations in a macro model[J], Journal of economic dynamics and control, 1980, 4(3): 353~376.
    [97] Sutthisit Jamdee, Cornelis A. Los, Multifractal modeling of the US treasury term structure and fed funds rate[R], Working paper, New York, SSRN, 2005.
    [98]Taggu M.S, Teverovsky V. Estimators for Long-rang Dependence: an Empirical Study[J]. Fractals,1995, 3(4): 785~798.
    [99] Tomsett A.C., Toumi R., Annual persistence in observed and modeled UK precipitation[J], Geophysical research letters, 2001, 28(20): 3891~389.
    [100] Turner A. L., Weigel E. J., An analysis of stock market volatility[J], Russell research commentaries, Tacoma, WA: Frank Russell Co, 1990.
    [101] Vautard R., Ghil M., Singular spectrum analysis in nonlinear dynamics with applications to paloeclimatic time series[J], Physica D, 1989, 35(3-4): 395-424.
    [102] Weigend A.S., Gershenfeld A., Time series prediction: forecasting the future and understanding the past[A]. Proceeding Santa Fe Institute Studies in the Sciences of Complexity(Vol XV)[C], Reading: Addision-Welsley, 1994.
    [103] Wolf A., Swift J. B., Swinney H. L., et al, Determing Lyapunov exponents from a time series[J], Physica D, 1985(16): 285~317.
    [104] Yan Olszewski, Building a better fund of hedge funds: a fractal and α-stable distribution approach[R] , Working paper, New York, SSRN, id776064, 2004.
    [105] 埃德加?E? 彼得斯著. 储海林, 殷勤译. 分形市场分析——将混沌理论应用到投资与经济理论上[M]. 北京: 经济科学出版社, 2002.
    [106] 埃德加?E? 彼得斯著. 宋学峰, 曹庆仁, 王新宇译. 复杂性、风险与金融市场[M]. 北京:中国人民大学出版社, 2004.
    [107] 陈国华,盛昭翰,基于Lyapunov指数的混沌时间序列识别[J],系统工程理论方法与应用, 2003, 12(4): 317-320.
    [108] 陈国梁等. 遗传算法及其应用[M]. 北京: 人民邮电出版社, 1996.
    [109] 陈金龙, 张维. 金融资产的市场风险度量模型及其应用[J]. 华侨大学学报. 2002(3): 29-37.
    [110] 崔鑫, 邵芸, 王宗军. 资本市场非线性理论研究综述与展望[J]. 管理科学学报, 2004, 7(3): 75-85.
    [111] 范英, 魏一鸣, 基于 R/S 分析的中国股票市场分形特征研究[J]. 系统工程,2004, 22(11): 46-51.
    [112] Haim Levy. 任淮秀等译. 投资学[M]. 北京: 北京大学出版社, 1999.
    [113] 韩文秀, 郁俊丽, 王其文. 我国资本市场混沌特性研究[J]. 系统工程理论与实践, 2002, (10): 43-48.
    [114] 何建敏, 常松. 中国股票市场多重分形游走及其预测[J]. 中国管理科学, 2002, 10(3): 11-17.
    [115] 郝柏林. 混沌与分形[M]. 上海: 上海科学技术出版社, 2004.
    [116] 郝翔, 李人厚. 一种快速有效的多模态函数寻优方法一一双群体遗传算法[J]. 控制理论与应用, 1997, (10).
    [117] 胡国政, 李楚霖. 考虑交易费用的证券组合投资的研究[J]. 预测. 1998, (5): 66-67.
    [118] 胡日东. 均值—离差型组合证券投资优化模型[J]. 预测. 2000, (2): 55-57.
    [119] 黄诒蓉. 中国股票市场多重分形结构的实证研究[J]. 当代财经, 2004, (11): 53-56.
    [120] 惠恩才, 林岩. 加强我国证券市场的风险管理[J]. 财经问题研究, 2003, (11).
    [121] 金菊良, 丁晶. 遗传算法及其在水科学中的应用[M]. .成都: 四川大学出版社, 2000.
    [122] 贾晓东, 潘德惠, 陶艳秋. 证券投资组合理论在中国的适用性分析及其改进[J]. 东北大学学报.2002, (8): 754-757.
    [123] 蒋冠, 熊大永. 证券市场的有效性与无效性——争论与理论发展[J]. 经济问题探索, 2000, (4).
    [124] 康立山, 谢云, 尤矢勇. 非数值并行算法——模拟退火算法[M]. 北京:科学出版社. 1994.
    [125] 李兵, 谢剑英. 遗传算法的自适应代沟替代策略研究[J]. 控制理论与应用, 2001, (1).
    [126] 李敏强, 寇纪淞, 林丹, 李书全. 遗传算法的基本理论与应用[M]. 北京: 科学出版社, 2002.
    [127] 李善明, 徐沛. Markowitz 投资组合理论模型应用研究[J]. 经济科学, 2000, (1).
    [128] 李书全, 赵良英, 史智兴. 一种防止遗传算法成熟前收敛的有效算法[J]. 系统工程理论与实践, 1999, (5).
    [129] 李医民, 胡寿松. 引入生态位技术的遗传算法研究及应用[J]. 系统工程, 2002, (5).
    [130] 刘大平. 我国证券市场功能发挥的实证分析[J]. 经济科学. 1994, (3).
    [131] 刘洪杰, 王秀峰, 王治宝. 遗传多峰搜索[J]. 系统工程学报, 2000, (4).
    [132] 刘海龙,樊治平,潘德惠. 带有固定交易费用的证券投资最优策略[J]. 管理科学学报. 1999, (4).
    [134] 刘力. 行为金融理论对效率市场假说的挑战[J]. 经济科学, 1999, (3).
    [135] 刘文财, 刘豹, 张维. 中国股票市场混沌动力学预测模型[J]. 系统工程理论方法应用, 2002, 11(1): 12-14.
    [136] 刘勇, 康立山, 陈毓屏. 非数值并行算法——遗传算法[M]. 北京: 科学出版社. 1995.
    [137] 卢方元. 中国股市收益率的多重分形分析[J]. 系统工程理论与实践, 2004, (6): 50-55.
    [138] 米凯利维茨. 演化程序: 遗传算法和数据编码的结合[M]. 北京: 科学出版社,2000.
    [139] 马永开, 唐小我. 不允许卖空的多因素证券组合投资决策模型[J]. 系统工程理论与实践,2000 年第 2 期: 37-43.
    [140] 欧阳光中, 李敬湖. 证券组合与投资分析[M]. 北京: 高等教育出版社. 1997.
    [141] 何大仞, 汪秉宏, 汪海颖等. 非线性动力学引论[M]. 西安: 陕西科学技术出版社, 2001.
    [142] 宋军, 吴冲锋. 金融市场中羊群行为的成因及控制对策研究[J]. 财经理论与实践. 2001, (11).
    [143] 沈艺峰, 吴世农. 我国证券市场过度反应了吗?[J]. 经济研究. 1999, (2).
    [144] 史永东. 上海证券市场的分形结构[J]. 预测, 2000, 19(5): 78-80.
    [145] 唐小我. 经济预测与决策的新方法及其应用研究[M]. 成都:电子科技大学出版社, 1997.
    [146] 王春峰, 杨建林, 赵欣. 具有典型交易成本的投资组合管理模型及其求解[J]. 系统工程理论与实践. 2002, (10): 134-138.
    [147] 王晶, 李玉兰, 蔡自兴等. 基于遗传算法的模糊系统优化设计方法[J]. 控制理论与应用, 1999, (5).
    [148] 王明涛. 基于R/S法分析中国股票市场的非线性特征[J]. 预测, 2002, 21(3): 42-45.
    [149] 王宁, 蔚承建, 盛昭翰. 基于嵌入混沌序列的遗传算法[J]. 系统工程理论与实践, 1999, (3).
    [150] 王卫宁, 汪秉宏, 史晓平. 股票价格波动的混沌行为分析[J]. 数量经济技术经济研究,2004(4): 141-147.
    [151] 王兴成, 郑紫微, 贾欣乐. 模糊遗传算法及其应用研究[J]. 计算技术与自动化, 2000, (2).
    [152] 王一鸣. 数理金融经济学[M]. 北京大学出版社, 2000.
    [153] 王祖林, 周荫清. 多重分形谱及其计算[J]. 北京航空航天大学学报, 2000, 26(3): 256-258.
    [154] 谢赤, 熊一鹏. 深圳股票市场多标度分形特征研究[J]. 财经理论与实践, 2005, 26(133): 53-55.
    [155] 徐迪, 吴世农. 上海股票市场的分形结构分析[J]. 中国经济问题, 2002, (1): 27-33.
    [156] 徐金梧, 刘纪文. 基于小生境技术的遗传算法[J]. 模式识别与人工智能, 1999, (1).
    [157] 徐龙炳, 陆蓉. R/S 分析探索中国股票市场的非线性[J]. 预测, 1999, (2): 59-62
    [158] 徐绪松, 陈彦斌. 绝对离差证券组合投资模型及其模拟退火算法[J]. 管理科学学报, 2002, (5).(
    [159] 徐绪松. 求解投资组合模型的遗传算法[J]. 武汉大学学报, 2005, (1).
    [160] 杨德佳, 朱海英, 于勇等. 证券市场中的混沌分形现象与多分形走动[J]. 东北大学学报(自然科学版) , 2001, 22(5): 501-504.
    [161] 杨一文, 刘贵中. 分形市场假说在沪深股票市场中的实证研究[J]. 当代经济科学, 2002, 24(1): 75-79.
    [162] 伊·普里高津, 伊·斯唐热. 从混沌到有序—人与自然的新对话[M]. 上海: 上海译文出版社, 1987.
    [163] 仪垂祥. 非线性科学及其在地学中的应用[M]. 北京: 气象出版社, 1995.
    [164] 于海斌, 王浩波, 徐新和. 两代竞争遗传算法及其应用研究[J]. 信息与控制, 2000, (8).
    [165] 俞乔. 市场有效性、周期异常与股价波动[J]. 经济研究, 1994, (4). [166 张合金, 史代敏. 组合投资学[M]. 四川: 西南财经大学出版社, 1999.
    [167] 张明. 负熵与货币—经济学的重构[M]. 杭州: 浙江大学出版社, 2002.
    [168] 张琪昌, 王洪礼, 竺致文等. 分岔与混沌理论及应用[M]. 天津: 天津大学出版社, 2005.
    [169] 张世英, 樊智著. 协整理论与波动模型[M]. 北京: 清华大学出版社, 2004.
    [170] 张维, 黄兴. 沪深股市的R/S实证分析[J]. 系统工程, 2001, 19(1): 1-5.
    [171] 张学军,孙博文,我国股票指数混沌行为测试[J],哈尔滨学院学报,2002,23(12): 45-47.
    [172] 张永东,毕秋香,中国股票市场多标度行为的实证分析[J],预测,2002,21(4): 56-59.
    [173] 周明, 孙树栋. 遗传算法原理及应用[M]. 北京: 国防工业出版社, 2001.
    [174] 周炜星, 王延杰, 于遵宏. 多重分形奇异谱的几何特征——经典Renyi定义法[J]. 华东理工大学学报, 2000, 26(4): 385-389.
    [175] 周炜星, 吴韬, 于遵宏. 多重分形奇异谱的几何特征——配分函数法[J]. 华东理工大学学报, 2000, 26(4): 390-395.