骨组织修复相关细胞在电纺丝膜上的生物学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们投入巨大的努力来制造各种生物材料来满足某些特殊的临床需要。本研究中,我们将聚左旋乳酸(poly(L-lactic acid), PLLA)、多壁碳纳米管(multiwalled carbon nanotubes, MWNTs)和羟基磷灰石(hydroxyapatite, HA)混悬液通过电纺工艺制造出一种新型的引导性组织再生膜和组织工程支架材料。
     MWNTs/HA纳米颗粒在膜中分布均匀,膜的降解性能得到了很大的改善。细胞学实验证实,与对照组PLLA膜相比,在PLLA/MWNTs/HA膜上,牙周膜细胞(periodontal ligament cells, PDLCs)粘附和增殖增加了30%,而牙龈上皮细胞(gingival epithelial cells, GEC)则减少了30%。将PDLCs接种于PLLA/MWNTs/HA膜上,并将二者的复合体植入裸鼠腿部的肌袋中。组织学检查结果显示贴附在膜上的PDLCs在体内功能良好。这种新型膜材料虽然只是单层结构,但是却表现出良好的双重生物学功能,能够很好的满足引导性组织再生术的要求。与市场上正在出售的GTR膜或正在研究的GTR膜相比,这种膜可以简化生产步骤,降低生产费用并避免了临床应用过程中可能出现的错误。而且,这种膜在术后不需要去除。PLLA/MWNTs/HA膜在GTR和组织工程方面拥有巨大的应用潜力。
     本研究初步探索人羊膜基质细胞(human amniotic mesenchymalcells, hAMC)作为骨组织工程种子细胞的潜力。对人羊膜基质细胞进行分离培养,将第3代PDLCs在含有地塞米松(0.1μmol/L)、维生素C(50 mg/L)和β-磷酸甘油钠(10mmol/L)的DMEM培养液进行成骨诱导培养1周,进行茜素红染色,计数钙化结节形成数量,并进行免疫荧光细胞化学染色以检测Ⅰ型胶原和碱性磷酸酶的表达。利用免疫组织(细胞)化学染色检测羊膜及hAMC中FasL的表达。结果显示人羊膜基质细胞经过成骨诱导后,可见明显钙化结节形成,平均每孔18个。钙化结节处细胞Ⅰ型胶原和碱性磷酸酶表达阳性。人羊膜组织中细胞及体外培养的hAMC均可检测到FasL的阳性表达。这提示人羊膜基质细胞有潜力成为一种较为理想的骨组织工程的种子细胞。
     本研究探索了人羊膜基质细胞和电纺聚乳酸/羟基磷灰石(Poly (L-lactic acid)/hydroxyapatite, PLLA/HA)膜构建骨组织工程细胞/支架复合体。分离培养羊膜基质细胞,利用MTT法检测PLLA和PLLA/HA膜浸提液对羊膜基质细胞增殖的影响;将第3代羊膜基质细胞与PLLA和PLLA/HA膜在成骨诱导培养液中复合培养,在第1周和第4周时进行组织学检查,并在第4周时进行免疫荧光细胞化学染色以检测Ⅰ型胶原和碱性磷酸酶的表达。结果显示PLLA和PLLA/HA膜浸提液对羊膜基质细胞均无明显细胞毒性。羊膜基质细胞与两种膜材料复合培养后,细胞增殖明显,而且可以观察到钙化结节的形成,钙化结节处细胞Ⅰ型胶原和碱性磷酸酶表达阳性。这表明人羊膜基质细胞与电纺聚乳酸/羟基磷灰石膜可以共同构建成细胞/支架复合体,具有应用于骨组织工程的潜力。
     综上所述,本研究中制作的电纺丝膜具有良好的生物相容性,骨组织修复相关细胞在电纺丝膜上可以较好的行使功能。
Significant effort has been devoted to fabricate various biomaterials to satisfy specific clinical requirements. In this study, we developed a new type of guided tissue regeneration (GTR) membrane by electrospinning of suspension consisted of poly (L-lactic acid)/multi-walled carbon nanotubes/hydroxyapatite (PLLA/MWNTs/HA). MWNTs/HA nanoparticles were uniformly dispersed in the membranes and the degradation characteristics were far improved. Cytologic researches revealed that the PLLA/MWNTs/HA membrane enhanced the adhesion and proliferation of periodontal ligament cells (PDLCs) by 30% and inhibited the adhesion and proliferation of gingival epithelial cells (GECs) by 30% also compared with control group. After PDLCs were seeded into the PLLA/MWNTs/HA membrane, cell/membrane composites were implanted into the leg muscle pouches of immunodeficiency mice. Histologic examinations showed PDLCs attached on the membranes functioned well in vivo. This new type membrane shows excellent dual biological functions and satisfied the requirement of GTR technique successfully in spite of a monolayer structure. Compared with other GTR membranes on sale or in research, the membrane can simplify the manufacturing process, reduce the fabrication cost and avoid possible mistakes in the clinical application. Moreover, it needs not to be taken out after surgery. PLLA/MWNTs/HA membranes have shown great potentials for GTR and tissue engineering.
     We also investigated the potential of human amniotic mesenchymal cells served as seeding cells in bone tissue engineering. Human amniotic mesenchymal cells (hAMC) were isolated, cultured. The third passage of hAMC was cultured in osteogenic induce media (DMEM supplemented with 10% FBS,0.1μmol/L dexamethasone,50 mg/L ascorbic acid and 10 mmol/L P-glycerophosphate) for 1 week. Calcified nodules were shown by alizarin red staining and counted under light microscope. Immunofluorescence cytochemical staining was used to detect COL I and ALP. Expression of FasL was examined in the amnion and hAMC by immunohistochemistry or immunocytochemistry. After osteoblast differentiation, calcified nodules were formed, average 18 per well. hAMC in calcified nodules were shown positive expression of COL I and ALP. FasL was detected positive both in cells contained in amnion and hAMC. It is concluded that human amniotic mesenchymal cells were potential ideal candidates for seed cells in bone tissue engineering.
     We constructed seed cells/scaffold complex by human amniotic mesenchymal cells (hAMC) and electrospun poly (L-lactic acid)/hydroxyapatite (PLLA/HA) membranes for bone tissue engineering. Human amniotic mesenchymal cells were isolated and cultured. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to evaluate the cytotoxicity of PLLA and PLLA/HA membranes on the proliferation of hAMC. The third passage of hAMC were seeded on PLLA and PLLA/HA membranes respectively and cultured in osteogenic induce media (DMEM supplemented with 10% FBS,0.1μmol/L dexamethasone,50 mg/L ascorbic acid and 10 mmol/Lβ-glycerophosphate). Histological examination and HE staining was done at 1 and 4 week, and immunofluorescence cytochemical staining was done to detect COL I and ALP at 4 week. MTT assay showed that there was no significant difference between PLLA, PLLA/HA and control group during 7 days (P>0.05). After seeded onto two kinds of membranes, hAMC proliferated actively and calcified nodules were observed. Cells in calcified nodules were shown positive expression of COL I and ALP. It is concluded that Human amniotic mesenchymal cells and PLLA/HA can construct cells/scaffold complex and show great potential of application in bone tissue engineering.
引文
[1]. Gepstein R, Weiss RE, Hallel T. Bridging large defects in bone by demineralized bone matrix in the form of a powder. A radiographic, histological, and radioisotope-uptake study in rats. J Bone Joint Surg Am,1987; 69:984-92.
    [2]. Tiedeman JJ, Garvin KL, Kile TA, et al. The role of a composite, demineralized bone matrix and bone marrow in the treatment of osseous defects. Orthopedics,1995; 18:1153-8.
    [3]. Summers BN, Eisenstein SM. Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br,1989; 71:677-80.
    [4]. Coventry MB, Tapper EM. Pelvic instability:a consequence of removing iliac bone for grafting. J Bone Joint Surg Am,1972; 54:83-101.
    [5]. Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma,1989; 3: 192-5.
    [6]. Reddi AH. Symbiosis of biotechnology and biomaterials:applications in tissue engineering of bone and cartilage. J Cell Biochem,1994; 56:192-5.
    [7]. Hardouin P, Anselme K, Flautre B, et al. Tissue engineering and skeletal diseases. Joint Bone Spine,2000; 67:419-24.
    [8]. Rose FR, Oreffo RO. Bone tissue engineering:hope vs hype. Biochem Biophys Res Commun,2002; 292:1-7.
    [9]. Croteau S, Rauch F, Silvestri A, et al. Bone morphogenetic proteins in orthopedics:from basic science to clinical practice. Orthopedics,1999; 22:686-95; quiz 96-7.
    [10].Harakas NK. Demineralized bone-matrix-induced osteogenesis. Clin Orthop Relat Res,1984: 239-51.
    [11].Urist MR, Silverman BF, Buring K, et al. The bone induction principle. Clin Orthop Relat Res,1967; 53:243-83.
    [12].Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res,1971; 50:1392-406.
    [13].Langer R, Vacanti JP. Tissue engineering. Science,1993; 260:920-6.
    [14].Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials,2000; 21: 2529-43.
    [15].Hench LL, Polak JM. Third-generation biomedical materials. Science,2002; 295:1014-7.
    [16].Kretlow JD, Mikos AG. Review:mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Eng,2007; 13:927-38.
    [17].Zijderveld SA, Zerbo IR, van den Bergh JP, et al. Maxillary sinus floor augmentation using a beta-tricalcium phosphate (Cerasorb) alone compared to autogenous bone grafts. Int J Oral Maxillofac Implants,2005; 20:432-40.
    [18].Ambrosio AM, Sahota JS, Khan Y, et al. A novel amorphous calcium phosphate polymer ceramic for bone repair:Ⅰ. Synthesis and characterization. J Biomed Mater Res,2001; 58: 295-301.
    [19].Marra KG, Szem JW, Kumta PN, et al. In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J Biomed Mater Res,1999; 47: 324-35.
    [20].Hollinger JO, Battistone GC. Biodegradable bone repair materials. Synthetic polymers and ceramics. Clin Orthop Relat Res,1986:290-305.
    [21].Friedman CD, Costantino PD, Takagi S, et al. BoneSource hydroxyapatite cement:a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res, 1998; 43:428-32.
    [22]. Jell G, Stevens MM. Gene activation by bioactive glasses. J Mater Sci Mater Med,2006; 17: 997-1002.
    [23].Tsigkou O, Hench LL, Boccaccini AR, et al. Enhanced differentiation and mineralization of human fetal osteoblasts on PDLLA containing Bioglass composite films in the absence of osteogenic supplements. J Biomed Mater Res A,2007; 80:837-51.
    [24].Hammerle CH, Olah AJ, Schmid J, et al. The biological effect of natural bone mineral on bone neoformation on the rabbit skull. Clin Oral Implants Res,1997; 8:198-207.
    [25].Trisi P, Rao W, Rebaudi A, et al. Histologic effect of pure-phase beta-tricalcium phosphate on bone regeneration in human artificial jawbone defects. Int J Periodontics Restorative Dent,2003; 23:69-77.
    [26].LeGeros RZ. Properties of osteoconductive biomaterials:calcium phosphates. Clin Orthop Relat Res,2002:81-98.
    [27].Damien CJ, Parsons JR. Bone graft and bone graft substitutes:a review of current technology and applications. J Appl Biomater,1991; 2:187-208.
    [28].Yamada S, Heymann D, Bouler JM, et al. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/beta-tricalcium phosphate ratios. Biomaterials,1997; 18: 1037-41.
    [29].Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res, 1981:259-78.
    [30]. Wang M. Developing bioactive composite materials for tissue replacement. Biomaterials, 2003; 24:2133-51.
    [31].Ngiam M, Liao S, Patil AJ, et al. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone,2009; 45:4-16.
    [32].Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A,2003; 67:531-7.
    [33].Landis WJ, Song MJ, Leith A, et al. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol,1993; 110:39-54.
    [34].Shih YR, Chen CN, Tsai SW, et al. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells,2006; 24:2391-7.
    [35]. Aronow MA, Gerstenfeld LC, Owen TA, et al. Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells. J Cell Physiol,1990; 143:213-21.
    [36].Oliveira JM, Rodrigues MT, Silva SS, et al. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications:Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials,2006; 27:6123-37.
    [37].Shaoning Wanga XW, Hui Xu b,*, Hiroya Abe c, Zhenquan Tan c, Yanqiu Zhao b, Jianbo Guo b,, Makio Naito c HId, e, Yoshinobu Fukumori. Towards sustained delivery of small molecular drugs using hydroxyapatite microspheres as the vehicle. Advanced Powder Technology, Advanced Powder Technology (2010) 21268-72.
    [38].Rupprecht S, Merten HA, Kessler P, et al. Hydroxyapatite cement (BoneSource) for repair of critical sized calvarian defects-an experimental study. J Craniomaxillofac Surg,2003; 31:149-53.
    [39].Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng,2001; 7:23-33.
    [40].Zhao F, Yin Y, Lu WW, et al. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials, 2002; 23:3227-34.
    [41].Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng,2004; 32: 477-86.
    [42].Ginty PJ, Howard D, Rose FR, et al. Mammalian cell survival and processing in supercritical CO(2). Proc Natl Acad Sci U S A,2006; 103:7426-31.
    [43].Sherwood JK, Riley SL, Palazzolo R, et al. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials,2002; 23:4739-51.
    [44].Cushing MC, Anseth KS. Materials science. Hydrogel cell cultures. Science,2007; 316: 1133-4.
    [45]. Stevens MM, Qanadilo HF, Langer R, et al. A rapid-curing alginate gel system:utility in periosteum-derived cartilage tissue engineering. Biomaterials,2004; 25:887-94.
    [46].Lutolf MP, Lauer-Fields JL, Schmoekel HG, et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration:engineering cell-invasion characteristics. Proc Natl Acad Sci U S A,2003; 100:5413-8.
    [47].Lutolf MP, Weber FE, Schmoekel HG, et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol,2003; 21:513-8.
    [48].Yelin E, Callahan LF. The economic cost and social and psychological impact of musculoskeletal conditions. National Arthritis Data Work Groups. Arthritis Rheum,1995; 38: 1351-62.
    [49].Formhals A. U.S. Patent No.1975504.1934.
    [50].Li WJ, Laurencin CT, Caterson EJ, et al. Electrospun nanofibrous structure:a novel scaffold for tissue engineering. J Biomed Mater Res,2002; 60:613-21.
    [51].Fertala A, Han WB, Ko FK. Mapping critical sites in collagen Ⅱ for rational design of gene-engineered proteins for cell-supporting materials. J Biomed Mater Res,2001; 57:48-58.
    [52].Kenawy el R, Layman JM, Watkins JR, et al. Electrospinning of poly(ethylene-co-vinyl alcohol) fibers. Biomaterials,2003; 24:907-13.
    [53].Mo XM, Xu CY, Kotaki M, et al. Electrospun P(LLA-CL) nanofiber:a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials,2004; 25:1883-90.
    [54].Xu CY, Inai R, Kotaki M, et al. Aligned biodegradable nanofibrous structure:a potential scaffold for blood vessel engineering. Biomaterials,2004; 25:877-86.
    [55]. Yang F, Murugan R, Ramakrishna S, et al. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials,2004; 25:1891-900.
    [56].Yoshimoto H, Shin YM, Terai H, et al. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials,2003; 24:2077-82.
    [57].Lundgren D, Laurell, L., Gottlow, J., Rylander, H., Mathisen, T., Nyman, S., Rask, M. The influence of the design of two different bioresorbable barriers on the results of guided tissue regeneration therapy. An intra-individual comparative study in the monkey. J Periodontol,1995; 66:605-12.
    [58].Kim HW, Song JH, Kim HE. Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Advanced Functional Materials,2005; 15:1988-94.
    [59].Hillmann G, Steinkamp-Zucht A, Geurtsen W, et al. Culture of primary human gingival fibroblasts on biodegradable membranes. Biomaterials,2002; 23:1461-9.
    [60]. Alpar B, Leyhausen G, Gunay H, et al. Compatibility of resorbable and nonresorbable guided tissue regeneration membranes in cultures of primary human periodontal ligament fibroblasts and human osteoblast-like cells. Clin Oral Investig,2000; 4:219-25.
    [61]. Wang HL, Miyauchi M, Takata T. Initial attachment of osteoblasts to various guided bone regeneration membranes:an in vitro study. J Periodontal Res,2002; 37:340-4.
    [62].Payne JM, Cobb CM, Rapley JW, et al. Migration of human gingival fibroblasts over guided tissue regeneration barrier materials. J Periodontol,1996; 67:236-44.
    [63].Owen GR, Jackson J, Chehroudi B, et al. A PLGA membrane controlling cell behaviour for promoting tissue regeneration. Biomaterials,2005; 26:7447-56.
    [64].Liao S, Wang W, Uo M, et al. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials, 2005; 26:7564-71.
    [65].Nyman S, Gottlow J, Karring T, et al. The regenerative potential of the periodontal ligament. An experimental study in the monkey. J Clin Periodontol,1982; 9:257-65.
    [66].Hsiong SX, Mooney DJ. Regeneration of vascularized bone. Periodontology 2000,2006; 41: 109-22.
    [67].Bartold PM, Xiao Y, Lyngstaadas SP, et al. Principles and applications of cell delivery systems for periodontal regeneration. Periodontol 2000,2006; 41:123-35.
    [68].韩劫,孟焕新,唐军民等.人牙周膜细胞与BIO-OSS胶原体外三维复合体的构建.实用口腔医学杂志,2006;22:412-3.
    [69].林志勇,单秀莉,王青.狗牙周膜细胞与壳聚糖-磷酸三钙三维培养的实验研究.山东大学学报(医学版),2006;44:666-70.
    [70].向珊珊,高秀秋.壳聚糖-胶原支架与人牙周膜细胞复合培养的实验研究.锦州医学院学报,2006;27:1-4.
    [71].Flatley TJ, Lynch KL, Benson M. Tissue response to implants of calcium phosphate ceramic in the rabbit spine. Clin Orthop Relat Res,1983:246-52.
    [72].Klawitter JJ, Hulbert SF. Application of porous ceramics for the attachment of load bearing internal orthopedic applications. Journal of Biomedical Materials Research,1971; 5:161-229.
    [73].Eggli PS, Muller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res,1988:127-38.
    [74].Bucholz RW. Nonallograft osteoconductive bone graft substitutes. Clin Orthop Relat Res, 2002:44-52.
    [75].Erbe EM, Marx JG, Clineff TD, et al. Potential of an ultraporous beta-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft. Eur Spine J,2001; 10 Suppl 2:S141-6.
    [76].Tamai N, Myoui A, Tomita T, et al. Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J Biomed Mater Res,2002; 59:110-7.
    [77].Liu DM. Influence of porous microarchitecture on the in vitro dissolution and biological behavior of porous CaP ceramics. Mater Sci Forum,1997; 250:183-208.
    [78].Merten HA, Wiltfang J, Grohmann U, et al. Intraindividual comparative animal study of alpha-and beta-tricalcium phosphate degradation in conjunction with simultaneous insertion of dental implants. J Craniofac Surg,2001; 12:59-68.
    [79].Bruder SP, Kraus KH, Goldberg VM, et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am, 1998; 80:985-96.
    [80].Handschel J, Wiesmann HP, Stratmann U, et al. TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model. Biomaterials,2002; 23:1689-95.
    [81].Jang JH, Castano O, Kim HW. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev,2009; 61:1065-83.
    [82].Badami AS, Kreke MR, Thompson MS, et al. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials,2006; 27:596-606.
    [83]. Shin SY, Park HN, Kim KH, et al. Biological evaluation of chitosan nanofiber membrane for guided bone regeneration. J Periodontol,2005; 76:1778-84.
    [84].Kim HW, Yu HS, Lee HH. Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J Biomed Mater Res A,2008; 87:25-32.
    [85].Kim HW, Lee HH, Knowles JC. Nanofibrous glass tailored with apatite-fibronectin interface for bone cell stimulation. J Nanosci Nanotechnol,2008; 8:3013-9.
    [86].Kim HW, Lee HH, Knowles JC. Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration. J Biomed Mater Res A,2006; 79:643-9.
    [87].Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells:in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet,1987; 20:263-72.
    [88].Friedenstein AJ. Precursor cells of mechanocytes. Int Rev Cytol,1976; 47:327-59.
    [89].Cancedda R, Giannoni P, Mastrogiacomo M. A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials,2007; 28:4240-50.
    [90].Petite H, Viateau V, Bensaid W, et al. Tissue-engineered bone regeneration. Nat Biotechnol, 2000; 18:959-63.
    [91].Goshima J, Goldberg VM, Caplan Al. The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin Orthop Relat Res,1991:298-311.
    [92].Meijer GJ, de Bruijn JD, Koole R, et al. Cell-based bone tissue engineering. PLoS Med,2007; 4:e9.
    [93].Puelacher WC, Vacanti JP, Ferraro NF, et al. Femoral shaft reconstruction using tissue-engineered growth of bone. Int J Oral Maxillofac Surg,1996; 25:223-8.
    [94].Marcacci M, Kon E, Moukhachev V, et al. Stem cells associated with macroporous bioceramics for long bone repair:6-to 7-year outcome of a pilot clinical study. Tissue Eng,2007; 13:947-55.
    [95]. Quarto R, Mastrogiacomo M, Cancedda R, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med,2001; 344:385-6.
    [96].Cancedda R, Mastrogiacomo M, Bianchi G, et al. Bone marrow stromal cells and their use in regenerating bone. Novartis Found Symp,2003; 249:133-43; discussion 43-7,70-4,239-41.
    [97].Schimming R, Schmelzeisen R. Tissue-engineered bone for maxillary sinus augmentation. J Oral Maxillofac Surg,2004; 62:724-9.
    [98].Morishita T, Honoki K, Ohgushi H, et al. Tissue engineering approach to the treatment of bone tumors:three cases of cultured bone grafts derived from patients' mesenchymal stem cells. Artif Organs,2006; 30:115-8.
    [99].Meijer GJ, de Bruijn JD, Koole R, et al. Cell based bone tissue engineering in jaw defects. Biomaterials,2008; 29:3053-61.
    [100]. van Gaalen SM, Dhert WJ, van den Muysenberg A, et al. Bone tissue engineering for spine fusion:an experimental study on ectopic and orthotopic implants in rats. Tissue Eng,2004; 10:231-9.
    [101]. Kruyt MC, Dhert WJ, Yuan H, et al. Bone tissue engineering in a critical size defect compared to ectopic implantations in the goat. J Orthop Res,2004; 22:544-51.
    [102]. de Bruijn JD, Klein CP, de Groot K, et al. The ultrastructure of the bone-hydroxyapatite interface in vitro. J Biomed Mater Res,1992; 26:1365-82.
    [103]. de Bruijn JD, van den Brink I, Mendes S, et al. Bone induction by implants coated with cultured osteogenic bone marrow cells. Adv Dent Res,1999; 13:74-81.
    [104]. Adinolfi M, Akelec A, Mccoll I. Expression of HLA Antigens, beta 2-microglobulin and Enzymes by Human Amniotic Epithelial Cells. Nature,1982; 295:325-7.
    [105]. Houlihan J, Biro P, Harper H. The Human Amnion is a Site of MHC Class Ib Expression: Evidence for the Expression of HLA-E and HLA-G. J Immunol,1995; 154:5665-74.
    [1]. Wei Q, Yang XP, Chen QQ, et al. The ultrasonic assisted synthesis of nano-hydroxyapatite and MWNT/hydroxyapatite composites. New Carbon Mater,2005; 20:164-70.
    [2]. Gong HJ, Yang XP, Chen GQ. Study on PLA/MWNT/HA hybrid naofibers prepared via elctrospinning technology. Gaofenzi Xuebao,2005; 2:297-300.
    [3]. Wataha JC, Craig RG, Hanks CT. Precision of and new methods for testing in vitro alloy cytotoxicity. Dent Mater,1992; 8:65-70.
    [4]. Edmondson JMA, L. S.; Martinez, A. O. A rapid and simple MTT-based spectrophotometric assay for determining drug sensitivity in monolayer cultures Journal of Tissue Culture Methods, 1988; 11:15-7.
    [5]. Kim HW, Song JH, Kim HE. Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Advanced Functional Materials,2005; 15:1988-94.
    [6]. Frenot A, Chronakis IS. Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid and Interface Science,2003; 8:64-75.
    [7]. Yuan XY, Mak AFT, Kwok KW, et al. Characterization of poly(L-lactic acid) fibers produced by melt spinning. Journal of Applied Polymer Science,2001; 81:251-60.
    [8]. Schindler A, Harper DJ. Polylactide. Ⅱ. Viscosity-molecular weight relationships and unperturbed chain dimensions (p 2593-2599). Journal of Polymer Science:Polymer Chemistry Edition,1979; 17:2593-9.
    [9]. Liao KR, Bo YH, Li HQ, et al. The Degradation Behavior in vitro of Poly(D,L-lactide)/Hydroxyapatite Composites. J Biomed Eng,1999; 16:12.
    [10].Guo XD, Zheng QX, Du JY, et al. Biocompatibility of Self designed Absorbable Hydroxyapatite/poly(DL lactide) Composites. J Biomed Eng,1999; 16:135.
    [11].Zhang R, Ma PX. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. Ⅰ. Preparation and morphology. J Biomed Mater Res,1999; 44:446-55.
    [12].Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials, 2007; 28:344-53.
    [13]. Smart SK, Cassady Al, Lu GQ, et al. The biocompatibility of carbon nanotubes. Carbon, 2006; 44:1034-47.
    [14].Elias KL, Price RL, Webster TJ. Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials,2002; 23:3279-87.
    [15].Price RL, Waid MC, Haberstroh KM, et al. Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials,2003; 24:1877-87.
    [16].Lundgren D, Laurell L, Gottlow J, et al. The influence of the design of two different bioresorbable barriers on the results of guided tissue regeneration therapy. An intra-individual comparative study in the monkey. J Periodontol,1995; 66:605-12.
    [17].Hillmann G, Steinkamp-Zucht A, Geurtsen W, et al. Culture of primary human gingival fibroblasts on biodegradable membranes. Biomaterials,2002; 23:1461-9.
    [18].Alpar B, Leyhausen G, Gunay H, et al. Compatibility of resorbable and nonresorbable guided tissue regeneration membranes in cultures of primary human periodontal ligament fibroblasts and human osteoblast-like cells. Clin Oral Investig,2000; 4:219-25.
    [19]. Wang HL, Miyauchi M, Takata T. Initial attachment of osteoblasts to various guided bone regeneration membranes:an in vitro study. J Periodontal Res,2002; 37:340-4.
    [20].Payne JM, Cobb CM, Rapley JW, et al. Migration of human gingival fibroblasts over guided tissue regeneration barrier materials. J Periodontol,1996; 67:236-44.
    [21].Owen GR, Jackson J, Chehroudi B, et al. A PLGA membrane controlling cell behaviour for promoting tissue regeneration. Biomaterials,2005; 26:7447-56.
    [22].Liao S, Wang W, Uo M, et al. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials, 2005; 26:7564-71.
    [23].Zanello LP, Zhao B, Hu H, et al. Bone cell proliferation on carbon nanotubes. Nano Lett, 2006; 6:562-7.
    [1]. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol,2000; 109:235-42.
    [2]. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells:candidate MSC-like cells from umbilical cord. Stem Cells,2003; 21:105-10.
    [3]. Campagnoli C, Roberts IA, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood,2001; 98:2396-402.
    [4]. Zhao P, Ise H, Hongo M, et al. Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation,2005; 79:528-35.
    [5]. In't Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells,2004; 22:1338-45.
    [6]. Fukuchi Y, Nakajima H, Sugiyama D, et al. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells,2004; 22:649-58.
    [7].王乐,周辉.羊膜的生物学特性及眼科应用进展.实用临床医学,2006;7:155-7.
    [8].文道源,袁进,陈家祺.羊膜的应用与生物学改良.中华眼科杂志,2006;42:361-4.
    [9]. Adinolfi M, Akelec A, Mccoll I. Expression of HLA Antigens, beta 2-microglobulin and Enzymes by Human Amniotic Epithelial Cells. Nature,1982; 295:325-7.
    [10].Houlihan J, Biro P, Harper H. The Human Amnion is a Site of MHC Class Ib Expression: Evidence for the Expression of HLA-E and HLA-G. J Immunol,1995; 154:5665-74.
    [11]. Lee H, Ferguson TJ,,:. Biology of FasL. Cytokine & Growth Factor Reviews,2003; 14: 325-35.
    [12].杨立业,包大士,刘相名,et al. FasL转基因神经细胞异种移植治疗癫痫.中华神经外科杂志,2005;21:747-50.
    [13].Saporta S, Cameron D, Borlongan C, et al. Survival of rat and porcine Sertoli cell transplants in the rat striatum without cyclosporine-A immunosuppression. Exp Neurol,,1997; 146:299-304.
    [14].蔡世荣,詹文华,郑章清,et al. Fas配体表达诱导同种胰岛移植免疫豁免.中华实验外科杂志,2001;18:58-9.
    [15].Erices.A, Conget.P., Minguell.JJ. [J].,:. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol,2000; 109:235-42.
    [16]. Romanov Y, Svintsitskaya V, Smirnov. Searching for alternative sources of postnatal human mesenchymal stem cells:candidate MSC-like cells from umbilical cord. Stem Cells,2003; 21: 105-10.
    [17]. Campagnoli C, Roberts I, Kumar Sea. Identification of mesenchymal stem/progenitor cells in human firsttrimester fetal blood, liver, and bone marrow. Blood,2001; 98:2396-402.
    [18]. Webster T, Ergun C, Doremus ReaJ,,:. Specical proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res,2000; 51:475-83.
    [19]. Webster T, Siegel R, Bizios R. Osteoblast adhesion on nanophase ceramics. Biomaterials, 1999; 20:1221-7.
    [20].Liao K, Bo Y, Li H, et al. The Degradation behavior in vitro of poly (D,Llactide)/hydroxyapatite composites. J Biomed Eng,1999; 16:12-3.
    [21].Guo X, Zheng Q, Du J, et al. Biocompatibility of self-designed absorbable hydroxyapatite/poly (DL-lactide) composites. J Biomed Eng,1999; 16:135-9.
    [22].Sui G, Yang X, Mei F, et al. Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. Journal of Biomedical Materials Research Part A,2007; 82:445-54.