Sorafenib对大鼠肝纤维化及肝星状细胞增殖和凋亡的影响及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝纤维化(liver fibrosis)是对包括病毒、自身免疫、药物、酒精、胆汁淤积以及代谢疾病在内的各种病因所致的慢性肝损伤的修复反应,是一种以细胞外基质(extracellularmatrix, ECM)的过度沉积为特征的病理生理过程。肝星状细胞(hepatic stellate cell, HSC)的激活是肝纤维化发生的中心环节,活化的HSC是以I型胶原为主的细胞外基质的主要来源,在肝纤维化发展过程中起重要作用。
     各种致病因素作用于肝脏使静止的HSC激活转化为具有成纤维和收缩作用的肌纤维母细胞,在形态学上由静止的贮存维生素A的储脂细胞转变为表达细胞骨架蛋白α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)的活化的HSC,并不断增殖,持续活化而促进肝纤维化的发展。已有多项研究证实在急慢性肝损伤动物模型中,肝纤维化的逆转伴随着HSC增殖的减少和HSC凋亡的增多,因而抑制HSC增殖、诱导HSC凋亡成为治疗肝纤维化的关键。
     血小板衍生生长因子(platelet-derived growth factor, PDGF)是目前发现的HSC最强的有丝分裂原。PDGF与HSC表面的PDGF受体(PDGF receptor, PDGFR)结合以自分泌的形式活化下游的细胞信号转导途径,使HSC由静止状态活化成为分泌基质的肌成纤维细胞、促进HSC增殖以及分泌胶原。PDGF可以活化HSC内多条与HSC生物学行为有关的信号传导通路。
     细胞外信号调节激酶(Extracellular regulated kinase, ERK)是丝裂原活化的蛋白激酶(mitogen-activated protein kinase, MAPK)家族成员之一,此信号通路顺序通过MAPK激激酶(MAPK kinase kinase, MAPKKK, Raf),MAPK/ERK激酶(MAPK/ERK kinase, MAPKK, MEK)作为MAPK激酶(MAPK kinase),ERK即MAPK,依次传导细胞增殖信号。PDGF通过激活Ras继而激活下游Raf/MEK/ERK级联信号活化MAPK/ERK信号通路,促进HSC增殖,在肝纤维化形成过程中起重要作用。磷脂酰肌醇-3-激酶(phosphatidylinositol 3-kinase, PI3K)/Akt/核糖体40S小亚基S6蛋白激酶(70-kDa ribosomal S6 kinase, p70S6K)信号通路可被包括PDGF在内的多种生长因子和促有丝分裂原活化,对调控细胞周期、促进细胞分化和细胞生长起重要作用。MAPK/ERK和PI3K/Akt/p70S6K信号通路对HSC的DNA合成、细胞生存和胶原合成发挥关键作用,阻断任一途径皆可抑制HSC增殖和I型胶原分泌,诱导HSC凋亡。
     Sorafenib是较早应用于临床的一种口服多靶点酪氨酸激酶抑制剂,目前已在全球广泛用于包括肾癌、肝癌在内的多种恶性肿瘤的治疗。Sorafenib靶向受体酪氨酸激酶PDGFR-β和血管内皮生长因子受体-2 (vascular endothelial growth factor receptor-2, VEGFR-2),同时靶向抑制Raf丝氨酸/苏氨酸激酶以及下游的MEK/ERK信号通路,抑制肿瘤细胞的增殖、促进细胞凋亡,并与其对Raf/MEK/ERK和PI3K/Akt/p70S6K信号通路的磷酸化的抑制有关。有研究表明sorafenib对肿瘤细胞的增殖抑制伴随着细胞周期蛋白(Cyclin)和细胞周期依赖性蛋白激酶(Cyclin-dependent kinase, Cdk)表达下降;其对肿瘤细胞诱导凋亡的作用伴有Mcl-1、Bcl-2的下调和Fas/Fas配体(Fas ligand, Fas-L)的升高。此外,已有研究证实sorafenib可以缓解胆总管结扎大鼠肝纤维化程度,而另一种与sorafenib作用靶点相类似的酪氨酸激酶抑制剂sunitinib可以减少肝纤维化大鼠肝脏α-SMA的表达和胶原的沉积,在体外能够抑制HSC的活力和胶原表达。由此我们推测sorafenib可能对肝纤维化具有治疗作用,这种作用可能通过其抑制HSC增殖并诱导HSC凋亡实现。
     本课题旨在研究口服sorafenib对两种肝纤维化模型-胆总管结扎(bile duct ligation, BDL)和二甲基亚硝胺(dimethylnitrosamine, DMN)诱导的肝纤维化的影响及信号转导机制;sorafenib对鼠HSC株T6和人HSC株LX2以及大鼠原代HSC增殖和凋亡的作用及可能的分子机制。实验由以下四部分组成:
     第一部分:口服sorafenib对大鼠肝纤维化的影响及信号转导机制
     目的:研究口服不同剂量sorafenib对BDL和DMM诱导的大鼠肝纤维化的治疗作用。
     方法:运用BDL方法和DMN腹腔注射两种方法建立大鼠肝纤维化模型,治疗组于模型建立第3周、第4周分两个剂量(BDL:20mg/kg,40mg/kg;DMN:1mg/kg,5mg/kg)干预动物,假手术组与治疗组均于第4周取材,模型组分别于模型建立1 wk、2 wk、3 wk、4 wk取材。组织切片经HE和Masson三色染色检测模型建立过程中的动态病理变化及治疗后病理改变,利用病理图像分析软件测定肝组织Masson染色胶原面密度;测定血清ALT、AST、胆红素及白蛋白含量;Western Blot检测ERK、phospho-ERK、Akt、phospho-Akt、p70S6K、phospho-p70S6K在肝组织的表达;免疫组织化学方法检测phospho-ERK、phospho-Akt、phospho-p70S6K及α-SMA的表达。
     结果:①HE和Masson三色染色结果证明BDL和DMN诱导的大鼠肝纤维化模型建立成功。BDL模型肝脏可见胆管增生明显,大量胶原沉积在小胆管周围,肝脏广泛纤维结缔组织增生包绕分割肝小叶形成假小叶;DMN模型肝脏可见出血灶及炎细胞浸润、肝细胞坏死并被纤维化间隔取代。Sorafenib治疗后上述病理改变缓解,两个模型的高剂量组尤为明显。②口服sorafenib对BDL及DMN肝纤维化大鼠肝功能的影响。两个模型大鼠肝功能于造模4 wk血清ALT、AST和BIL均明显高于对照组,ALB低于对照组;sorafenib治疗对BDL模型肝功能没有明显影响;sorafenib 1 mg/kg治疗DMN模型改善了大鼠肝功能,ALT和BIL均有不同程度的降低,ALB较溶剂对照组升高;而sorafenib 5 mg/kg治疗组表现为加重肝功能损伤,使AST和ALT分别较溶剂组显著增高了101.10% (P<0.001)和20.08% (P<0.001)。③口服sorafenib抑制BDL和DMN大鼠肝脏ECM沉积。在BDL和DMN肝纤维化模型中,口服sorafenib后半定量Masson染色胶原面积密度均明显下降(P<0.001),并呈剂量依赖性。④免疫组织化学检测α-SMA在纤维化大鼠肝脏的表达变化。在BDL和DMN模型肝组织中,造模1 wk~4 wk肝组织α-SMA的阳性面积逐渐增高,均显著高于正常对照组,sorafenib治疗组较溶剂组明显下降(P<0.001),呈剂量依赖关系。⑤免疫组织化学方法以及Western blot检测肝纤维化不同时间点以及sorafenib治疗前后ERK、Akt、p70S6K、p-ERK、p-Akt和p-p70S6K在纤维化大鼠肝脏的表达变化。p-ERK、p-Akt和p-p70S6K在肝细胞、血管内皮细胞以及HSC中均有表达,随着造模时间延长,阳性细胞数目明显增加,4 wk达到最高,sorafenib治疗后表达下降;Western blot测定p-ERK/ERK、p-Akt/Akt和p-p70S6K/p70S6K的比值在两种模型的造模过程中表达逐渐增高,到4 wk时达到最高,sorafenib治疗后,各信号分子磷酸化水平下降,高剂组(BDL:40 mg/kg;DMN:5 mg/kg)变化最显著(P<0.001)。
     结论:sorafenib能够缓解BDL和DMN诱导的肝纤维化程度,这种治疗作用是通过抑制ERK和Akt/p70S6K信号通路的活化继而减少HSC的激活和ECM的沉积实现的。
     第二部分:Sorafenib抑制肝星状细胞增殖及其对细胞周期的调控
     目的:研究sorafenib对HSC增殖和细胞周期的影响。
     方法:采用原位循环灌流和密度梯度离心技术分离大鼠原代HSC,荧光显微镜观察刚分离静止的原代HSCs,应用单克隆抗体α-SMA行免疫细胞化学染色鉴定活化的原代HSC。Sorafenib不同浓度(2.5μmol/L,5.0μmol/L,10.0μmol/L)和时间点(12 h,24 h,48 h,72 h)干预鼠PDGF活化的HSC株T6和人HSC株LX2以及原代HSC,四甲基偶氮唑盐(methyl thiazolyl tetrazolium, MTT)比色法检测细胞活力变化、[3H]标记的胸腺嘧啶脱氧核苷([3H]-Thymidine, [3H]-TdR)掺入法测定细胞DNA合成;流式细胞学分析细胞周期变化;Western Blot检测Cyclin-D1和Cdk-4的表达。
     结果:①采用肝脏原位灌注链酶和胶原酶并以Nycodenz为介质一步法密度梯度离心成功分离出大鼠原代HSCs。细胞的得率为1.2×10~7至2.0×10~7/只,细胞存活率和纯度均大于90%。在倒置显微镜下观察刚分离的HSC呈圆形,胞浆中含有较多脂滴,在波长328 nm的荧光显微镜下观察,刚分离的原代HSC呈自发蓝色荧光。培养至10天,大鼠HSCs呈活化状态,脂滴消失,变成梭形肌成纤维样细胞。②原代HSC性质鉴定。刚分离的HSC免疫细胞化学染色α-SMA表达阴性;原代培养10天后α-SMA阳性染色率达100%。③Sorafenib抑制原代HSC、HSC-T6和HSC-LX2细胞活力。MTT检测显示不论PDGF-BB刺激与否,sorafenib均呈时间与浓度依赖性抑制以上三种HSC的活力,其中sorafenib高剂量组(10μmol/L)使T6、原代HSC以及LX2细胞活力分别由对照组的100.00%降低至16.37±3.85% (P<0.001)、22.49±1.86% (P<0.001)和15.49±2.16% (P<0.001)。④Sorafenib呈浓度依赖性地抑制PDGF-BB刺激的HSC DNA合成。[3H]-TdR掺入法测定结果显示sorafenib高剂量组(10μmol/L)干预T6和LX2细胞24 h后,细胞cpm值分别由PDGF刺激组的10023.00±2442.25和4416.00±667.63降低至891.50±160.33 (P<0.001)和1411.17±908.39 (P<0.001)。⑤Sorafenib使T6和LX2细胞S期细胞比例上升;G0/G1期和G2/M期细胞比例下降。⑥Sorafenib抑制T6和LX2 Cyclin-D1和Cdk-4的蛋白表达。Western blot结果显示sorafenib对PDGF-BB诱导而增高的Cyclin-D1和Cdk-4具有抑制作用,其中sorafenib对于Cyclin-D1的抑制作用呈现剂量依赖性。
     结论:Sorafenib能够抑制HSC增殖,这种作用抑制细胞周期相关蛋白Cyclin-D1和Cdk-4的表达,调控细胞周期停滞于S期有关。
     第三部分:Sorafenib促进肝星状细胞的凋亡
     目的:研究sorafenib对HSC凋亡以及对凋亡相关蛋白的影响。
     方法:Sorafenib (2.5μmol/L,5.0μmol/L,10.0μmol/L)干预HSC-T6和LX2细胞株12 h或24 h。透射电镜观察细胞形态学改变;膜联蛋白(Annexin-V)/碘化丙啶(Propidium iodide, PI)联合标记流式细胞术检测HSC凋亡率;末段脱氧核苷酸转移酶介导的脱氧三磷酸尿苷缺口末段标记(terminal deoxynucleotidy transferrase UTP-nick end labeling, TUNEL)检测HSC凋亡。Sorafenib (2.5μmol/L,5.0μmol/L,10.0μmol/L)预处理HSC 2 h后,干预PDGF刺激的T6和LX2细胞共24 h。测定Caspase-3活性;RT-real time PCR测定Bcl-2、Bax、Caspase-3 mRNA的表达;Western blot检测Bcl-2、Bax、Fas、Fas-L以及Caspase-3蛋白表达。
     结果:①透射电镜下观察HSC形态变化。浓度为10μmol/L的Sorafenib干预HSC 12 h后,细胞呈现凋亡特征:细胞体积变小,染色质凝集,细胞核质比减少,新月体形成,核膜破损,粗面内质网扩张。②Sorafenib提高HSC凋亡率。2.5μmol/L,5μmol/L和10μmol/L sorafenib作用于T6和LX2细胞,凋亡率逐渐升高,均呈浓度和时间依赖关系,其中T6细胞10μmol/L sorafenib组12 h凋亡率(72.62±4.05%)较对照组增高了2.74倍(P<0.001);LX2细胞(92.87±2.81%)较对照组增高了2.15倍(P<0.001)。③10μmol/L sorafenib分别提高T6和LX2细胞TUNEL染色阳性细胞率5.28倍(P<0.001)和3.24倍(P<0.001)。④Western blot结果显示sorafenib抑制了两个细胞株Bcl-2的表达,升高了Bax、Fas、Fas-L和Caspase-3的表达,Bax/Bcl-2比值也相应增加,呈浓度依赖关系;Bcl-2、Bax和Caspase-3的mRNA表达趋势与其蛋白变化趋一致。⑤PDGF抑制Caspase-3活性;10μmol/L sorafenib分别将T6细胞和LX2细胞Caspase-3的活性提高了2.83倍(P<0.001)和1.58倍(P=0.021)。
     结论:Sorafenib能够诱导HSC凋亡,这种作用与抑制Bcl-2、提高Bax、Fas、Fas-L表达和Caspase-3的活性有关。
     第四部分:Sorafenib对肝星状细胞增殖与凋亡影响的信号转导机制
     目的:研究sorafenib对HSC细胞内MAPK/ERK以及Akt/p70S6K信号转导通路的调节作用。
     方法:不同浓度sorafenib(2.5μmol/L,5.0μmol/L,10μmol/L)干预PDGF-BB (20 ng/ml)刺激的HSC-T6和LX2细胞株,或不经PDGF刺激直接以sorafenib干预共24 h,Western blot检测ERK、Akt、p70S6K、p-ERK、p-Akt和p-p70S6K的蛋白表达变化。以10μmol/L sorafenib、25μmol/L LY294002和50μmol/L PD98059同时干预经或不经PDGF-BB (20 ng/ml)刺激的HSC-T6和LX2细胞株,横向比较sorafenib与两种抑制剂对以上信号分子的作用。
     结果:①Sorafenib抑制PDGF-BB激活的T6和LX2细胞内ERK和Akt/p70S6K信号通路的磷酸化。PDGF-BB刺激对两种细胞株中3种信号分子磷酸化水平均有升高作用;sorafenib使三种信号分子磷酸化水平与PDGF-BB刺激组相比均受到明显抑制,并且呈剂量依赖性。Sorafenib (10μmol/L)组使T6细胞p-ERK/ERK、p-Akt/Akt和p-p70S6K/p70S6K分别较PDGF刺激组降低了50.00% (P=0.001) , 46.71% (P<0.001)和24.73% (P<0.001);使LX2细胞p-ERK/ERK、p-Akt/Akt和p-p70S6K/p70S6K分别较PDGF刺激组降低了61.11% (P<0.001) , 37.50% (P=0.001)和19.70% (P<0.001)。②Sorafenib发挥了与ERK和Akt/p70S6K信号通路相应阻断剂类似的抑制作用。不论PDGF-BB刺激与否,PD98059和LY294002均分别显著抑制了ERK和Akt/p70S6K信号分子的磷酸化水平,而sorafenib则同时抑制了这两条信号通路的磷酸化与LY294002和PD98059的抑制作用相比无明显差异。
     结论:Sorafenib可能通过对ERK和Akt/p70S6K两条细胞内信号通路磷酸化的抑制实现抑制HSC增殖、促进HSC凋亡的作用。
Liver fibrosis characterized by the excessive accumulation of extracellular matrix represents the pathologic response of a sustained wound healing response to chronic liver disease induced by a variety of causes, including viral, autoimmune, drug-related, ethanol, cholestatic and metabolic damage. A key role in hepatic fibrogenesis is attributed to activated hepatic stellate cells (HSCs), which have been identified as major collagen-producing cells in an injured liver and are responsible for excessive deposition of extracellular matrix (ECM), of which type I collagen predominates.
     Following liver injury of any etiology, HSCs undergo a response known as“activation”, which is the transition of quiescent cells into proliferative, fibrogenic and contractile myofibroblasts. Morphological changes associated with HSC activation include a loss of vitamin A stores and appearance of the cytoskeleton proteinα-smooth muscle actin (α-SMA). Numerous studies, performed in animal models of acute or chronic liver injury, have shown a potential reversibility of liver fibrosis associated with inhibition of HSC proliferation and induction of HSC apoptosis. Consequently,inhibition of HSC proliferation and induction of HSC apoptosis become major antifibrotic therapeutic strategies.
     The most potent mitogenic factor for HSCs is platelet-derived growth factor (PDGF), which combines with PDGF receptor (PDGFR) on the surface of HSCs and activates intracellular signal transduction as autocrine factors, stimulate cell proliferation, synthesis of ECM including collagens and activate quiescent HSCs to matrix-secreting myofibroblasts. Multiple signaling pathways are implicated in HSC proliferation activated by PDGF.
     Extracellular signal-regulated kinase (ERK) is an important member of the mitogen-activated protein kinase (MAPK) family, which is composed of three core units: mitogen-activated protein kinase kinase kinase (MAPKKK, Raf), mitogen-activated protein kinase kinase (MAPKK, MEK) and MAPK (ERK). It has been found that MAPK/ERK signal pathway is involved in hepatic fibrosis and activation of Ras due to PDGF is followed by sequential activation of Raf, MEK, and ERK. The phosphatidylinositol 3-kinase (PI3K)/Akt/70-kDa ribosomal S6 kinase (p70S6K) signaling pathway is activated by mitogens and growth factors including PDGF, and is required for cell cycle progression, cell differentiation, and cell growth. Both MAPK/ERK and PI3K/Akt/p70S6K signal pathways play crucial roles in the DNA synthesis, collagen synthesis and cell survival in HSCs. Inhibiting either of the pathways blocks HSC proliferation and type I collagen synthesis and induces HSC apoptosis.
     Sorafenib is farthest along in clinical development and has been approved in several countries worldwide for treatment of a wide variety of tumors including renal cell carcinoma, hepatocellular carcinoma, et al. As a multikinase inhibitor, sorafenib potently blocks the tyrosine kinases of vascular endothelial growth factor receptor-2 (VEGFR-2) and PDGFR-β, as well as the Raf serine/threonine kinases along the Raf/MEK/ERK pathway, which is known to be important in tumor cell signaling and tumor cell proliferation. Simultaneouly, sorafenib decreased the phosphorylations of Raf/MEK/ERK and PI3K/Akt/p70S6K signal pathways. It has also been reported that sorafenib inhibits proliferation accompanied by the inhibition of Cyclins and Cyclin-dependent kinases (Cdks) and induces apoptosis accompanied by the inhibition of the down-regulation of myeloid cell leukemia-1 (Mcl-1), Bcl-2 and up-regulation of Fas/Fas ligand (Fas-L) in multiple human tumor cell lines. Furthermore, Sorafenib could substantially decrease the extensive deposition of fibrillar collagen in common bile duct ligation (BDL) rats. Another multitargeted receptor tyrosine kinase inhibitor sunitinib induce significant decreases ofα-SMA expression and ECM accumulation of rat liver fibrosis and down-regulates HSC viability and collagen expression. We speculate the anti-fibrotic effects of sorafenib on liver fibrosis in vivo and inhibition of proliferation as well as promotion of apoptosis of HSCs in vitro.
     The purpose of the present study is to investigate the impact of sorafenib on liver fibrosis in two animal models: BDL and dimethylnitrosamine (DMN) induced liver fibrosis models and the effects of sorafenib on the proliferation and apoptosis of HSC cell lines T6, LX2 and primary rat HSCs, as well as the possibly associated molecular mechanisms. The experiments contain four parts as blow:
     Part 1: The effects of oral sorafenib treatment on liver fibrosis and the potential mechanism
     Objective: To explore the impacts of sorafenib on liver fibrosis induced by common bile duct ligated (BDL) and dimethylnitrosamine (DMN). Methods: Hepatic fibrosis was induced by BDL and intraperitoneal injections of DMN. Sorafenib 20 mg/kg and 40 mg/kg in BDL rats, 1 mg/kg and 5 mg/kg in DMN rats or vehicle were administered orally by gavage once a day during the third and the fourth week. Livers in model group were harvested at fixed time points: 1 wk, 2 wk, 3 wk and 4 wk after operation. Livers in sham operation group were harvested at 4 wk after operation. Histopathological changes were evaluated by hematoxylin and eosin (HE) staining and by Masson’s trichrome method. The latter was quantified for collagen by analyzing Masson-stained area as a percentage of total area. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin (BIL) and albumin (ALB) were evaluated in samples of serum. The protein expressions of ERK, phospho-ERK, Akt, phospho-Akt, p70S6K and phospho-p70S6K were determined by Western blot, while the distribution of phospho-ERK phospho-Akt, phospho-p70S6K andα-SMA in the livers was assessed by immunohistochemistry.
     Results: (1) HE and Masson’s trichrome staining of liver confirmed the establishment of hepatic fibrosis models via BDL and DMN. The liver tissues of BDL rats appeared to exhibit a marked increase in the number of bile ductules and an extensive deposition of collagen, which contributed to the formation of pseudolobuli. DMN-induced liver injury and fibrosis exhibited extensive hemorrhagic necrosis and lobular architecture with thin bands of reticulin joining central areas. Sorafenib, especially the higher concentration group, attenuated the histopathologic changes of both fibrotic models. (2) Both fibrotic models developed hepatic injury as evidenced by significantly higher plasma concentrations of AST, ALT, BIL and lower concentration of ALB. Sorafenib treatment did not change the injury of liver function in BDL rats. In DMN rats, 1 mg/kg sorafenib ameliorated the increase of ALT and BIL, and the decrease of ALB. 5 mg/kg sorafenib increased AST and ALT levels significantly with a 101.10% (P<0.001) and a 20.08% (P<0.001) increase as compared to vehicle-treated group respectively. (3) Sorafenib attenuated the collagen deposition in a dose-dependent fashion in both fibrotic models by analyzing Masson-stained area (P<0.001). (4) The expression ofα-SMA of both models at week 1 to 4 in liver during the process of liver fibrogenesis increased by immunohistochemistry analysis. Sorafenib treatment decreased the positive cells ofα-SMA in a dose-dependent manner (P<0.001). (5) The relative protein expressions of phospho-ERK/ERK, phospho-Akt/Akt, phospho-p70S6K/p70S6K by Western blot and the positive areas of phospho-ERK, phospho-Akt and phospho-p70S6K by immunohistochemistry were increased during the process of liver fibrogenesis in both models. Sorafenib treatment diminished those increased the phosphorylations of ERK, Akt and p70S6K in a dose-dependent manner. Furthermore, the phosphorylations of higher concentration groups (BDL: 40 mg/kg; DMN: 5 mg/kg) decreased to the most degree (P<0.001).
     Conclusions: Sorafenib inhibited the phosphorylation of ERK and Akt/p70S6K signaling pathways, consequently suppressed the activation of HSCs, by which sorafenib attenuated liver fibrosis.
     Part 2: Sorafenib inhibits HSC proliferation and regulates HSC cell cycle
     Objective: To explore the effects of sorafenib on HSC proliferation and cell cycle.
     Methods: Primary rat HSCs were isolated by circulating perfusion of the liver and density gradient centrifugation. The quiescent HSCs immediately after plating were tested by fluorescence microscope to evaluate the purity of the cultures andα-SMA monoclonal antibody was used to identify the activated primary HSCs by immunocytochemistry. T6, LX2 and primary HSCs were preincubated with or without sorafenib (2.5, 5.0, and 10.0μmol/L) for 2 h, and then stimulated with or without PDGF-BB for 12 h, 24 h, 48 h and 72 h. The viability of HSCs was detected by 3-(4, 5-dimethylthiazol-2-yl)-3, 5- diphenyltetrazolium bromide (MTT) assay. DNA synthesis was explored by [3H]-Thymidine ([3H]-TdR) incorporation assay. Cell cycles of HSCs were analyzed by flow cytometry. The protein expressions of Cyclin-D1 and Cdk-4 were determined by Western blot analysis.
     Results: (1) Primary rat HSCs were isolated successfully by sequential digestion of the liver with pronase and collagenase, followed by single step density gradient centrifugation with Nycodenz. Cell viability and cell purity were greater than 90%, with a yield ranging from 1.2×107 to 2.0×107 HSCs/rat. The primary HSC immediately after plating is round and in rich of lipid droplet under the inverted microscope, while HSCs show blue under the ultraviolet light (λ=328 nm). After 10 days culture, activated HSCs lose retinoid and become fusiform myofibroblast-like cell. (2) To indentify the primary HSCs identificationα-SMA staining was performed at day 1 (quiescent,α-SMA negative cells) and day 10 (activated,α-SMA positive cells) by immunocytochemistry. (3) Sorafenib inhibited the viabilities of T6, LX2 and primary HSCs with or without the stimulation of PDGF-BB time- and dose-dependently. Sorafenib (10μmol/L) decreased the viabilities of T6 (16.37±3.85%, P<0.001), LX2 (22.49±1.86%, P<0.001) and primary HSCs (15.49±2.16%, P<0.001) compared with those of the control group (100%). (4) Sorafenib inhibited the DNA synthesis of T6 and LX2 activated by PDGF-BB dose-dependently. Sorafenib (10μmol/L) significantly decreased the cpm of T6 (891.50±160.33) compared with that of PDGF group (10023.00±2442.25) (P<0.001), and decreased the cpm of LX2 (1411.17±908.39) compared with that of PDGF group (4416.00±667.63) (P<0.001). (5) Cell cycle analysis of T6 and LX2 cells showed an increase in S phase cells and a decrease in G1 and M phase. (6) Western blot analysis indicated that sorafenib reduced the increased Cyclin-D1 and Cdk-4 protein levels by PDGF-BB in both T6 and LX2 cells. The inhibition of Cyclin-D1 of sorafenib is in a dose-dependent manner.
     Conclusions: Sorafenib diminished the expressions of Cyclin-D1 and Cdk-4, which contributed to the S-phase arrest of cell cycle and the inhibition of HSC proliferation.
     Part 3: Sorafenib induces HSC apoptosis
     Objective: To investigate the effects of sorafenib on HSC apoptosis and apoptosis regulatory proteins.
     Methods: T6 and LX2 cells were incubated with sorafenib (2.5, 5.0, and 10.0μmol/L) for 12 h or 24 h. Morphological examination via transmission electron microscopy (TEM) evaluation and apoptosis rate assay by the Annexin-V/Propidium iodide (PI) double-labeled flow cytometry and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) technique were performed. HSCs were preincubated with sorafenib (2.5, 5.0, and 10.0μmol/L) for 2 h and stimulated by PDGF-BB for another 22 h. Caspase-3 activity was detected, and the protein expressions of Bcl-2, Bax, Fas, Fas-L, and Caspase-3 were analyzed by Western blot. The mRNA levels of Bcl-2, Bax, and Caspase-3 were measured by RT real-time PCR.
     Results: (1) Morphological changes of T6 and LX2 cells after treatment with sorafenib (10μmol/L) for 12 h under the TEM showed that cells became smaller, the chromatins condensed along inside the nuclear membrane, the crescent cell nuclear formed, the nuclear-cytoplasmic ratio decreased, caryotheca was damaged, and the endoplasmic reticulum dilated. (2) Sorafenib induced the apoptosis of HSCs. Sorafenib (2.5, 5.0, and 10.0μmol/L) increased HSC apoptotic rates of T6 and LX2 cells in dose- and time-dependent manner. The apoptotic rate of T6 cells treated with 10.0μmol/L sorafenib for 12 h (72.62±4.05%) was 2.74 times higher than the control group (P<0.001), and that of LX2 cells (92.87±2.81%) was 2.15 times higher than the control group (P<0.001). (3) Sorafenib (2.5, 5.0, and 10.0μmol/L) up-regulated the positive-T6 and LX2 cells of TUNEL staining by 5.28 and 3.24 times respectively compared with the control groups (P<0.001). (4) Sorafenib reduced Bcl-2 protein and mRNA levels and increased the mRNA expressions of Bax and Caspase-3 as well as the protein levels of Bax, Fas, Fas-L and Caspase-3 in both T6 and LX2 cells. The ratio of Bcl-2 to Bax decreased. (5) PDGF inhibited the activity of Caspase-3, whereas 10μmol/L sorafenib increased the activity of Caspase-3 in both T6 and LX2 cells by 2.83 times (P<0.001) and 1.58 times (P=0.021) respectively compared with the control groups.
     Conclusions: Sorafenib induced HSC apoptosis, which was related to the down-regulation of Bcl-2 and up-regulations of Bax, Fas, Fas-L and Caspase-3.
     Part 4: The mechanism of intracellular signal transduction that contribute to the impacts of sorafenib on HSC proliferation and apoptosis
     Objective: To explore the regulation of sorafenib on MAPK/ERK and Akt/p70S6K signalling pathways in HSCs.
     Methods: T6 and LX2 cells were preincubated with or without sorafenib (2.5, 5.0, and 10.0μmol/L) for 2 h, and then stimulated with or without PDGF-BB (20 ng/ml) for 22 h. Simultaneously, T6 and LX2 cells were treated with sorafenib, LY294002 (25μmol/L), or PD98059 (50μmol/L), stimulated with or without PDGF-BB. The protein expressions of ERK, Akt, p70S6K, p-ERK, p-Akt and p-p70S6K were determined by Western blot analysis.
     Results: (1) Sorafenib inhibited the phosphorylations of ERK and Akt/p70S6K signals increased by PDGF-BB. PDGF-BB up regulated the ratios of p-ERK/ERK, p-Akt/Akt and p-p70S6K/p70S6K, which were diminished by sorafenib dose-dependently. Sorafenib (10μmol/L) in T6 cells decreased the ratios of p-ERK/ERK, p-Akt/Akt and p-p70S6K/p70S6K by 50.00% (P=0.001), 46.71% (P<0.001), and 24.73% (P<0.001) compared with PDGF-BB group. Those of LX2 cells were decreased by 61.11% (P<0.001), 37.50% (P=0.001), and 19.70% (P<0.001) compared with PDGF-BB group. (2) Sorafenib showed the inhibiting effects on ERK and Akt/p70S6K signals similar to the specific blocking agent of the two pathways. PD98059 and LY294002 were effective in inhibition of phosphorylation of ERK and Akt/p70S6K, respectively. Sorafenib inhibited both the phophorylated ERK and Akt/p70S6K, and no significant different impact was found between sorafenib vs PD98059 and sorafenib vs LY294002 on p-ERK and p-Akt respectively.
     Conclusions: Sorafenib inhibited HSC proliferation and induced apoptosis probably via down-regulation of phosphorylations of ERK and Akt/p70S6K signaling pathways.
引文
1 Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology, 2008, 134(6): 1655~1669
    2 Atzori L, Poli G, Perra A. Hepatic stellate cell: a star cell in the liver. Int J Biochem Cell Biol, 2009, 41(8-9): 1639~1642
    3 Kisseleva T, Brenner DA. Hepatic stellate cells and the reversal of fibrosis. J Gastroenterol Hepatol, 2006, 21 Suppl 3: S84~87
    4 Bonis PA, Friedman SL, Kaplan MM. Is liver fibrosis reversible? N Engl J Med, 2001, 344(6): 452~454
    5 Hammel P, Couvelard A, O'Toole D, et al. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med, 2001, 344(6): 418~423
    6 Dienstag JL, Goldin RD, Heathcote EJ, et al. Histological outcome during long-term lamivudine therapy. Gastroenterology, 2003, 124(1): 105~117
    7 Ueberham E, Low R, Ueberham U, et al. Conditional tetracycline- regulated expression of TGF-beta1 in liver of transgenic mice leads to reversible intermediary fibrosis. Hepatology, 2003, 37(5): 1067~1078
    8 Parola M, Marra F, Pinzani M. Myofibroblast - like cells and liver fibrogenesis: Emerging concepts in a rapidly moving scenario. Mol Aspects Med, 2008, 29(1-2): 58~66
    9姜慧卿,姚希贤.肝星状细胞的活化与肝纤维化.胃肠病学和肝病学杂志, 2007, 16(1): 86~89
    10 Gonzalo T, Beljaars L, van de Bovenkamp M, et al. Local inhibition of liver fibrosis by specific delivery of a platelet-derived growth factor kinase inhibitor to hepatic stellate cells. J Pharmacol Exp Ther, 2007, 321(3): 856~865
    11 Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem, 2000, 275(4): 2247~2250
    12 Moreno M, Bataller R. Cytokines and renin-angiotensin system signalingin hepatic fibrosis. Clin Liver Dis, 2008, 12(4): 825~852, ix
    13 Marra F, Efsen E, Romanelli RG, et al. Ligands of peroxisome proliferator-activated receptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology, 2000, 119(2): 466~478
    14张晓岚,霍晓霞,申建刚,等.黏着斑激酶酪氨酸磷酸化促大鼠肝纤维化形成及其可能机制.基础医学与临床, 2007, 27(2): 143~147
    15 Reif S, Lang A, Lindquist JN, et al. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem, 2003, 278(10): 8083~8090
    16 Gabele E, Reif S, Tsukada S, et al. The role of p70S6K in hepatic stellate cell collagen gene expression and cell proliferation. J Biol Chem, 2005, 280(14): 13374~13382
    17 Wang Y, Jiang XY, Liu L, et al. Phosphatidylinositol 3-kinase/Akt pathway regulates hepatic stellate cell apoptosis. World J Gastroenterol, 2008, 14(33): 5186~5191
    18 Eichler W, Friedrichs U, Thies A, et al. Modulation of matrix metalloproteinase and TIMP-1 expression by cytokines in human RPE cells. Invest Ophthalmol Vis Sci, 2002, 43(8): 2767~2773
    19 Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res, 2004, 64(19): 7099~7109
    20 Strumberg D. Preclinical and clinical development of the oral multikinase inhibitor sorafenib in cancer treatment. Drugs Today (Barc), 2005, 41(12): 773~784
    21王玉珍,姜慧卿,扈彩霞,等.大鼠肝纤维化组织信号分子RhoA和肌球蛋白轻链的动态表达.基础医学与临床, 2007, 27(3): 275~278
    22 Ala-Kokko L, Pihlajaniemi T, Myers JC, et al. Gene expression of type I, III and IV collagens in hepatic fibrosis induced by dimethylnitrosaminein the rat. Biochem J, 1987, 244(1): 75~79
    23 Ikeda K, Wang LH, Torres R, et al. Discoidin domain receptor 2 interacts with Src and Shc following its activation by type I collagen. J Biol Chem, 2002, 277(21): 19206~19212
    24 Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis, 2001, 21(3): 311~335
    25 Raetsch C, Jia JD, Boigk G, et al. Pentoxifylline downregulates profibrogenic cytokines and procollagen I expression in rat secondary biliary fibrosis. Gut, 2002, 50(2): 241~247
    26 George J, Rao KR, Stern R, et al. Dimethylnitrosamine-induced liver injury in rats: the early deposition of collagen. Toxicology, 2001, 156(2-3): 129~138
    27王晓昆,唐瑛.肝纤维化动物模型研究进展.动物医学进展, 2007, 28(3): 95~98
    28 Mejias M, Garcia-Pras E, Tiani C, et al. Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology, 2009, 49(4): 1245~1256
    29 Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology, 2002, 35(2): 478~491
    30 Albillos A, de-la-Hera A, Alvarez-Mon M. Serum lipopolysaccharide- binding protein prediction of severe bacterial infection in cirrhotic patients with ascites. Lancet, 2004, 363(9421): 1608~1610
    31 Tugues S, Fernandez-Varo G, Munoz-Luque J, et al. Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology, 2007, 46(6): 1919~1926
    32 Wong L, Yamasaki G, Johnson RJ, et al. Induction of beta-platelet- derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture. J Clin Invest, 1994, 94(4): 1563~1569
    33 Pinzani M, Milani S, Grappone C, et al. Expression of platelet-derived growth factor in a model of acute liver injury. Hepatology, 1994, 19(3):701~707
    34 Yoshiji H, Noguchi R, Kuriyama S, et al. Imatinib mesylate (STI-571) attenuates liver fibrosis development in rats. Am J Physiol Gastrointest Liver Physiol, 2005, 288(5): G907~913
    35 Bataller R, Brenner DA. Liver fibrosis. J Clin Invest, 2005, 115(2): 209~218
    36 Pinzani M, Gesualdo L, Sabbah GM, et al. Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells. J Clin Invest, 1989, 84(6): 1786~1793
    37 Olaso E, Friedman SL. Molecular regulation of hepatic fibrogenesis. J Hepatol, 1998, 29(5): 836~847
    38 Liu Y, Lui EL, Friedman SL, et al. PTK787/ZK22258 attenuates stellate cell activation and hepatic fibrosis in vivo by inhibiting VEGF signaling. Lab Invest, 2009, 89(2): 209~221
    39 Hennenberg M, Trebicka J, Stark C, et al. Sorafenib targets dysregulated Rho kinase expression and portal hypertension in rats with secondary biliary cirrhosis. Br J Pharmacol, 2009, 157(2): 258~270
    40 Akpolat N, Yahsi S, Godekmerdan A, et al. The value of alpha-SMA in the evaluation of hepatic fibrosis severity in hepatitis B infection and cirrhosis development: a histopathological and immunohistochemical study. Histopathology, 2005, 47(3): 276~280
    41 Buchdunger E, Cioffi CL, Law N, et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther, 2000, 295(1): 139~145
    42 Roskoski R Jr. STI-571: an anticancer protein-tyrosine kinase inhibitor. Biochem Biophys Res Commun, 2003, 309(4): 709~717
    43 Biecker E, De Gottardi A, Neef M, et al. Long-term treatment of bile duct-ligated rats with rapamycin (sirolimus) significantly attenuates liver fibrosis: analysis of the underlying mechanisms. J Pharmacol Exp Ther,2005, 313(3): 952~961
    44 Neef M, Ledermann M, Saegesser H, et al. Low-dose oral rapamycin treatment reduces fibrogenesis, improves liver function, and prolongs survival in rats with established liver cirrhosis. J Hepatol, 2006, 45(6): 786~796
    45 Abou-Alfa GK, Schwartz L, Ricci S, et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol, 2006, 24(26): 4293~4300
    46 Liu L, Cao Y, Chen C, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res, 2006, 66(24): 11851~11858
    47 Strumberg D, Clark JW, Awada A, et al. Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib: a review of four phase I trials in patients with advanced refractory solid tumors. Oncologist, 2007, 12(4): 426~437
    48 Furuse J, Ishii H, Nakachi K, et al. Phase I study of sorafenib in Japanese patients with hepatocellular carcinoma. Cancer Sci, 2008, 99(1): 159~165
    49 Takimoto CH, Awada A. Safety and anti-tumor activity of sorafenib (Nexavar) in combination with other anti-cancer agents: a review of clinical trials. Cancer Chemother Pharmacol, 2008, 61(4): 535~548
    50 Adnane L, Trail PA, Taylor I, et al. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol, 2006, 407: 597~612
    51 Wilhelm SM, Adnane L, Newell P, et al. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther, 2008, 7(10): 3129~3140
    52 Borkham-Kamphorst E, Kovalenko E, van Roeyen CR, et al. Platelet-derived growth factor isoform expression in carbon tetrachloride-induced chronic liver injury. Lab Invest, 2008, 88(10): 1090~1100
    53 Li J, Hu W, Baldassare JJ, et al. The ethanol metabolite, linolenic acid ethyl ester, stimulates mitogen-activated protein kinase and cyclin signaling in hepatic stellate cells. Life Sci, 2003, 73(9): 1083~1096
    54 Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002, 298(5600): 1911~1912
    55 Weston CR, Lambright DG, Davis RJ. Signal transduction. MAP kinase signaling specificity. Science, 2002, 296(5577): 2345~2347
    56 Pinzani M. PDGF and signal transduction in hepatic stellate cells. Front Biosci, 2002, 7: d1720~1726
    57徐永锋,管洪庚,薛万江,等.磷脂酰肌醇3(PI3K)激酶信号途径对血小板源生长因子促肝星状细胞增殖与I型胶原表达的影响.苏州大学学报, 2006, 26(3): 389~411
    58 Son G, Hines IN, Lindquist J, et al. Inhibition of phosphatidylinositol 3-kinase signaling in hepatic stellate cells blocks the progression of hepatic fibrosis. Hepatology, 2009, 50(5): 1512~1523
    1 Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem, 2000, 275(4): 2247~2250
    2 Eng FJ, Friedman SL. Fibrogenesis I. New insights into hepatic stellate cell activation: the simple becomes complex. Am J Physiol Gastrointest Liver Physiol, 2000, 279(1): G7~G11
    3 Elsharkawy AM, Oakley F, Mann DA. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis, 2005, 10(5): 927~939
    4 Issa R, Zhou X, Trim N, et al. Mutation in collagen-1 that confers resistance to the action of collagenase results in failure of recovery from CCl4-induced liver fibrosis, persistence of activated hepatic stellate cells, and diminished hepatocyte regeneration. FASEB J, 2003, 17(1): 47~49
    5 Issa R, Williams E, Trim N, et al. Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut, 2001, 48(4): 548~557
    6 Canbay A, Friedman S, Gores GJ. Apoptosis: the nexus of liver injury and fibrosis. Hepatology, 2004, 39(2): 273~278
    7 Lee JI, Lee KS, Paik YH, et al. Apoptosis of hepatic stellate cells in carbon tetrachloride induced acute liver injury of the rat: analysis of isolated hepatic stellate cells. J Hepatol, 2003, 39(6): 960~966
    8 Wright MC, Issa R, Smart DE, et al. Gliotoxin stimulates the apoptosis of human and rat hepatic stellate cells and enhances the resolution of liver fibrosis in rats. Gastroenterology, 2001, 121(3): 685~698
    9 Wang X, Tang X, Gong X, et al. Regulation of hepatic stellate cell activation and growth by transcription factor myocyte enhancer factor 2. Gastroenterology, 2004, 127(4): 1174~1188
    10 Knook DL, Seffelaar AM, de Leeuw AM. Fat-storing cells of the rat liver. Their isolation and purification. Exp Cell Res, 1982, 139(2): 468~471
    11高春芳,孔宪涛,范列英.大鼠肝贮脂细胞、Kupffer细胞的分离、培养和鉴定.中华消化杂志, 1995, 15(3): 142~145
    12徐列明,刘成,刘平.扁桃甙对大鼠肝贮脂细胞增殖和产生胶原的影响.新消化病学杂志, 1997, 5(2): 84~85
    13 Friedman SL, Rockey DC, McGuire RF, et al. Isolated hepatic lipocytes and Kupffer cells from normal human liver: morphological and functional characteristics in primary culture. Hepatology, 1992, 15(2): 234~243
    14 Ramm GA, Britton RS, O'Neill R, et al. Vitamin A-poor lipocytes: a novel desmin-negative lipocyte subpopulation, which can be activated to myofibroblasts. Am J Physiol, 1995, 269(4 Pt 1): G532~541
    15王文兵,戴立里,郑元义.改良大鼠肝星状细胞分离及性质鉴定.胃肠病学和肝病学杂志, 2005, 14(3): 239~242
    16赵文丽,姜庆久,吴春莲,等.改良法分离大鼠肝星状细胞.局解手术学杂志, 2004, 13(4): 240~242
    17 Gentilini A, Lottini B, Brogi M, et al. Evaluation of intracellular signalling pathways in response to insulin-like growth factor I in apoptotic-resistant activated human hepatic stellate cells. Fibrogenesis Tissue Repair, 2009, 2(1): 1
    18 Mousavi SA, Fonhus MS, Berg T. Up-regulation of uPARAP/Endo180 during culture activation of rat hepatic stellate cells and its presence in hepatic stellate cell lines from different species. BMC Cell Biol, 2009, 10: 39
    19陈琳,陈孝平,张伟,等.肝星状细胞诱导卵圆细胞向成熟肝细胞分化的体外研究.中华肝脏病杂志, 2009, 17(10): 765~770
    20 Liu L, Cao Y, Chen C, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res, 2006, 66(24): 11851~11858
    21 Chang YS, Adnane J, Trail PA, et al. Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol, 2007,59(5): 561~574
    22 Yu C, Friday BB, Lai JP, et al. Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol Cancer Ther, 2006, 5(9): 2378~2387
    23 Wilhelm S, Carter C, Lynch M, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov, 2006, 5(10): 835~844
    24 Huynh H, Ngo VC, Koong HN, et al. Sorafenib and Rapamycin Induce Growth Suppression in Mouse Models of Hepatocellular Carcinoma. J Cell Mol Med, 2009, 13(8B): 2673~2683
    25 Ulivi P, Arienti C, Amadori D, et al. Role of RAF/MEK/ERK pathway, p-STAT-3 and Mcl-1 in sorafenib activity in human pancreatic cancer cell lines. J Cell Physiol, 2009, 220(1): 214~221
    26陈逢生,崔彦芝,罗荣城,等.索拉非尼联合顺铂对肝癌HepG2细胞的抑制作用.南方医科大学学报, 2008, 28(9): 1684~1687
    27 Huynh H, Lee JW, Chow PK, et al. Sorafenib induces growth suppression in mouse models of gastrointestinal stromal tumor. Mol Cancer Ther, 2009, 8(1): 152~159
    28 Tran MA, Smith CD, Kester M, et al. Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development. Clin Cancer Res, 2008, 14(11): 3571~3581
    29 Jane EP, Premkumar DR, Pollack IF. Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells. J Pharmacol Exp Ther, 2006, 319(3): 1070~1080
    30 Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res, 2004, 64(19): 7099~7109
    31 Breitkopf K, Roeyen C, Sawitza I, et al. Expression patterns of PDGF-A,-B, -C and -D and the PDGF-receptors alpha and beta in activated rat hepatic stellate cells (HSC). Cytokine, 2005, 31(5): 349~357
    32 Pinzani M, Marra F, Carloni V. Signal transduction in hepatic stellate cells. Liver, 1998, 18(1): 2~13
    33 Marra F, Efsen E, Romanelli RG, et al. Ligands of peroxisome proliferator-activated receptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology, 2000, 119(2): 466~478
    34 Marra F, Gentilini A, Pinzani M, et al. Phosphatidylinositol 3-kinase is required for platelet-derived growth factor's actions on hepatic stellate cells. Gastroenterology, 1997, 112(4): 1297~1306
    35 Benedetti A, Di Sario A, Casini A, et al. Inhibition of the NA(+)/H(+) exchanger reduces rat hepatic stellate cell activity and liver fibrosis: an in vitro and in vivo study. Gastroenterology, 2001, 120(2): 545~556
    36 Reif S, Lang A, Lindquist JN, et al. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem, 2003, 278(10): 8083~8090
    37 Gabele E, Reif S, Tsukada S, et al. The role of p70S6K in hepatic stellate cell collagen gene expression and cell proliferation. J Biol Chem, 2005, 280(14): 13374~13382
    38 Xu L, Hui AY, Albanis E, et al. Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut, 2005, 54(1): 142~151
    39 Wang GJ, Huang YJ, Chen DH, et al. Ganoderma lucidum extract attenuates the proliferation of hepatic stellate cells by blocking the PDGF receptor. Phytother Res, 2009, 23(6): 833~839
    40赵文丽,姜庆久,吴春莲,等.改良法分离大鼠肝星状细胞.局部手术学杂志, 2004, 13(4): 240-242
    41 Uyama N, Zhao L, Van Rossen E, et al. Hepatic stellate cells express synemin, a protein bridging intermediate filaments to focal adhesions.Gut, 2006, 55(9): 1276-1289
    42 Hagens WI, Mattos A, Greupink R, et al. Targeting 15d-prostaglandin J2 to hepatic stellate cells: two options evaluated. Pharm Res, 2007, 24(3): 566-574
    43 Bonis PA, Friedman SL, Kaplan MM. Is liver fibrosis reversible? N Engl J Med, 2001, 344(6): 452~454
    44 Hammel P, Couvelard A, O'Toole D, et al. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med, 2001, 344(6): 418~423
    45 Dienstag JL, Goldin RD, Heathcote EJ, et al. Histological outcome during long-term lamivudine therapy. Gastroenterology, 2003, 124(1): 105~117
    46 Ueberham E, Low R, Ueberham U, et al. Conditional tetracycline- regulated expression of TGF-beta1 in liver of transgenic mice leads to reversible intermediary fibrosis. Hepatology, 2003, 37(5): 1067~1078
    47 Friedman SL, Roll FJ. Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial cells by density gradient centrifugation with Stractan. Anal Biochem, 1987, 161(1): 207~218
    48 Neubauer K, Knittel T, Aurisch S, et al. Glial fibrillary acidic protein--a cell type specific marker for Ito cells in vivo and in vitro. J Hepatol, 1996, 24(6): 719~730
    49石巧娟,戴方伟,贾丹梅,等.鼠肝星状细胞的分离培养和鉴定方法. 2006, 22(6): 825~827
    50 Hudkins KL, Gilbertson DG, Carling M, et al. Exogenous PDGF-D is a potent mesangial cell mitogen and causes a severe mesangial proliferative glomerulopathy. J Am Soc Nephrol, 2004, 15(2): 286~298
    51 Pinzani M, Milani S, Herbst H, et al. Expression of platelet-derived growth factor and its receptors in normal human liver and during active hepatic fibrogenesis. Am J Pathol, 1996, 148(3): 785~800
    52 Chen SW, Chen YX, Zhang XR, et al. Targeted inhibition of platelet-derived growth factor receptor-beta subunit in hepatic stellatecells ameliorates hepatic fibrosis in rats. Gene Ther, 2008, 15(21): 1424~1435
    53 Ma J, Li F, Liu L, et al. Raf kinase inhibitor protein inhibits cell proliferation but promotes cell migration in rat hepatic stellate cells. Liver Int, 2009, 29(4): 567~574
    54 Walker T, Mitchell C, Park MA, et al. Sorafenib and Vorinostat kill colon cancer cells by CD95-dependent and -independent mechanisms. Mol Pharmacol, 2009, 76(2): 342~355
    55伍婧,罗荣城,张华,等.索拉菲尼联合三氧化二砷对肝癌细胞株的抑制作用.南方医科大学学报, 2009, 29(5): 1016~1019
    56 Porta C, Paglino C, Imarisio I, et al. Sorafenib tosylate in advanced kidney cancer: past, present and future. Anticancer Drugs, 2009, 20(6): 409~415
    57 Roderfeld M, Weiskirchen R, Atanasova S, et al. Altered factor VII activating protease expression in murine hepatic fibrosis and its influence on hepatic stellate cells. Liver Int, 2009, 29(5): 686~691
    58 Wang Y, Jiang XY, Liu L, et al. Phosphatidylinositol 3-kinase/Akt pathway regulates hepatic stellate cell apoptosis. World J Gastroenterol, 2008, 14(33): 5186~5191
    59 Tugues S, Fernandez-Varo G, Munoz-Luque J, et al. Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology, 2007, 46(6): 1919~1926
    60 Li J, Hu W, Baldassare JJ, et al. The ethanol metabolite, linolenic acid ethyl ester, stimulates mitogen-activated protein kinase and cyclin signaling in hepatic stellate cells. Life Sci, 2003, 73(9): 1083~1096
    61 Cheng Y, Ping J, Xu LM. Effects of curcumin on peroxisome proliferator-activated receptor gamma expression and nuclear translocation/redistribution in culture-activated rat hepatic stellate cells. Chin Med J (Engl), 2007, 120(9): 794~801
    62 Gao R, Ball DK, Perbal B, et al. Connective tissue growth factor induces c-fos gene activation and cell proliferation through p44/42 MAP kinasein primary rat hepatic stellate cells. J Hepatol, 2004, 40(3): 431~438
    63 Ussar S, Voss T. MEK1 and MEK2, different regulators of the G1/S transition. J Biol Chem, 2004, 279(42): 43861~43869
    64 Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. Clin Chim Acta, 2006, 364(1-2): 33~60
    65 Jiang MD, Zheng SM, Xu H, et al. An experimental study of extracellular signal-regulated kinase and its interventional treatments in hepatic fibrosis. Hepatobiliary Pancreat Dis Int, 2008, 7(1): 51~57
    66蒋明德,马洪德,钟显飞,等.细胞外信号调节激酶信号通路对乙醛刺激的大鼠肝星状细胞周期的影响.中华肝脏病杂志, 2003, 11(11): 650~653
    67 Pinzani M. PDGF and signal transduction in hepatic stellate cells. Front Biosci, 2002, 7: d1720~1726
    68 Lee TF, Lin YL, Huang YT. Studies on antiproliferative effects of phthalides from Ligusticum chuanxiong in hepatic stellate cells. Planta Med, 2007, 73(6): 527~534
    69 Chen MH, Chen SH, Wang QF, et al. The molecular mechanism of gypenosides-induced G1 growth arrest of rat hepatic stellate cells. J Ethnopharmacol, 2008, 117(2): 309~317
    70 Wang GJ, Huang YJ, Chen DH, et al. Ganoderma lucidum extract attenuates the proliferation of hepatic stellate cells by blocking the PDGF receptor. Phytother Res, 2009, 23(6): 833~839
    71李娜,张阳,吴涛,等. Sorafenib联合紫杉醇不同给药顺序作用于人肝癌细胞BEL-7402的效应.癌症, 2009, 28(8): 838~843
    72 Bonelli MA, Fumarola C, Alfieri RR, et al. Synergistic activity of letrozole and sorafenib on breast cancer cells. Breast Cancer Res Treat, 2010 [Epub ahead of print]
    73 Takezawa K, Okamoto I, Yonesaka K, et al. Sorafenib Inhibits Non-Small Cell Lung Cancer Cell Growth by Targeting B-RAF in KRAS Wild-Type Cells and C-RAF in KRAS Mutant Cells. Cancer Res, 2009, 69(16): 6515~6521
    74 Delgado JS, Mustafi R, Yee J, et al. Sorafenib triggers antiproliferative and pro-apoptotic signals in human esophageal adenocarcinoma cells. Dig Dis Sci, 2008, 53(12): 3055~3064
    75 Yang F, Van Meter TE, Buettner R, et al. Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol Cancer Ther, 2008, 7(11): 3519~3526
    1 Zhou X, Murphy FR, Gehdu N, et al. Engagement of alphavbeta3 integrin regulates proliferation and apoptosis of hepatic stellate cells. J Biol Chem, 2004, 279(23): 23996~24006
    2 Iredale JP, Benyon RC, Pickering J, et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest, 1998, 102(3): 538~549
    3姜慧卿,姚希贤.肝星状细胞的活化与肝纤维化.胃肠病学和肝病学杂志, 2007, 16(1): 86~89
    4 Ulivi P, Arienti C, Amadori D, et al. Role of RAF/MEK/ERK pathway, p-STAT-3 and Mcl-1 in sorafenib activity in human pancreatic cancer cell lines. J Cell Physiol, 2009, 220(1): 214~221
    5 Liu L, Cao Y, Chen C, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res, 2006, 66(24): 11851~11858
    6 Yu C, Friday BB, Lai JP, et al. Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol Cancer Ther, 2006, 5(9): 2378~2387
    7 Chang YS, Adnane J, Trail PA, et al. Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol, 2007, 59(5): 561~574
    8 Rahmani M, Davis EM, Bauer C, et al. Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down- regulation of Mcl-1 through inhibition of translation. J Biol Chem, 2005, 280(42): 35217~35227
    9 Yu C, Bruzek LM, Meng XW, et al. The role of Mcl-1 downregulation inthe proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene, 2005, 24(46): 6861~6869
    10 Yang F, Van Meter TE, Buettner R, et al. Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol Cancer Ther, 2008, 7(11): 3519~3526
    11 Wang Y, Jiang XY, Liu L, et al. Phosphatidylinositol 3-kinase/Akt pathway regulates hepatic stellate cell apoptosis. World J Gastroenterol, 2008, 14(33): 5186~5191
    12 Siegmund SV, Qian T, de Minicis S, et al. The endocannabinoid 2-arachidonoyl glycerol induces death of hepatic stellate cells via mitochondrial reactive oxygen species. FASEB J, 2007, 21(11): 2798~2806
    13 Issa R, Williams E, Trim N, et al. Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut, 2001, 48(4): 548~557
    14 Kurosu T, Ohki M, Wu N, et al. Sorafenib induces apoptosis specifically in cells expressing BCR/ABL by inhibiting its kinase activity to activate the intrinsic mitochondrial pathway. Cancer Res, 2009, 69(9): 3927~3936
    15 Wu JM, Sheng H, Saxena R, et al. NF-kappaB inhibition in human hepatocellular carcinoma and its potential as adjunct to sorafenib based therapy. Cancer Lett, 2009, 278(2): 145~155
    16 Park EJ, Zhao YZ, Kim YC, et al. Bakuchiol-induced caspase-3- dependent apoptosis occurs through c-Jun NH2-terminal kinase-mediated mitochondrial translocation of Bax in rat liver myofibroblasts. Eur J Pharmacol, 2007, 559(2-3): 115~123
    17 Park EJ, Zhao YZ, Kim J, et al. A ginsenoside metabolite, 20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol, triggers apoptosis in activated rat hepatic stellate cells via caspase-3 activation. Planta Med, 2006, 72(13): 1250~1253
    18 Zhang XL, Liu L, Jiang HQ. Salvia miltiorrhiza monomer IH764-3induces hepatic stellate cell apoptosis via caspase-3 activation. World J Gastroenterol, 2002, 8(3): 515~519
    19 Davaille J, Li L, Mallat A, et al. Sphingosine 1-phosphate triggers both apoptotic and survival signals for human hepatic myofibroblasts. J Biol Chem, 2002, 277(40): 37323~37330
    20 Guo YT, Leng XS, Li T, et al. Effect of ligand of peroxisome proliferator-activated receptor gamma on the biological characters of hepatic stellate cells. World J Gastroenterol, 2005, 11(30): 4735~4739
    21 Oakley F, Meso M, Iredale JP, et al. Inhibition of inhibitor of kappaB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology, 2005, 128(1): 108~120
    22 Liu XW, Bernardo MM, Fridman R, et al. Tissue inhibitor of metalloproteinase-1 protects human breast epithelial cells against intrinsic apoptotic cell death via the focal adhesion kinase/ phosphatidylinositol 3-kinase and MAPK signaling pathway. J Biol Chem, 2003, 278(41): 40364~40372
    23 Fiorucci S, Rizzo G, Antonelli E, et al. A farnesoid x receptor-small heterodimer partner regulatory cascade modulates tissue metalloproteinase inhibitor-1 and matrix metalloprotease expression in hepatic stellate cells and promotes resolution of liver fibrosis. J Pharmacol Exp Ther, 2005, 314(2): 584~595
    24 Gentilini A, Lottini B, Brogi M, et al. Evaluation of intracellular signalling pathways in response to insulin-like growth factor I in apoptotic-resistant activated human hepatic stellate cells. Fibrogenesis Tissue Repair, 2009, 2(1): 1
    25 Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol, 1998, 16: 395~419
    26 Saile B, DiRocco P, Dudas J, et al. IGF-I induces DNA synthesis and apoptosis in rat liver hepatic stellate cells (HSC) but DNA synthesis and proliferation in rat liver myofibroblasts (rMF). Lab Invest, 2004, 84(8): 1037~1049
    27 Novo E, Marra F, Zamara E, et al. Overexpression of Bcl-2 by activated human hepatic stellate cells: resistance to apoptosis as a mechanism of progressive hepatic fibrogenesis in humans. Gut, 2006, 55(8): 1174~1182
    28 Iwamoto H, Sakai H, Tada S, et al. Induction of apoptosis in rat hepatic stellate cells by disruption of integrin-mediated cell adhesion. J Lab Clin Med, 1999, 134(1): 83~89
    29 Rosato RR, Almenara JA, Coe S, et al. The multikinase inhibitor sorafenib potentiates TRAIL lethality in human leukemia cells in association with Mcl-1 and cFLIPL down-regulation. Cancer Res, 2007, 67(19): 9490~9500
    30 Delgado JS, Mustafi R, Yee J, et al. Sorafenib triggers antiproliferative and pro-apoptotic signals in human esophageal adenocarcinoma cells. Dig Dis Sci, 2008, 53(12): 3055~3064
    31 Walker T, Mitchell C, Park MA, et al. Sorafenib and Vorinostat kill colon cancer cells by CD95-dependent and -independent mechanisms. Mol Pharmacol, 2009, 76(2): 342~55
    32 Dasmahapatra G, Yerram N, Dai Y, et al. Synergistic interactions between vorinostat and sorafenib in chronic myelogenous leukemia cells involve Mcl-1 and p21CIP1 down-regulation. Clin Cancer Res, 2007, 13(14): 4280~4290
    33 Rahmani M, Nguyen TK, Dent P, et al. The multikinase inhibitor sorafenib induces apoptosis in highly imatinib mesylate-resistant bcr/abl+ human leukemia cells in association with signal transducer and activator of transcription 5 inhibition and myeloid cell leukemia-1 down-regulation. Mol Pharmacol, 2007, 72(3): 788~795
    34 Panka DJ, Wang W, Atkins MB, et al. The Raf inhibitor BAY 43-9006 (Sorafenib) induces caspase-independent apoptosis in melanoma cells. Cancer Res, 2006, 66(3): 1611~1619
    35 Saile B, Knittel T, Matthes N, et al. CD95/CD95L-mediated apoptosis of the hepatic stellate cell. A mechanism terminating uncontrolled hepatic stellate cell proliferation during hepatic tissue repair. Am J Pathol, 1997,151(5): 1265~1272
    36 Wang XZ, Zhang SJ, Chen YX, et al. Effects of platelet-derived growth factor and interleukin-10 on Fas/Fas-ligand and Bcl-2/Bax mRNA expression in rat hepatic stellate cells in vitro. World J Gastroenterol, 2004, 10(18): 2706~2710
    37 Fischer R, Schmitt M, Bode JG, et al. Expression of the peripheral-type benzodiazepine receptor and apoptosis induction in hepatic stellate cells. Gastroenterology, 2001, 120(5): 1212~1226
    38 Cariers A, Reinehr R, Fischer R, et al. c-Jun-N-terminal kinase dependent membrane targeting of CD95 in rat hepatic stellate cells. Cell Physiol Biochem, 2002, 12(4): 179~186
    39 Park MA, Zhang G, Martin AP, et al. Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biol Ther, 2008, 7(10): 1648~1662
    40 Zhang G, Park MA, Mitchell C, et al. Vorinostat and sorafenib synergistically kill tumor cells via FLIP suppression and CD95 activation. Clin Cancer Res, 2008, 14(17): 5385~5399
    1 Gabele E, Brenner DA, Rippe RA. Liver fibrosis: signals leading to the amplification of the fibrogenic hepatic stellate cell. Front Biosci, 2003, 8: d69~77
    2 Jung JO, Gwak GY, Lim YS, et al. Role of hepatic stellate cells in the angiogenesis of hepatoma. Korean J Gastroenterol, 2003, 42(2): 142~148
    3 Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis, 2001, 21(3): 397~416
    4 Reif S, Lang A, Lindquist JN, et al. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem, 2003, 278(10): 8083~8090
    5 Gabele E, Reif S, Tsukada S, et al. The role of p70S6K in hepatic stellate cell collagen gene expression and cell proliferation. J Biol Chem, 2005, 280(14): 13374~13382
    6 Marra F, Gentilini A, Pinzani M, et al. Phosphatidylinositol 3-kinase is required for platelet-derived growth factor's actions on hepatic stellate cells. Gastroenterology, 1997, 112(4): 1297~1306
    7刘丽,姜慧卿,张晓岚,赵冬强.丹参单体IH764-3通过下调H2O2刺激的肝星状细胞FAK水平影响MMP-13和TIMP-1的表达.中国应用生理学杂志, 2007, 23(4): 482~486
    8张晓岚,霍晓霞,申建刚,魏娟,姜慧卿.黏着斑激酶酪氨酸磷酸化促大鼠肝纤维化形成及其可能机制.基础医学与临床, 2007, 27(2): 143~147
    9 Jiang HQ, Zhang XL, Liu L, et al. Relationship between focal adhesion kinase and hepatic stellate cell proliferation during rat hepatic fibrogenesis. World J Gastroenterol, 2004, 10(20): 3001~3005
    10 Malizia G, Brunt EM, Peters MG, et al. Growth factor and procollagen type I gene expression in human liver disease. Gastroenterology, 1995, 108(1): 145~156
    11 Wang Y, Jiang XY, Liu L, et al. Phosphatidylinositol 3-kinase/Akt pathway regulates hepatic stellate cell apoptosis. World J Gastroenterol, 2008, 14(33): 5186~5191
    12 Eichler W, Friedrichs U, Thies A, et al. Modulation of matrix metalloproteinase and TIMP-1 expression by cytokines in human RPE cells. Invest Ophthalmol Vis Sci, 2002, 43(8): 2767~2773
    13 Huynh H, Lee JW, Chow PK, et al. Sorafenib induces growth suppression in mouse models of gastrointestinal stromal tumor. Mol Cancer Ther, 2009, 8(1): 152~159
    14 Huynh H, Ngo VC, Koong HN, et al. Sorafenib and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J Cell Mol Med, 2009, 13(8B): 2673~2683
    15 Ulivi P, Arienti C, Amadori D, et al. Role of RAF/MEK/ERK pathway, p-STAT-3 and Mcl-1 in sorafenib activity in human pancreatic cancer cell lines. J Cell Physiol, 2009, 220(1): 214~221
    16陈逢生,崔彦芝,罗荣城,等.索拉非尼联合顺铂对肝癌HepG2细胞的抑制作用.南方医科大学学报, 2008, 28(9): 1684~1687
    17 Tran MA, Smith CD, Kester M, et al. Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development. Clin Cancer Res, 2008, 14(11): 3571~3581
    18 Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem, 2000, 275(4): 2247~2250
    19 Li X, Ponten A, Aase K, et al. PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. Nat Cell Biol, 2000, 2(5): 302~309
    20 Bergsten E, Uutela M, Li X, et al. PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor. Nat Cell Biol, 2001, 3(5): 512~516
    21 LaRochelle WJ, Jeffers M, McDonald WF, et al. PDGF-D, a new protease-activated growth factor. Nat Cell Biol, 2001, 3(5): 517~521
    22 Breitkopf K, Roeyen C, Sawitza I, et al. Expression patterns of PDGF-A,-B, -C and -D and the PDGF-receptors alpha and beta in activated rat hepatic stellate cells (HSC). Cytokine, 2005, 31(5): 349~357
    23 Pinzani M, Milani S, Herbst H, et al. Expression of platelet-derived growth factor and its receptors in normal human liver and during active hepatic fibrogenesis. Am J Pathol, 1996, 148(3): 785~800
    24 Roberts RA, James NH, Cosulich SC. The role of protein kinase B and mitogen-activated protein kinase in epidermal growth factor and tumor necrosis factor alpha-mediated rat hepatocyte survival and apoptosis. Hepatology, 2000, 31(2): 420~427
    25 Gao R, Ball DK, Perbal B, et al. Connective tissue growth factor induces c-fos gene activation and cell proliferation through p44/42 MAP kinase in primary rat hepatic stellate cells. J Hepatol, 2004, 40(3): 431~438
    26 Weston CR, Lambright DG, Davis RJ. Signal transduction. MAP kinase signaling specificity. Science, 2002, 296(5577): 2345~2347
    27 Sharma GD, He J, Bazan HE. p38 and ERK1/2 coordinate cellular migration and proliferation in epithelial wound healing: evidence of cross-talk activation between MAP kinase cascades. J Biol Chem, 2003, 278(24): 21989~21997
    28 Li J, Hu W, Baldassare JJ, et al. The ethanol metabolite, linolenic acid ethyl ester, stimulates mitogen-activated protein kinase and cyclin signaling in hepatic stellate cells. Life Sci, 2003, 73(9): 1083~1096
    29 Wang J, Bian C, Liao L, et al. Inhibition of hepatic stellate cells proliferation by mesenchymal stem cells and the possible mechanisms. Hepatol Res, 2009, 39(12): 1219~1228
    30 Katz SI, Zhou L, Chao G, et al. Sorafenib inhibits ERK1/2 and MCL-1(L) phosphorylation levels resulting in caspase-independent cell death in malignant pleural mesothelioma. Cancer Biol Ther, 2009, 8(24): 2406~2416
    31 Yang S, Ngo VC, Lew GB, et al. AZD6244 (ARRY-142886) enhances the therapeutic efficacy of sorafenib in mouse models of gastric cancer. Mol Cancer Ther, 2009, 8(9): 2537~2545
    32 Tochizawa S, Masumori N, Yanai Y, et al. Antitumor effects of a combination of interferon-alpha and sorafenib on human renal carcinoma cell lines. Biomed Res, 2008, 29(6): 271~278
    33 Jiang MD, Zheng SM, Xu H, et al. An experimental study of extracellular signal-regulated kinase and its interventional treatments in hepatic fibrosis. Hepatobiliary Pancreat Dis Int, 2008, 7(1): 51~57
    34 Tugues S, Fernandez-Varo G, Munoz-Luque J, et al. Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology, 2007, 46(6): 1919~1926
    35 Dan HC, Sun M, Kaneko S, et al. Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP). J Biol Chem, 2004, 279(7): 5405~5412
    36 Madge LA, Pober JS. A phosphatidylinositol 3-kinase/Akt pathway, activated by tumor necrosis factor or interleukin-1, inhibits apoptosis but does not activate NFkappaB in human endothelial cells. J Biol Chem, 2000, 275(20): 15458~15465
    37 West KA, Brognard J, Clark AS, et al. Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest, 2003, 111(1): 81~90
    38 Nam SY, Jung GA, Hur GC, et al. Upregulation of FLIP(S) by Akt, a possible inhibition mechanism of TRAIL-induced apoptosis in human gastric cancers. Cancer Sci, 2003, 94(12): 1066~1073
    39 Siren AL, Fratelli M, Brines M, et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A, 2001, 98(7): 4044~4049
    40 Gentilini A, Marra F, Gentilini P, et al. Phosphatidylinositol-3 kinase and extracellular signal-regulated kinase mediate the chemotactic and mitogenic effects of insulin-like growth factor-I in human hepatic stellate cells. J Hepatol, 2000, 32(2): 227~234
    41 Dufner A, Thomas G. Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res, 1999, 253(1): 100~109
    42 Pullen N, Thomas G. The modular phosphorylation and activation of p70s6k. FEBS Lett, 1997, 410(1): 78~82
    43 Kim AH, Khursigara G, Sun X, et al. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol, 2001, 21(3): 893~901
    44 Kulik G, Klippel A, Weber MJ. Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol, 1997, 17(3): 1595~1606
    45 Coffer PJ, Jin J, Woodgett JR. Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J, 1998, 335 ( Pt 1): 1~13
    46 Berven LA, Crouch MF. Cellular function of p70S6K: a role in regulating cell motility. Immunol Cell Biol, 2000, 78(4): 447~451
    47 Skrtic S, Wallenius K, Gressner AM, et al. Insulin-like growth factor signaling pathways in rat hepatic stellate cells: importance for deoxyribonucleic acid synthesis and hepatocyte growth factor production. Endocrinology, 1999, 140(12): 5729~5735
    48 Zhu J, Wu J, Frizell E, et al. Rapamycin inhibits hepatic stellate cell proliferation in vitro and limits fibrogenesis in an in vivo model of liver fibrosis. Gastroenterology, 1999, 117(5): 1198~1204
    49 Wang GJ, Huang YJ, Chen DH, et al. Ganoderma lucidum extract attenuates the proliferation of hepatic stellate cells by blocking the PDGF receptor. Phytother Res, 2009, 23(6): 833~839
    50 Paik YH, Kim JK, Lee JI, et al. Celecoxib induces hepatic stellate cell apoptosis through inhibition of Akt activation and suppresses hepatic fibrosis in rats. Gut, 2009, 58(11): 1517~1527
    51 Rodriguez-Juan C, de la Torre P, Garcia-Ruiz I, et al. Fibronectin increases survival of rat hepatic stellate cells--a novel profibrogenic mechanism of fibronectin. Cell Physiol Biochem, 2009, 24(3-4): 271~282
    52 Pinzani M. PDGF and signal transduction in hepatic stellate cells. FrontBiosci, 2002, 7: d1720~1726
    53 Yang F, Van Meter TE, Buettner R, et al. Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol Cancer Ther, 2008, 7(11): 3519~3526
    54 Bonelli MA, Fumarola C, Alfieri RR, et al. Synergistic activity of letrozole and sorafenib on breast cancer cells. Breast Cancer Res Treat, 2010. [Epub ahead of print]
    55 Liu Y, Wen XM, Lui EL, et al. Therapeutic targeting of the PDGF and TGF-beta-signaling pathways in hepatic stellate cells by PTK787/ ZK22258. Lab Invest, 2009, 89(10): 1152~1160
    1 Bataller R, Brenner DA. Liver fibrosis. J Clin Invest, 2005, 115(2), 209~218
    2 Jiao J, Friedman SL, Aloman C. Hepatic fibrosis. Curr Opin Gastroenterol, 2009, 25(3), 223~229
    3 Saile B, Ramadori G. Inflammation, damage repair and liver fibrosis-role of cytokines and different cell types. Z Gastroenterol, 2007, 45(1), 77~86
    4 Wasmuth HE, Weiskirchen R. Pathogenesis of liver fibrosis: modulation of stellate cells by chemokines. Z Gastroenterol, 2010, 48(1), 38~45
    5 Schuppan D, Krebs A, Bauer M, et al. Hepatitis C and liver fibrosis. Cell Death Differ, 2003, 10 Suppl 1, S59~67
    6 Reuben A. Alcohol and the liver. Curr Opin Gastroenterol, 2008, 24(3), 328~338
    7 Marra F, Aleffi S, Bertolani C, et al. Adipokines and liver fibrosis. Eur Rev Med Pharmacol Sci, 2005, 9(5), 279~284
    8 Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis, 2001, 21(3), 397~416
    9 Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology, 2008, 134(6), 1655~1669
    10 Shi Z, Wakil AE, Rockey DC. Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. Proc Natl Acad Sci U S A, 1997, 94(20), 10663~10668
    11 Galliera E, Corsi MM, Bonecchi R, et al. Chemokines as pharmacological targets. Mini Rev Med Chem, 8(7), 638~646
    12 Hernandez-Munoz I, de la TP, Sanchez-Alcazar JA, et al. Tumor necrosis factor alpha inhibits collagen alpha 1(I) gene expression in rat hepatic stellate cells through a G protein. Gastroenterology, 2001, 21(3), 625~640
    13 Eng FJ, Friedman SL. Transcriptional regulation in hepatic stellate cells. Semin Liver Dis, 2001, 21(3), 385~395
    14 Han YP, Zhou L, Wang J, et al. Essential role of matrix metalloproteinases in interleukin-1-induced myofibroblastic activation of hepatic stellate cell in collagen. J Biol Chem, 2004, 279(6), 4820~4828
    15 Mancini R, Benedetti A, Jezequel AM. An interleukin-1 receptor antagonist decreases fibrosis induced by dimethylnitrosamine in rat liver. Virchows Arch, 1994, 424(1), 25~31
    16 Zhang LJ, Zheng WD, Chen YX, et al. Antifibrotic effects of interleukin-10 on experimental hepatic fibrosis. Hepatogastroenterology, 2007, 54(79), 2092~2098
    17 Zhang LJ, Zheng WD, Shi MN, et al. Effects of interleukin-10 on activation and apoptosis of hepatic stellate cells in fibrotic rat liver. World J Gastroenterol, 2006, 12(12), 1918~1923
    18 Giannelli G, Bergamini C, Marinosci F, et al. Antifibrogenic effect of IFN-alpha2b on hepatic stellate cell activation by human hepatocytes. JInterferon Cytokine Res, 2006, 26(5), 301~308
    19 Chang XM, Chang Y, Jia A. Effects of interferon-alpha on expression of hepatic stellate cell and transforming growth factor-beta1 and alpha-smooth muscle actin in rats with hepatic fibrosis. World J Gastroenterol, 2005, 11(17), 2634~2636
    20 Inagaki Y, Nemoto T, Kushida M, et al. Interferon alfa down-regulates collagen gene transcription and suppresses experimental hepatic fibrosis in mice. Hepatology, 2003, 38(4), 890~809
    21 Wu CS, Piao XX, Piao DM, et al. Treatment of pig serum-induced rat liver fibrosis with Boschniakia rossica, oxymatrine and interferon-alpha. World J Gastroenterol, 2005, 11(1), 122~126
    22 Shen H, Zhang M, Minuk GY, et al. Different effects of rat interferon alpha, beta and gamma on rat hepatic stellate cell proliferation and activation. BMC Cell Biol, 2002, 3, 9
    23 Yoshiji H, Kuriyama S, Noguchi R, et al. Combination of interferon-beta and angiotensin-converting enzyme inhibitor, perindopril, attenuates the murine liver fibrosis development. Liver Int, 2005, 25(1), 153~161
    24 Marra F, DeFranco R, Grappone C, et al. Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration. Am J Pathol, 1998, 152(2), 423~430
    25 Marra F, Romanelli RG, Giannini C, et al. Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology, 1999, 29(1), 140~148
    26 Tsuruta S, Nakamuta M, Enjoji M, et al. Anti-monocyte chemoattractant protein-1 gene therapy prevents dimethylnitrosamine-induced hepatic fibrosis in rats. Int J Mol Med, 2004, 14(5), 837~842
    27 Nischalke HD, Nattermann J, Fischer HP, et al. Semiquantitative analysis of intrahepatic CC-chemokine mRNas in chronic hepatitis C. Mediators Inflamm, 2004, 13(5-6), 357~359
    28 Schwabe RF, Bataller R, Brenner DA. Human hepatic stellate cellsexpress CCR5 and RANTES to induce proliferation and migration. Am J Physiol Gastrointest Liver Physiol, 2003, 285(5), G949~958
    29 Swiatkowska-Stodulska R, Bakowska A, Drobinska-Jurowiecka A. Interleukin-8 in the blood serum of patients with alcoholic liver disease. Med Sci Monit, 2006, 12(5), CR215~220
    30 Yamashiki M, Kosaka Y, Nishimura A, et al. Analysis of serum cytokine levels in primarybiliary cirrhosispatients andhealthy adults. J Clin Lab Anal, 1998, 12(2), 77~82
    31 Colmenero J, Bataller R, Sancho-Bru P, et al. Hepatic expression of candidate genes in patients with alcoholic hepatitis: correlation with disease severity. Gastroenterology, 2007, 132(2), 687~697
    32 Li X, Ponten A, Aase K, et al. PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. Nat Cell Biol, 2000, 2(5), 302~309
    33 LaRochelle WJ, Jeffers M, McDonald WF, et al. PDGF-D, a new protease-activated growth factor. Nat Cell Biol, 2001, 3(5), 517~521
    34 Pinzani M, Gesualdo L, Sabbah GM, et al. Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells. J Clin Invest, 1989, 84(6), 1786~1793
    35 Borkham-Kamphorst E, van Roeyen CR, Ostendorf T, et al. Pro-fibrogenic potential of PDGF-D in liver fibrosis. J Hepatol, 2007, 46(6), 1064~1074
    36 Pinzani M, Milani S, Herbst H, et al. Expression of platelet-derived growth factor and its receptors in normal human liver and during active hepatic fibrogenesis. Am J Pathol, 1996, 148(3), 785~800
    37 Wong L, Yamasaki G, Johnson RJ, et al. Induction of beta-platelet- derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture. J Clin Invest, 1994, 94(4), 1563~1569
    38 Borkham-Kamphorst E, Stoll D, Gressner AM, et al. Antisense strategy against PDGF B-chain proves effective in preventing experimental liver fibrogenesis. Biochem Biophys Res Commun, 2004, 321(2), 413~423
    39 Borkham-Kamphorst E, Herrmann J, Stoll D, et al. Dominant-negative soluble PDGF-beta receptor inhibits hepatic stellate cell activation and attenuates liver fibrosis. Lab Invest, 2004, 84(6), 766~777
    40 De Bleser PJ, Niki T, Rogiers V, et al. Transforming growth factor-beta gene expression in normal and fibrotic rat liver. J Hepatol, 1997, 26(4), 886~893
    41 Shek FW, Benyon RC. How can transforming growth factor beta be targeted usefully to combat liver fibrosis? Eur J Gastroenterol Hepatol, 2004, 16(2), 123~126
    42 Chen HN, Fan S, Weng CF. Down-regulation of TGFbeta1 and leptin ameliorates thioacetamide-induced liver injury in lipopolysaccharide- primed rats. J Endotoxin Res, 2007, 13(3), 176~188
    43 Onichtchouk D, Chen YG, Dosch R, et al. Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature, 1999, 401(6752), 480~485
    44. Seki E, De Minicis S, Osterreicher CH, et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med, 2007, 13(11), 1324~1332
    45 Novo E, Cannito S, Zamara E, et al. Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells. Am J Pathol, 2007, 170(6), 1942~1953
    46 Yoshiji H, Kuriyama S, Yoshii J, et al. Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut, 2003, 52(9), 1347~1354
    47 Yu C, Wang F, Jin C, et al. Role of fibroblast growth factor type 1 and 2 in carbon tetrachloride-induced hepatic injury and fibrogenesis. Am J Pathol, 2003, 163(4), 1653~62
    48 Canturk NZ, Canturk Z, Ozden M, et al. Protective effect of IGF-1 on experimental liver cirrhosis-induced common bile duct ligation. Hepatogastroenterology, 2003, 50(54), 2061~2066
    49 Sanz S, Pucilowska JB, Liu S, et al. Expression of insulin-like growth factor I by activated hepatic stellate cells reduces fibrogenesis andenhances regeneration after liver injury. Gut, 2005, 54(1), 134~141
    50 Xia JL, Dai C, Michalopoulos GK, et al. Hepatocyte growth factor attenuates liver fibrosis induced by bile duct ligation. Am J Pathol, 2006, 168(5), 1500~1512
    51 Rockey DC, Chung JJ. Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension. Gastroenterology, 1998, 114(2), 344~351
    52 Hui AY, Dannenberg AJ, Sung JJ, et al. Prostaglandin E2 inhibits transforming growth factor beta 1-mediated induction of collagen alpha 1(I) in hepatic stellate cells. J Hepatol, 2004, 41(2), 251~258
    53 Koide S, Kobayashi Y, Oki Y, et al. Prostaglandin E2 inhibits platelet-derived growth factor-stimulated cell proliferation through a prostaglandin E receptor EP2 subtype in rat hepatic stellate cells. Dig Dis Sci, 2004, 49(9), 1394~1400
    54 Fiorucci S, Antonelli E, Distrutti E, et al. PAR1 antagonism protects against experimental liver fibrosis. Role of proteinase receptors in stellate cell activation. Hepatology, 2004, 39(2), 365~375
    55 Duplantier JG, Dubuisson L, Senant N, et al. A role for thrombin in liver fibrosis. Gut, 2004, 53(11), 1682~1687
    56 Rullier A, Gillibert-Duplantier J, Costet P, et al. Protease-activated receptor 1 knockout reduces experimentally induced liver fibrosis. Am J Physiol Gastrointest Liver Physiol, 2008, 294(1), G226~235
    57 Pinzani M, Milani S, De Franco R, et al. Endothelin 1 is overexpressed in human cirrhotic liver and exerts multiple effects on activated hepatic stellate cells. Gastroenterology, 1996, 110(2), 534~548
    58 Rockey DC, Chung JJ. Endothelin antagonism in experimental hepatic fibrosis. Implications for endothelin in the pathogenesis of wound healing. J Clin Invest, 1996, 98(6), 1381~1388
    59 Poo JL, Jimenez W, Maria Munoz R, et al. Chronic blockade of endothelin receptors in cirrhotic rats: hepatic and hemodynamic effects. Gastroenterology, 1999, 116(1), 161~167
    60 Oben JA, Yang S, Lin H, et al. Norepinephrine and neuropeptide Y promote proliferation and collagen gene expression of hepatic myofibroblastic stellate cells. Biochem Biophys Res Commun, 2003, 302(4), 685~690
    61 Sancho-Bru P, Bataller R, Colmenero J, et al. Norepinephrine induces calcium spikes and proinflammatory actions in human hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol, 2006, 291(5), G877~884
    62 Bertolani C, Sancho-Bru P, Failli P, et al. Resistin as an intrahepatic cytokine: overexpression during chronic injury and induction of proinflammatory actions in hepatic stellate cells. Am J Pathol, 2006, 169(6), 2042~2053
    63 Marra F. Leptin and liver fibrosis: a matter of fat. Gastroenterology, 2002, 122(5), 1529~1532
    64 Ikejima K, Takei Y, Honda H, et al. Leptin receptor-mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology, 2002, 122(5), 1399~1410
    65 Kamada Y, Tamura S, Kiso S, et al. Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology, 2003, 125(6), 1796~1807
    66 Siegmund SV, Schwabe RF. Endocannabinoids and liver disease. II. Endocannabinoids in the pathogenesis and treatment of liver fibrosis. Am J Physiol Gastrointest Liver Physiol, 2008, 294(2), G357~362
    67 Teixeira-Clerc F, Julien B, Grenard P, et al. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nat Med, 2006, 12(6), 671~676
    68 Julien B, Grenard P, Teixeira-Clerc F, et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology, 2005, 128(3), 742~755
    69 Hezode C, Roudot-Thoraval F, Nguyen S, et al. Daily cannabis smoking as a risk factor for progression of fibrosis in chronic hepatitis C. Hepatology, 2005, 42(1), 63~71
    70 Gabele E, Reif S, Tsukada S, et al. The role of p70S6K in hepatic stellate cell collagen gene expression and cell proliferation. J Biol Chem, 2005, 280(14), 13374~13382
    71 Reif S, Lang A, Lindquist JN, et al. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem, 2003, 278(10), 8083~8090
    72张晓岚,霍晓霞,申建刚,等.黏着斑激酶酪氨酸磷酸化促大鼠肝纤维化形成及其可能机制.基础医学与临床, 2007, 27(2), 143~147
    73 Jiang HQ, Zhang XL, Liu L, et al. Relationship between focal adhesion kinase and hepatic stellate cell proliferation during rat hepatic fibrogenesis. World J Gastroenterol, 2004, 10(20), 3001~3005
    74 Bataller R, Schwabe RF, Choi YH, et al. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest, 2003, 112(9), 1383~1394
    75 Aleffi S, Petrai I, Bertolani C, et al. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology, 2005, 42(6), 1339~1348
    76 Lechuga CG, Hernandez-Nazara ZH, Hernandez E, et al. PI3K is involved in PDGF-beta receptor upregulation post-PDGF-BB treatment in mouse HSC. Am J Physiol Gastrointest Liver Physiol, 2006, 291(6), G1051~1061
    77 Pinzani M. PDGF and signal transduction in hepatic stellate cells. Front Biosci, 2002, 7, d1720~1726
    78 Zhang X, Jin B, Huang C. The PI3K/Akt pathway and its downstream transcriptional factors as targets for chemoprevention. Curr Cancer Drug Targets, 2007, 7(4), 305~316
    79 Zhu J, Wu J, Frizell E, et al. Rapamycin inhibits hepatic stellate cell proliferation in vitro and limits fibrogenesis in an in vivo model of liver fibrosis. Gastroenterology, 1999, 117(5), 1198~1204
    80安君艳,张晓岚,姚冬梅,等.体外RNA干扰下调黏着斑激酶表达对HSC-T6细胞黏附与迁移的影响.中华肝脏病杂志, 2009, 17(7), 509~514
    81魏娟,张晓岚,敦志娜,等.膜型基质金属蛋白酶-1在黏着斑激酶相关非激酶调控肝星状细胞胶原代谢中的作用.中国病理生理杂志, 2009, 25(11), 2155~2158
    82 Wang Y, Jiang XY, Liu L, et al. Phosphatidylinositol 3-kinase/Akt pathway regulates hepatic stellate cell apoptosis. World J Gastroenterol, 2008, 14(33), 5186~5191
    83 Goldsmith ZG, Dhanasekaran DN. G protein regulation of MAPK networks. Oncogene, 2007, 26(22), 3122~3142
    84 Bonacchi A, Romagnani P, Romanelli RG, et al. Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J Biol Chem, 2001, 276(13), 9945~9954
    85 Ma J, Li F, Liu L, et al. Raf kinase inhibitor protein inhibits cell proliferation but promotes cell migration in rat hepatic stellate cells. Liver Int, 2009, 29(4), 567~574
    86 Bataller R, Gabele E, Schoonhoven R, et al. Prolonged infusion of angiotensin II into normal rats induces stellate cell activation and proinflammatory events in liver. Am J Physiol Gastrointest Liver Physiol, 2003, 285(3), G642~651
    87 Marra F, Arrighi MC, Fazi M, et al. Extracellular signal-regulated kinase activation differentially regulates platelet-derived growth factor's actions in hepatic stellate cells, and is induced by in vivo liver injury in the rat. Hepatology, 1999, 30(4), 951~958
    88 Schwabe RF, Schnabl B, Kweon YO, et al. CD40 activates NF-kappa B and c-Jun N-terminal kinase and enhances chemokine secretion on activated human hepatic stellate cells. J Immunol, 2001, 166(11), 6812~6819
    89 Schwabe RF, Uchinami H, Qian T, et al. Differential requirement forc-Jun NH2-terminal kinase in TNFalpha- and Fas-mediated apoptosis in hepatocytes. FASEB J, 2004, 18(6), 720~722
    90 Schnabl B, Bradham CA, Bennett BL, et al. TAK1/JNK and p38 have opposite effects on rat hepatic stellate cells. Hepatology, 2001, 34(5), 953~963
    91 Tsukada S, Westwick JK, Ikejima K, et al. SMAD and p38 MAPK signaling pathways independently regulate alpha1(I) collagen gene expression in unstimulated and transforming growth factor-beta- stimulated hepatic stellate cells. J Biol Chem, 2005, 280(11), 10055~10064
    92 Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. Clin Chim Acta, 2006, 364(1-2), 33~60
    93 Shi YF, Fong CC, Zhang Q, et al. Hypoxia induces the activation of human hepatic stellate cells LX-2 through TGF-beta signaling pathway. FEBS Lett, 2007, 581(2), 203~210
    94 Cohen MM Jr. TGF beta/Smad signaling system and its pathologic correlates. Am J Med Genet A, 2003, 116A(1), 1~10
    95 Weng H, Mertens PR, Gressner AM, et al. IFN-gamma abrogates profibrogenic TGF-beta signaling in liver by targeting expression of inhibitory and receptor Smads. J Hepatol, 2007, 46(2), 295~303
    96 Kaimori A, Potter J, Kaimori JY, et al. Transforming growth factor-beta1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J Biol Chem, 2007, 282(30), 22089~22101
    97 Seyhan H, Hamzavi J, Wiercinska E, et al. Liver fibrogenesis due to cholestasis is associated with increased Smad7 expression and Smad3 signaling. J Cell Mol Med, 2006, 10(4), 922~932
    98 Inagaki Y, Kushida M, Higashi K, et al. Cell type-specific intervention of transforming growth factor beta/Smad signaling suppresses collagen gene expression and hepatic fibrosis in mice. Gastroenterology, 2005, 129(1), 259~268
    99 Schwabe RF, Brenner DA. Mechanisms of Liver Injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol, 2006, 290(4), G583~589
    100 Hellerbrand C, Jobin C, Licato LL, et al. Cytokines induce NF-kappaB in activated but not in quiescent rat hepatic stellate cells. Am J Physiol, 1998, 275(2 Pt 1), G269~278
    101 Lang A, Schoonhoven R, Tuvia S, et al. Nuclear factor kappaB in proliferation, activation, and apoptosis in rat hepatic stellate cells. J Hepatol, 2000, 33(1), 49~58
    102 Haughton EL, Tucker SJ, Marek CJ, et al. Pregnane X receptor activators inhibit human hepatic stellate cell transdifferentiation in vitro. Gastroenterology, 2006, 131(1), 194~209
    103 Wright MC. The impact of pregnane X receptor activation on liver fibrosis. Biochem Soc Trans 2006, 34(Pt 6), 1119~1123
    104 Marek CJ, Tucker SJ, Konstantinou DK, et al. Pregnenolone- 16alpha-carbonitrile inhibits rodent liver fibrogenesis via PXR (pregnane X receptor)-dependent and PXR-independent mechanisms. Biochem J, 2005, 387(Pt 3), 601~608
    105 Hellemans K, Michalik L, Dittie A, et al. Peroxisome proliferator-activated receptor-beta signaling contributes to enhanced proliferation of hepatic stellate cells. Gastroenterology, 2003, 124(1), 184~201
    106 Marra F, Efsen E, Romanelli RG, et al. Ligands of peroxisome proliferator-activated receptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology, 2000, 119(2), 466~478
    107 Galli A, Crabb DW, Ceni E, et al. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology, 2002, 122(7), 1924~1940
    108 Hellemans K, Rombouts K, Quartier E, et al. PPARbeta regulates vitamin A metabolism-related gene expression in hepatic stellate cells undergoing activation. J Lipid Res, 2003, 44(2), 280~295
    109 Zhao C, Chen W, Yang L, et al. PPARgamma agonists prevent TGFbeta1/Smad3-signaling in human hepatic stellate cells. Biochem Biophys Res Commun, 2006, 350(2), 385~391
    110 Gustafson B, Smith U. Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-L1 preadipocytes. J Biol Chem, 2006, 281(14), 9507~9516
    111 Bowerman B. Cell signaling. Wnt moves beyond the canon. Science, 2008, 320(5874), 327~328
    112 Myung SJ, Yoon JH, Gwak GY, et al. Wnt signaling enhances the activation and survival of human hepatic stellate cells. FEBS Lett, 2007, 581(16), 2954~2958
    113 Cheng JH, She H, Han YP, et al. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol Gastrointest Liver Physiol, 2008, 294(1), G39~49
    114 Schwabe RF, Seki E, Brenner DA. Toll-like receptor signaling in the liver. Gastroenterology 2006, 130(6), 1886~1900
    115 Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology, 2008, 48(1), 322~335
    116 Paik YH, Schwabe RF, Bataller R, et al. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology, (Baltimore, Md.) 2003, 37(5), 1043~1055
    117 Ware CF. The TNF Superfamily-2008. Cytokine Growth Factor Rev, 2008, 19(3-4), 183~186
    118. Rothe J, Lesslauer W, Lotscher H, et al. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature, 1993, 364(6440), 798~802
    119 Gallois C, Habib A, Tao J, et al. Role of NF-kappaB in the antiproliferative effect of endothelin-1 and tumor necrosis factor-alpha in human hepatic stellate cells. Involvement of cyclooxygenase-2. J BiolChem, 1998, 273(36), 23183~23190
    120 Varela-Rey M, Montiel-Duarte C, Oses-Prieto JA, et al. p38 MAPK mediates the regulation of alpha1(I) procollagen mRNA levels by TNF-alpha and TGF-beta in a cell line of rat hepatic stellate cells(1). FEBS Lett, 2002, 528(1-3), 133~138
    121 Reinehr R, Sommerfeld A, Haussinger D. CD95 ligand is a proliferative and antiapoptotic signal in quiescent hepatic stellate cells. Gastroenterology, 2008, 134(5), 1494~1506
    122 Taimr P, Higuchi H, Kocova E, et al. Activated stellate cells express the TRAIL receptor-2/death receptor-5 and undergo TRAIL-mediated apoptosis. Hepatology, 2003, 37(1), 87~95
    123 Cao Q, Mak KM, Ren C, et al. Leptin stimulates tissue inhibitor of metalloproteinase-1 in human hepatic stellate cells: respective roles of the JAK/STAT and JAK-mediated H2O2-dependant MAPK pathways. J Biol Chem, 2004, 279(6), 4292~4304
    124 Gao B. Cytokines, STATs and liver disease. Cell Mol Immunol, 2005, 2(2), 92~100
    125 Jeong WI, Park O, Radaeva S, et al. STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology, 2006, 44(6), 1441~1451
    126 Caligiuri A, Bertolani C, Guerra CT, et al. Adenosine monophosphate- activated protein kinase modulates the activated phenotype of hepatic stellate cells. Hepatology, 2008, 47(2), 668~676
    127 Adachi M, Brenner DA. High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate-activated protein kinase. Hepatology, 2008, 47(2), 677~685
    1 Schuppan D, Afdhal NH. Liver cirrhosis. Lancet, 2008, 371(9615): 838~851
    2 Friedman SL, Bansal MB. Reversal of hepatic fibrosis -- fact or fantasy? Hepatology, 2006, 43(2 Suppl 1): S82~88
    3 Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest, 2007, 117(3): 539~548
    4 Friedman SL. Hepatic stellate cells: protean, multifunctional, andenigmatic cells of the liver. Physiol Rev, 2008, 88(1): 125~172
    5姜慧卿,姚希贤.肝星状细胞的活化与肝纤维化.胃肠病学和肝病学杂志, 2007, 16(1): 86~89
    6 Popov Y, Schuppan D. Targeting liver fibrosis: strategies for development and validation of antifibrotic therapies. Hepatology, 2009, 50(4): 1294~1306
    7 Friedman SL. Mechanisms of disease: Mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol, 2004, 1(2): 98~105
    8 Bataller R, Brenner DA. Liver fibrosis. J Clin Invest, 2005, 115(2): 209~218
    9 Kisseleva T, Uchinami H, Feirt N, et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol, 2006, 45(3): 429~438
    10 Higashiyama R, Inagaki Y, Hong YY, et al. Bone marrow-derived cells express matrix metalloproteinases and contribute to regression of liver fibrosis in mice. Hepatology, 2007, 45(1): 213~222
    11 Kaimori A, Potter J, Kaimori JY, et al. Transforming growth factor-beta1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J Biol Chem, 2007, 282(30): 22089~22101
    12 Zeisberg M, Yang C, Martino M, et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem, 2007, 282(32): 23337~23347
    13 Clouston AD, Powell EE, Walsh MJ, et al. Fibrosis correlates with a ductular reaction in hepatitis C: roles of impaired replication, progenitor cells and steatosis. Hepatology, 2005, 41(4): 809~818
    14 Lowes KN, Brennan BA, Yeoh GC, et al. Oval cell numbers in human chronic liver diseases are directly related to disease severity. Am J Pathol, 1999, 154(2): 537~541
    15 Pinzani M, Milani S, Herbst H, et al. Expression of platelet-derived growth factor and its receptors in normal human liver and during activehepatic fibrogenesis. Am J Pathol, 1996, 148(3): 785~800
    16 Milani S, Herbst H, Schuppan D, et al. Transforming growth factors beta
    1 and beta 2 are differentially expressed in fibrotic liver disease. Am J Pathol, 1991, 139(6): 1221~1229
    17 Sedlaczek N, Jia JD, Bauer M, et al. Proliferating bile duct epithelial cells are a major source of connective tissue growth factor in rat biliary fibrosis. Am J Pathol, 2001, 158(4): 1239~1244
    18 Strazzabosco M, Spirli C, Okolicsanyi L. Pathophysiology of the intrahepatic biliary epithelium. J Gastroenterol Hepatol, 2000, 15(3): 244~253
    19 Patsenker E, Popov Y, Stickel F, et al. Inhibition of integrin alphavbeta6 on cholangiocytes blocks transforming growth factor-beta activation and retards biliary fibrosis progression. Gastroenterology, 2008, 135(2): 660~670
    20 Popov Y, Patsenker E, Stickel F, et al. Integrin alphavbeta6 is a marker of the progression of biliary and portal liver fibrosis and a novel target for antifibrotic therapies. J Hepatol, 2008, 48(3): 453~464
    21 Milani S, Herbst H, Schuppan D, et al. Procollagen expression by nonparenchymal rat liver cells in experimental biliary fibrosis. Gastroenterology, 1990, 98(1): 175~184
    22 Kinnman N, Francoz C, Barbu V, et al. The myofibroblastic conversion of peribiliary fibrogenic cells distinct from hepatic stellate cells is stimulated by platelet-derived growth factor during liver fibrogenesis. Lab Invest, 2003, 83(2): 163~173
    23 Forbes SJ, Russo FP, Rey V, et al. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology, 2004, 126(4): 955~963
    24 De Minicis S, Seki E, Uchinami H, et al. Gene expression profiles during hepatic stellate cell activation in culture and in vivo. Gastroenterology, 2007, 132(5): 1937~1946
    25 Greenwel P, Schwartz M, Rosas M, et al. Characterization of fat-storingcell lines derived from normal and CCl4-cirrhotic livers. Differences in the production of interleukin-6. Lab Invest, 1991, 65(6): 644~653
    26 Xu L, Hui AY, Albanis E, et al. Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut, 2005, 54(1): 142~151
    27 Shibata N, Watanabe T, Okitsu T, et al. Establishment of an immortalized human hepatic stellate cell line to develop antifibrotic therapies. Cell Transplant, 2003, 12(5): 499~507
    28 Omenetti A, Yang L, Li YX, et al. Hedgehog-mediated mesenchymal- epithelial interactions modulate hepatic response to bile duct ligation. Lab Invest, 2007, 87(5): 499~514
    29 Ishimura N, Bronk SF, Gores GJ. Inducible nitric oxide synthase upregulates cyclooxygenase-2 in mouse cholangiocytes promoting cell growth. Am J Physiol Gastrointest Liver Physiol, 2004, 287(1): G88~95
    30 Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest, 2007, 117(3): 524~529
    31 Guyot C, Combe C, Balabaud C, et al. Fibrogenic cell fate during fibrotic tissue remodelling observed in rat and human cultured liver slices. J Hepatol, 2007, 46(1): 142~150
    32 van de Bovenkamp M, Groothuis GM, Draaisma AL, et al. Precision-cut liver slices as a new model to study toxicity-induced hepatic stellate cell activation in a physiologic milieu. Toxicol Sci, 2005, 85(1): 632~68
    33 Khetani SR, Bhatia SN. Microscale culture of human liver cells for drug development. Nat Biotechnol, 2008, 26(1): 120~126
    34 Hui EE, Bhatia SN. Microscale control of cell contact and spacing via three-component surface patterning. Langmuir, 2007, 23(8): 4103~4107
    35 Campbell JS, Hughes SD, Gilbertson DG, et al. Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci U S A, 2005, 102(9): 3389~3394
    36 Ueberham E, Low R, Ueberham U, et al. Conditional tetracycline- regulated expression of TGF-beta1 in liver of transgenic mice leads toreversible intermediary fibrosis. Hepatology, 2003, 37(5): 1067~1078
    37 Czochra P, Klopcic B, Meyer E, et al. Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. J Hepatol, 2006, 45(3): 419~428
    38 Rockey DC. Antifibrotic therapy in chronic liver disease. Clin Gastroenterol Hepatol, 2005, 3(2): 95~107
    39 George J, Roulot D, Koteliansky VE, et al. In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: a potential new therapy for hepatic fibrosis. Proc Natl Acad Sci U S A, 1999, 96(22): 12719~12724
    40 Yingling JM, Blanchard KL, Sawyer JS. Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov, 2004, 3(12): 1011~1022
    41 Liu Y, Wen XM, Lui EL, et al. Therapeutic targeting of the PDGF and TGF-beta-signaling pathways in hepatic stellate cells by PTK787/ ZK22258. Lab Invest, 2009, 89(10): 1152~1160
    42 Wang B, Dolinski BM, Kikuchi N, et al. Role of alphavbeta6 integrin in acute biliary fibrosis. Hepatology, 2007, 46(5): 1404~1412
    43 Cho JJ, Hocher B, Herbst H, et al. An oral endothelin-A receptor antagonist blocks collagen synthesis and deposition in advanced rat liver fibrosis. Gastroenterology, 2000, 118(6): 1169~1178
    44 Teixeira-Clerc F, Julien B, Grenard P, et al. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nat Med, 2006, 12(6): 671~676
    45 Siegmund SV, Schwabe RF. Endocannabinoids and liver disease. II. Endocannabinoids in the pathogenesis and treatment of liver fibrosis. Am J Physiol Gastrointest Liver Physiol, 2008, 294(2): G357~362
    46 Teixeira-Clerc F, Julien B, Grenard P, et al. [The endocannabinoid system as a novel target for the treatment of liver fibrosis]. Pathol Biol (Paris), 2008, 56(1): 36~38
    47 Seki E, De Minicis S, Osterreicher CH, et al. TLR4 enhances TGF-betasignaling and hepatic fibrosis. Nat Med, 2007, 13(11): 1324~1332
    48 Canbay A, Feldstein A, Baskin-Bey E, et al. The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J Pharmacol Exp Ther, 2004, 308(3): 1191~1196
    49 Fiorucci S, Antonelli E, Rizzo G, et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology, 2004, 127(5): 1497~1512
    50 Roderfeld M, Weiskirchen R, Wagner S, et al. Inhibition of hepatic fibrogenesis by matrix metalloproteinase-9 mutants in mice. FASEB J, 2006, 20(3): 444~454
    51 Breuss JM, Gallo J, DeLisser HM, et al. Expression of the beta 6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodeling. J Cell Sci, 1995, 108 ( Pt 6): 2241~2251
    52 Munger JS, Huang X, Kawakatsu H, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell, 1999, 96(3): 319~328
    53 Schuppan D, Jia JD, Brinkhaus B, et al. Herbal products for liver diseases: a therapeutic challenge for the new millennium. Hepatology, 1999, 30(4): 1099~1104
    54 Ferenci P, Scherzer TM, Kerschner H, et al. Silibinin is a potent antiviral agent in patients with chronic hepatitis C not responding to pegylated interferon/ribavirin therapy. Gastroenterology, 2008, 135(5): 1561~1567
    55 Shimizu I, Ma YR, Mizobuchi Y, et al. Effects of Sho-saiko-to, a Japanese herbal medicine, on hepatic fibrosis in rats. Hepatology, 1999, 29(1): 149~160
    56 Bruck R, Ashkenazi M, Weiss S, et al. Prevention of liver cirrhosis in rats by curcumin. Liver Int, 2007, 27(3): 373~383
    57 Imanishi Y, Maeda N, Otogawa K, et al. Herb medicine Inchin-ko-to (TJ-135) regulates PDGF-BB-dependent signaling pathways of hepatic stellate cells in primary culture and attenuates development of liver fibrosis induced by thioacetamide administration in rats. J Hepatol, 2004,41(2): 242~250
    58 Wasser S, Ho JM, Ang HK, et al. Salvia miltiorrhiza reduces experimentally-induced hepatic fibrosis in rats. J Hepatol, 1998, 29(5): 760~771
    59 Zhang BJ, Xu D, Guo Y, et al. Protection by and anti-oxidant mechanism of berberine against rat liver fibrosis induced by multiple hepatotoxic factors. Clin Exp Pharmacol Physiol, 2008, 35(3): 303~309
    60 Chavez E, Reyes-Gordillo K, Segovia J, et al. Resveratrol prevents fibrosis, NF-kappaB activation and TGF-beta increases induced by chronic CCl4 treatment in rats. J Appl Toxicol, 2008, 28(1): 35~43
    61 Stickel F, Patsenker E, Schuppan D. Herbal hepatotoxicity. J Hepatol, 2005, 43(5): 901~910
    62 Beljaars L, Meijer DK, Poelstra K. Targeting hepatic stellate cells for cell-specific treatment of liver fibrosis. Front Biosci, 2002, 7: e214~222
    63 Beljaars L, Weert B, Geerts A, et al. The preferential homing of a platelet derived growth factor receptor-recognizing macromolecule to fibroblast-like cells in fibrotic tissue. Biochem Pharmacol, 2003, 66(7): 1307~1317
    64 Hagens WI, Beljaars L, Mann DA, et al. Cellular targeting of the apoptosis-inducing compound gliotoxin to fibrotic rat livers. J Pharmacol Exp Ther, 2008, 324(3): 902~910
    65 Douglass A, Wallace K, Parr R, et al. Antibody-targeted myofibroblast apoptosis reduces fibrosis during sustained liver injury. J Hepatol, 2008, 49(1): 88~98
    66 Sato Y, Murase K, Kato J, et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen- specific chaperone. Nat Biotechnol, 2008, 26(4): 431~442
    67 Schoemaker MH, Rots MG, Beljaars L, et al. PDGF-receptor beta-targeted adenovirus redirects gene transfer from hepatocytes to activated stellate cells. Mol Pharm, 2008, 5(3): 399~406
    68 Chen SW, Chen YX, Zhang XR, et al. Targeted inhibition ofplatelet-derived growth factor receptor-beta subunit in hepatic stellate cells ameliorates hepatic fibrosis in rats. Gene Ther, 2008, 15(21): 1424~1435
    69 Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov, 2004, 3(8): 673~683
    70 Neef M, Ledermann M, Saegesser H, et al. Low-dose oral rapamycin treatment reduces fibrogenesis, improves liver function, and prolongs survival in rats with established liver cirrhosis. J Hepatol, 2006, 45(6): 786~796
    71 Galli A, Crabb DW, Ceni E, et al. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology, 2002, 122(7): 1924~1940
    72 Popov Y, Patsenker E, Bauer M, et al. Halofuginone induces matrix metalloproteinases in rat hepatic stellate cells via activation of p38 and NFkappaB. J Biol Chem, 2006, 281(22): 15090~15098
    73 Bruck R, Genina O, Aeed H, et al. Halofuginone to prevent and treat thioacetamide-induced liver fibrosis in rats. Hepatology, 2001, 33(2): 379~386
    74 Tugues S, Fernandez-Varo G, Munoz-Luque J, et al. Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology, 2007, 46(6): 1919~1926
    75 Yoshiji H, Noguchi R, Kuriyama S, et al. Imatinib mesylate (STI-571) attenuates liver fibrosis development in rats. Am J Physiol Gastrointest Liver Physiol, 2005, 288(5): G907~913
    76 Mejias M, Garcia-Pras E, Tiani C, et al. Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology, 2009, 49(4): 1245~1256
    77 Hennenberg M, Trebicka J, Stark C, et al. Sorafenib targets dysregulated Rho kinase expression and portal hypertension in rats with secondary biliary cirrhosis. Br J Pharmacol, 2009, 157(2): 258~270