苦参、黄芪药对配伍对病毒性心肌炎的治疗作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     探讨研究苦参、黄芪药对以苦参中槐果碱、苦参碱、氧化槐果碱、槐定碱、氧化苦参碱、黄芪中黄芪甲苷和以增强小鼠免疫功能为指标确定最佳提取方法和最佳配伍比例;研究苦参、黄芪药对配伍后对苦参中氧化苦参碱、氧化槐果碱在大鼠体内血药浓度影响;苦参、黄芪及苦参、黄芪药对提取物体外抗CVB_3病毒及体外对感染CVB_3病毒SD大鼠心肌细胞的保护对比实验研究;研究苦参、黄芪药对提取物对CVB_3诱导Balb/c小鼠心肌炎的治疗作用;研究苦参、黄芪药对提取物对CVB_3诱导Balb/c小鼠心肌炎治疗的可能机制。
     材料与方法:
     1、苦参、黄芪药对的最佳提取方法、比例的确定:苦参、黄芪药对用水分提合并、水合提取、醇分提合并、醇合提取四种提取方法,苦参、黄芪药对按生药量比例1:1、1:2、1:3、1:4、1:5、2:1、3:1、4:1、5:1混合,通过紫外分光光度法测定总生物碱、高效液相色谱法测定苦参中槐果碱、苦参碱、氧化槐果碱、槐定碱、氧化苦参碱、黄芪中黄芪甲苷指标性成分和增强小鼠免疫功能影响的药效研究,确定了苦参、黄芪药对最佳提取方法、最佳配伍比例。
     2、苦参、黄芪药对提取物、单味药苦参提取物中氧化苦参碱、氧化槐果碱在大鼠血浆中的药代动力学研究:分别取健康大鼠6只,雌、雄各半,取空白血浆0.5 mL后,分别灌胃给药(黄芪、苦参药对提取物和苦参提取物),于给药后0.5、1、2、3、4、6、8、10、12、24 h,各从大鼠眼眶后静脉丛取血0.5 mL,进行血浆内苦参、黄芪药对提取物、苦参提取物中有效成分氧化苦参碱、氧化槐果碱的药代动力学分析。
     3、苦参、黄芪及苦参、黄芪药对提取物体外抗CVB_3病毒及体外对感染CVB_3病毒SD大鼠心肌细胞的保护对比实验研究:在体外CVB_3病毒感染的培养心肌细胞模型成功建立的基础上,分病毒对照组、正常细胞对照组、阳性对照药干扰素组,苦参提取物高、中、低剂量组,黄芪提取物高、中、低剂量组,苦参、黄芪药对提取物高、中、低剂量组,分别于第2、5d时间点,在倒置显微镜下测定每孔细胞搏动速率,并进行形态学观察,吸取上清液测定肌酸激酶同工酶(CK-MB)的含量和测定药物抑制病毒滴度。
     4、苦参、黄芪药对提取物对CVB_3感染的Balb/c小鼠心肌炎治疗作用实验研究:纯系雄性Balb/c小鼠,4周龄(体重为12g左右),设苦参、黄芪药对提取物高、中、低剂量组,另外设三个对照组:空白对照组、病毒对照组、玉丹荣心丸阳性对照组,每组二十只小鼠,统计小鼠死亡率,分别在第7d、14d无菌条件下取心脏,用HE染色方法观察小鼠心肌损伤、测定心肌病毒滴度。
     5、苦参、黄芪药对提取物对CVB_3感染的Balb/C小鼠心肌炎治疗作用机制研究:纯系雄性Balb/c小鼠,4周龄(体重为12g左右),设苦参、黄芪药对提取物高、中、低剂量组,另外设三个对照组:空白对照组、病毒对照组、玉丹荣心丸阳性对照组,给药14d后通过免疫组化、原位杂交方法和原位末端标记法对组织进行凋亡形态学分析,观察心肌颗粒酶B的蛋白、BCL-2基因表达,Caspase3的蛋白、基因表达,及心肌细胞凋亡情况,探索苦参、黄芪药对提取物治疗CVB_3感染心肌炎的可能机制。
     结果:
     1.苦参、黄芪药对的最佳提取方法、最佳配伍比例的确定
     苦参、黄芪药对经乙醇合提取,用高效液相色谱法测定苦参中槐果碱、苦参碱、氧化槐果碱、槐定碱、氧化苦参碱五种生物碱的含量最高,分别为1.0128、2.9458、1.0803、0.71790、3.0960mg·g~(-1),黄芪甲苷含量0.11920mg·g~(-1),用分光光度法总生物碱含量3.1880 mg·g~(-1),通过对小鼠免疫功能影响的研究,苦参、黄芪药对经乙醇合提对小鼠免疫功能影响明显优于与其它提取方法对小鼠的免疫功能影响。
     苦参、黄芪药对4:1配伍用高效液相色谱法测定苦参中槐果碱、苦参碱、氧化槐果碱、槐定碱、氧化苦参碱5种生物碱的含量较高高,分别为3.9020、10.740、2.4293、2.2400、6.9530mg·g~(-1),苦参、黄芪2:1配伍黄芪甲苷含量最高为0.13060mg·g~(-1),用分光光度法测总生物碱苦参、黄芪5:1配伍含量最高为3.4740 mg·g~(-1),通过对小鼠免疫功能影响的研究,苦参、黄芪药对2:1配伍比例对小鼠免疫功能影响明显优于与其它配伍比例对小鼠的免疫功能影响。在中药配伍的运用中,我们不仅要考虑单味药物的剂量,更要注意药物用量之间的比例。通过配伍,既能增强原药物的作用,更能调和偏性,取长补短,发挥药物配伍的长处,使各具特征的药物形成一个新的有机整体,以适应复杂病症的治疗需要。在本实验中,以中医药基础理论为指导依据,以药理疗效结果为主要依据,有效成分含量为辅助指标,最终确定苦参、黄芪按生药量配伍的最佳比例为2:1。
     2、苦参、黄芪药对提取物、单味药苦参提取物中氧化苦参碱、氧化槐果碱在大鼠血浆中的药代动力学研究
     大鼠灌胃苦参、黄芪药对提取物后的氧化苦参碱在大鼠体内的最大血药浓度为2.010μg·mL~(-1),达峰时间为6小时,药物分子在体内0-24小时的平均停留时间为12.91小时, 0-24小时药时曲线下面积为22.61mg/L*h;苦参药材中的氧化苦参碱在大鼠体内的最大血药浓度为6.526μg·mL~(-1),达峰时间为4小时,药物分子在体内0-24小时的平均停留时间为15.70小时,0-24小时药时曲线下面积为46.50mg/L*h。将药对提取物和苦参药材提取物处理结果相比较,可得知,黄芪、苦参药对配伍后达峰时间有所延后,除MRT(药物分子在大鼠体内的平均停留时间)较苦参药材提取物大,其余统计据参数均小于苦参药材提取物。
     大鼠灌胃苦参、黄芪药对提取物后的氧化槐果碱在大鼠体内的最大血药浓度为3.954μg·mL~(-1),达峰时间为6小时,药物分子在体内0-24小时的平均停留时间为8.679小时, 0-24小时药时曲线下面积为43.31mg/L*h;苦参药材中的氧化槐果碱在大鼠体内的最大血药浓度为2.202μg·mL~(-1),达峰时间为4小时,药物分子在体内0-24小时的平均停留时间为9.385小时, 0-24小时药时曲线下面积为26.11mg/L*h。从统计据参数结果分析,给苦参药材的血药达峰时间为4小时,而给药对的为6小时,苦参药材明显比药对的时间短,一般会认为苦参中的氧化槐果碱吸收的较快,更易被大鼠吸收,但是从大鼠体内的最大血药浓度分析,给苦参的血药最大浓度为2.202μg·mL~(-1),而给药对的则是3.954μg·mL~(-1),药对明显高于苦参,说明药对中的氧化槐果碱比较容易被大鼠吸收。此外从AUC(药时曲线下峰面积)来看,苦参、黄芪药对明显高于苦参药材,认为苦参、黄芪药对提取物能促进氧化槐果碱的吸收。
     3、苦参、黄芪及苦参、黄芪药对提取物体外抗CVB_3病毒及体外对感染CVB_3病毒SD大鼠心肌细胞的保护对比实验研究
     在第2d时,苦参提取物高剂量组,苦参、黄芪药对提取物高、中剂量组与病毒对照组有显著性差异(P<0.05),但是苦芪的高、中剂量组与苦参高剂量组没有显著性差异(P>0.05),但在第5d天时,苦参高、中剂量组和苦参、黄芪药对提取物高、中、低剂量组与病毒对照组有显著性差异(P<0.05),并且苦参、黄芪药对提取物高、中剂量组与苦参高、中剂量组有显著性差异(P<0.05)
     4、苦参、黄芪药对提取物对CVB_3感染的Balb/C小鼠心肌炎治疗作用实验研究
     通过死亡率统计、病毒滴定分析、病理切片结果分析在7d时,只有高剂量苦参、黄芪药对提取物组有降低死亡率、对病毒的有抑制及保护心肌作用。在第14d时苦参、黄芪药对提取物高、中、低均能对病毒的有抑制及保护心肌作用,并且有良好的剂量-效用关系。
     5、苦参、黄芪药对提取物对CVB_3感染的Balb/C小鼠心肌炎治疗作用机制研究
     给药14d后通过免疫组化、原位杂交方法和原位末端标记法对心肌组织进行凋亡形态学分析,苦参、黄芪药对提取物能够降低心肌颗粒酶B的蛋白、Caspase3的蛋白、基因及心肌细胞凋亡情况表达,上调BCL-2基因表达,苦参、黄芪药对提取物的高、中、低剂量对蛋白、基因表达水平有显著性差异。
     结论:
     1、苦参、黄芪药对最佳提取方法为乙醇合提取,最佳配伍比例为2:1。
     2、苦参、黄芪药对提取物中黄芪能够促进苦参中氧化槐果碱吸收,促进氧化苦参碱转化为苦参碱而被吸收。
     3、苦参、黄芪药对提取物对CVB_3感染的心肌细胞的保护及抗病毒作用优于单味药苦参、黄芪。
     4、苦参、黄芪药对提取物对CVB_3感染的Balb/c小鼠心肌炎有治疗作用。
     5、苦参、黄芪药对提取物可能是通过降低心肌颗粒酶B的蛋白、Caspase3的蛋白、基因表达,及心肌细胞凋亡情况表达,上调BCL-2基因表达而对病毒性心肌炎起到一定的治疗作用。
Objection:
     1.To determine the proportion of the optimal compatibility and the optimal extracting methods of Sophorae Flavescentis Radix and Astragalus membranaceus couplet medicines through studying the enhancing immune function of mice.
     2.To compare the rats’plasma levels of Oxymatrine and Oxysophorcarpine after administering the extracting components of Sophorae Flavescentis Radix and Astragalus membranaceus couplet medicines with those only administering Sophorae Flavescentis Radix .
     3. To study of Antivirus effects against coxsackie virus B_3 of the extracting components of Sophorae Flavescentis Radix and Astragalus membranaceus couplet medicines and its protective effects on myocardial cells infected by Coxsackie virus B_3 in vitro.
     4. To investigate the curing effects of the extracting components of Sophorae Flavescentis Radix and Astragalus membranaceus couplet medicines on experimental coxsackievirus B_3 myocarditis in vivo.
     5. To study the underlying molecular mechanisms of the extracting components of Sophorae Flavescentis Radix and Astragalus membranaceus couplet medicines on murine virus myocarditis model induced by Coxsackievirus B_3.
     Material and method:
     1. Four methods of extracting were used: Water-extracting respectively and then combined the extracting-liquid together, and then fried; combined the two medicines together and then Water-extracting and then fried; ethanol-extracting respectively and then combined the extracting - liquid together, and then fried; combined the two medicines together and then ethanol-extracting and then fried. The dose ratio of the two herbs are 1:1、1:2、1:3、1:4、1:5、2:1、3:1、4:1、5:1. The contents of the total alkaloids of the extracts have been analyzed by ultraviolet spectrophotometry and the contents of Sophocarpin、Matrine、Oxysophoridine、Sophoridine、Oxymatrine and AstragalosideⅣwere analyzed by high performance liquid chromatography. The mice immune functions were studied after administered the components extracted from Sophorae Flavescentis Radix and Astragalus membranaceus couplet medicines. Using orthogonal design method, the optimal extraction process of the two herbs was determined.
     2. To investigate and compare with the Oxymatrine and Oxysophorcarpine pharmacokinetic parameters after giving the extracting components of Sophorae Flavescentis Radix and Astragalus membranaceus couplet medicines with those only giving the extracting components of Sophorae Flavescentis Radix using the internal standard method. There are two groups of mice, each six animals: one group administered the extracting components of Sophorae Flavescentis Radix and Astragalus membranaceus couplet medicines intragastrically, the other administered the extracting components of Sophorae Flavescentis Radix intragastrically. At 0.5 hours before the administration and at 0.5、1、2、3、4、6、8、10、12、24 h after the administration,0.5ml of the vein blood was sampled to observe the contents of Oxymatrine and Oxysophorcarpine in the blood serum.
     3. Construct VMC model in vitro by infecting myocardiocytes of newborn Wistar rat. Groups: negative control(NC),virus group(VK),Ribavirin (RBV); Sophorae Flavescentis Radix high、medium、lower does treatment, Astragalus membranaceus high, medium、lower does treatment, the extracting components of Sophorae Flavescentis Radix and Astragalus membranaceus couplet medicines high、medium、lower does treatment, At 2,5 d after administering medicine, respectively, the cell beating rate of each hole are determined under the inverted microscope. The morphological changes of the cells were also observed under the inverted microscope. Cell survival rate was measured by MTT, and observe the protection from cytopathic effects (CPE),percentage of beat cells(PBC)and creatine kinase isoenzyme MB(CK-MB)
     4. Experimental research of the treatment of the extracting components of Sophorae Flavescentis Radix and Astragalus membranaceus couplet medicines on VMC model infected by CVB_3. Animals: pure male Balb/C mice, 4 weeks of age (weight about 12g). Groups: the extracting components of Sophorae Flavescentis Radix and Astragalus membranaceus couplet medicines high, medium and low dose group, control group, virus control group, Yu Dan Rong Xin Pill positive control group, 20 mice each group. Each group was divided into two sub-groups: one group sacrificed at 7d, the other at 14d. The survival rates, TCID50, histopathology changes were detected and compared.
     5. Using immunohistochemistry, in situ hybridization and in situ end labeling, Granzyme B protein, BCL-2 gene expression, Caspase3 protein, gene expression, and myocardial apoptosis were observed of each group sacrificed at 14d.
     Results:
     1. The optimal compatibility ratio of the Sophorae Flavescentis Radix and Astragalus membranaceus is 2:1. The optimal method of extracting is combining the two medicines together and then ethanol-extracting. The contents of the total alkaloids of the extracts have been analyzed using high performance liquid chromatography. The five highest contents of alkaloids were sophocarpine, matrine, oxysophocarpine, sophoridine and oxymatrine, And their contents 1.0128, 2.9458, 1.0803, 0.71790,
     3.0960 mg·g~(-1) respectively. The astragaloside is 0.1192 mg·g~(-1), the total alkaloid content 3.188 mg·g~(-1) by spectrophotometry.
     However when the ratio of the two herbs 4:1 , using the method combining the two medicines together and then ethanol–extracting, the five highest content of alkaloids were 3.9020, 10.470, 2.4293, 2.2400, 6.9530 mg·g~(-1), respectively. The astragaloside was up to 0.1306mg·g~(-1) the total alkaloid content was 3.474 mg·g~(-1).
     Through the study of the effects on immune function research, we found the method combining the two medicines (Sophorae Flavescentis Radix and Astragalus membranaceus ratio 2:1) together and then ethanol–extracting was better than other extraction methods on enhancing the immune function of mice. When the Chinese herbal medicines were used, we should not only consider the dose of the single herbs, but also pay attention to the ratio between the amounts of herbs. By compatibility, not only the role of the original herbs, but also their co-effect should be considered. Side effects and therapy effects play the same functions to the strengths of drug compatibility, so that the characteristics of the drugs with the formation of a new organic whole, to meet the needs of complex treatment of disease. In this experiment, with the guidance of the basic theory of Chinese medicine based on the results with pharmacological effect is mainly based on secondary indicators of active ingredient content, finalize flavescens, Astragalus dosage according to the compatibility of Health and the optimum ratio of 2:1.
     2. The pharmacokinetic results of Oxymatrine, oxysophocarpine after administered the extracting components of Sophorae Flavescentis Radix and Astragalus membranaceus couplet medicines and the extracting components of Sophorae Flavescentis Radix intragastrically : After administered the extracting components of Sophorae Flavescentis Radix and Astragalus membranaceus couplet medicines, the greatest concentration of Oxymatrine in rats’plasma is 2.01μg·mL~(-1) and the peak time was at 6 hour.The peak time was at 12.91 hours after administering. The mean residence time of drug molecules staying in the body at 0-24 hours 22.61mg/L·h hours, The area under the curve of 0-24 hours was 43.31mg / L·h. After administered the extracting components of Sophorae Flavescentis Radix intragastrically, the greatest concentration of Oxymatrine in rats plasma 6.526μg·mL~(-1), and the peak time was at 4 hours, The mean residence time of drug molecules staying in the body at 0-24 hours was 15.70 hours, The area under the curve of 0-24 hours was46.50mg/L*h. After administered the extracting components of Sophorae Flavescentis Radix and Astragalus membranaceus couplet medicines, the greatest concentration of Oxysophocarpine in rats’plasma is 3.954μg·mL~(-1).The peak time was at 6 hours after administering. The mean residence time of drug molecules staying in the body at 0-24 hours 8.679 hours, The area under the curve of 0-24 hours was 43.31mg / L * h. After administered the extracting components of Sophorae Flavescentis Radix intragastrically, the greatest concentration of oxysophocarpine in rats plasma 2.202μg·mL~(-1) , and the peak time was at 4 hours, The mean residence time of drug molecules staying in the body at 0-24 hours was 9.385 hours, The area under the curve of 0-24 hours was 26.11mg / L * h. According to the results the plasma Sophors peak time at 4 hours, after administering the extracting components of couplet medicines, compared with administered the extracting components of Sophorae Flavescentis Radix intragastrically,at 6 hours. The plasma peak time of extracting components of couplet medicines is significantly later than that of the extracting components of Sophorae Flavescentis Radix. The maximum concentration of oxysophocarpine in plasma administering the extracting components of couplet medicines was 2.202μg·mL~(-1), while 3.954μg·mL~(-1)after the administration of the extracting components of Sophorae Flavescentis Radix. These meaned that Oxymatrine and oxysophocarpine was to be more easily absorbed in rats.
     3. The replication of virus be reduced after administer the the extracting component of Sophorae Flavescentis Radix, Astragalus membranaceus, the extracting components of couplet medicines in vitro and they can increase PBC, reduce CPE and CK-MB of myocardiocytes. At 2 days, there were significant differences in decreaseing the virus titer (P <0.05),between the high dose group Sophorae Flavescentis Radix, the extracting components of couplet medicines high, middle dose group and virus control group. There was no significant difference (P> 0.05) between these three groups respectively. On day 5, There are significant difference (P <0.05), compared Sophorae Flavescentis Radix high、medium does group and high dose group、couplet medicines high, medium and low dose group with virus control group. And there were significant difference (P <0.05) compare the couplet medicines high, medium group with Sophorae Flavescentis Radix high、medium does group. There was significant inhibition of viral replication in the groups of couplet medicines. The extracting components of Sophorae Flavescentis Radix and Astragalus membranaceus couplet medicines can reduce the cytopathic effect, raise the percentage of cultured myocardial cells and reduce the enzyme CK-MB, can have a protective effect myocardial cells against CVB_3 infection.
     4. Experimental results of the extracting components of couplet medicines t on CVB_3 drugs on infection of Balb / C mice with myocarditis: At 7d, only the extracting components of couplet medicines high dose group, can reduce mortality, and protect myocardial function against virus, according to mortality statistics, virus titration analysis, histopathology changes. At the time 14d, in the extracting components of couplet medicines high, medium and low dose group, TCID50 and histopathology changes in VMC mice myocardium were reduced significantly compared with other groups. The extracting components of couplet medicines can protect the myocardial function of VMC Balb / C mice and have a good dose-effect relationship. Yu Jung Dan Pill could also increase the survival rate of sick mice, significantly reduced inflammatory cell infiltration and myocardial necrosis.
     5. The result of Investigating the underlying mechanism: at 14d after administration by immunohistochemistry, in situ hybridization and in situ end labeling for apoptotic morphological analysis of the organization, the extracting components of couplet medicines can reduce the Granzyme B protein, BCL-2 gene expression, Caspase3 protein, gene expression, and myocardial expression of apoptosis, and the extracting components of couplet medicines were significantly lower on gene expression levels.
     Conclusion:
     1. The optimal compatibility ratio of the Sophorae Flavescentis Radix and Astragalus membranaceus is 2:1. The optimal method of extracting is combining the two medicines together and then ethanol-extracting
     2. The concentrtions of Oxymatrine and Oxysophorcarpine in the blood serum after administering the extracting components of couplet medicines intragastrically was higher than those of administering of Sophorae Flavescentis Radix intragastrically.
     3. The extracting components of couplet medicines can antiviral CVB_3 infection of myocardial cells and protection is better than single Chinese medicine Sophorae Flavescentis Radix and matrine, astragalus.
     4. The extracting components of couplet medicines has therapeutic effects. CVB_3 infection in Balb / C mice with myocarditis.
     5. The extracting components of couplet medicines may be through the reduction of Granzyme B protein, Caspase3 protein and its gene expression, BCL-2 gene expression up-regulation, and myocardial expression of apoptosis play against some viral treatment.
引文
1.陈灏珠,范维虎,金雪娟,等11948~1999年上海地区住院心脏病种的变化趋势[J]中华内科杂志, 2003, 42: 829 - 832.
    2.戴华生,等.新实验病毒学.北京:中国学术出版社.1993年12月第l版
    3.陈瑞珍.病毒性心肌炎诊断和治疗进展[J]中国全科医学, 2006,18: 1484-04
    4.杨英珍,熊丁丁,李延文,等.肠道病毒感染与心肌炎发病关系的研究[J]中华内科理论与实践(四),1997,96~98.
    5. Bergelson JM,Cunningham JA,Droguett G,et a1.Isolation of a common receptor for coxsalkie B viruses and adenoviruses 2 and 5[J].Science,1997,275(5304):1320—1323.
    6.杨英珍,等.病毒性心肌炎[M].上海:上海医科大学出版社,1991年7月,第一版
    7. Andreoletti L,Hober D,Becquart P,et a1.Experimental CVB3-induced chronic myocarditis in two murine strains:evidence of interrelationships between virus replication and myocardial damage in persistent cardiac infection[J].J Med Virol,1997,52(2):206-214.
    8. Klingel K,Hohenadl C,Canu A,et a1.Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection:quantitative analysis of virus replication,tissue damage,and inflammation[J].Proc Natl Acad SciUSA,1 992,89(1):314—318
    9. Ruechert RR.Pieornaviridae:The virus and the their Replication. Fields BN,KruPe DM and Howley PM,eds.In: Fundamental Virology. New York:Raven,1996,475-522
    10. Towbin JA.The role cytoskeletal Proteins in cardiomy opathies.Current OPinion.In Cell Biology,1998,10:131一139
    11. Badorff C,Lee GH,LamPhear BJ,et al.Enteroviral Protease ZA cleaves dystrophin:evidence of cytoskeletal disruption in an acquired cardiomypathy.Nat Med,1999,5:320-326
    12. Peterson JFW,Cherney MM,Liebig HD,et al.The structure of theZA proteinase from a common cold virus:a Pro-teinase responsible for theshut-off ofhost-cell Protein syniesis. EMBO,1999,18(20):5463-5475
    13. Kerekatte V,Keiper BD,Badorff C,et al Cleavage of Poly (A)-bing ding Protein by Cox saekievirus ZA Protease in vitro and in vivo:another mechanism for host protein synthesis shuoff J Virol,1999,73:709
    14. Seko Y ,Shinka Y ,Kawasaki A ,et al .Evidence of perforin-mediated cardiac myocyte ijury in acute myocarditis caused by coxsackie virusB 3,Pathol,1993,170:53-58
    15. Henkart.P.A. Mechanisam of 1ymphocyte-mediated cytotoxicity. Annu.Rev. Immunol 1985,3:31
    16. Henkart.P.A.Lymphocyte-mediated cytotoxicity:two pathways and multiple effector molecules,Immunity 1994,l:343-346
    17. Pham C.T.N.and Ley T.J.Semin. Immunol 1997,9:127—133
    18. Heusel.J.W, Wessel schmidt.R.L, Shresta.S,et a1.Cytotoxic lymphocytes require granzyme B for the rapid induetion of DNA fragmentation and apoptosis in a11ogeneictarget cel1s.Cell 1994.76:977—987
    19. Jonathan W.Heusel,Robin L.Wesselschmidt,Sujan Shresta,et al.Cytotoxic Lymphocytes Require Grartzydle B for the Rapid Induction of DNA Fragmentation and Apoptosis in A11ogeneic Target Cel1s.Cel1,1994,76:977-987
    20. Trapani-JA,Jans-P,Smyth-MJ,et a1.Perforin-dependent nuclear entry ofgranzyme B precedes apoptosis and is not a consequence of nuclear membrane dysfunction.Cel1-Death-Differ,1 998,5(6):488-496
    21. Darmon A.J.,Nicholson D.W.,B1eackly.R.C.Activation of the apoptotic protease CPP32 by cytotoxic T-cell一derived granzyme B. Nature,1995,377:446-448.
    22. Shi.L.,Chen.G.,MacDonald.G,et a1.Activation of an interleukin I converting enzyme-dependent apoptosis pathway by granzyme B.Proc .Nat I.Acad.Sci. USA, 1996,93:11002-11007.
    23. Darmon A.J.,Ley.T.J.,Nicholson.D.W.,et a1.Cleavage of CPP32 by granzyme B represents a critical role for granzyme B in the induction of targetcell DNA fragmentation.J.Bi01.Chem,1996,271:21709-21710.
    24. Jan P M,Rene E.M.,Carson S,et a1.Cleavage of Fiice (caspase-8) by granzyme B during cytotoxic T Iymphocyte-induced apoptosis.Eur.J.Immunol1997 27: 3492 -3498
    25. Satoh M,Hiramori K,Tamura G et a1.Apoptosis in the process from viral myocarditis tO dilated cardiomyopathy. Nippon Rinsho,1996;54(7):1982—1985
    26. Chang H,Han B,Han XZ.The mechanisms responsible for the therapeutic effects of anti-Fas ligand antibody on viral myocarditis in mice.Zhonghua Er Ke Za Zhi.2005;43(12):920-924
    27. 27. Fella B,Shikrut M,Less H,et a1.Fas mediated damage to ventricular myocytes induced by cytotoxic T lymphocytes from perforin-deficient mice:a major role for inositoll,4,5-trisphophate.Circ Res,1998,(82):438-442
    28.熊丁丁,杨英珍,宿燕岗,等.穿孔素和Fas配体在柯萨奇B3病毒性心肌炎小鼠心肌浸润细胞中表达[J]中华微生物学和免疫学杂志,1998,18(1):29.33.
    29. Seko Y,Kayagaki N,Seino K,et a1.Role of Fas/FasL pathway in the activation of infiltrating cells in murine acute myocarditis caused by coxsackinevirus B3.J Am Coll Cardiol,2002,39(8):1399-1403.
    30. Satoh M,Hiramori K,Tamura G et a1.Apoptosis in the process from viral myocarditis to dilated cardiomyopathy.Nippon Rinsho,1996;54(7):1982-1985
    31. Schmidtke M,Gluck B,Merkle I,et a1.Cytokine profiles in hean,spleen,and thymus during the acute stage of experimental coxsackievirus B3-induced chronic myocarditis.J Med irol,2000;61(4):518-526
    32. Schmidtke M,Gluck B,Merkle I,et a1.Cytokine profiles in hean,spleen,and thymus during the acute stage of experimental coxsackievirus B3·induced chronic myocarditis.J Med irol,2000;61(4):518—526
    33. Kubota T,McTiernan CF,Frye CS,et a1.Cardiac-specific overexpression of tumor necrosis factor-alpha causes lethal myocarditis in transgenic mice.J Card Fail,1997;3(2):117-124
    34. Kishimoto C,Kuroki Y’Hkaoka Y,et a1.Cytokine and mufine coxsackievirus B3 myocarditis.Interleukin-2 suppressed myocarditis in the acute stage but enhanced the condition in the subsequent stage. Circulation,1994;89(6):2836·2842
    35. Oddis CV,Finkel MS . NF-kappa B and GTP cyclohydrolase regulate cytokine-induced nitric oxide production by cardiac myocytes.Am J Physiol,1996;270(5 Pt 2):H1864-1868
    36. Bevan AL,Zhang H,Li Y et a1.Nitric oxide and Coxsacldevirus B3 myocarditis:differential expression of inducible nitric oxide synthase in mouse heart after infection with virulent or attenuated virus.J Med Virol,2001;64(2):175.182
    37. Yamada T,Matsumori A,wang W Z,Ohashi N,Shiota K,Sasayama S.Apoptosis in congestive heart faiure induced by viral myoearditis in mice.HeartVessels,1999,14(1):29-37
    38.王佐,等,蛋白苦瓜对柯萨奇B3病毒性心肌炎小鼠半胱天冬酶3活性及凋亡的抑制作用[J]中国动脉硬化杂志,2003,11(2):107-110
    39. Akhter SA,Luttrell LM,Rockman HA et al.Targeting the receptor-Gq interface to inhibit in vivo Pressure over load myoeardlal hyPetrophy.Seience,1998,280:574-577.
    40. Thrainsdottir IS, von Bibra H, Malmberg K, et al. Effect of trimetazidine on left ventricular function in patients with type 2 diabetes and heartfailure [ J ]. J Cardiovasc Phaemacol, 2004, 44:101-108.
    41.程玉防、马凤山等.益气养阴法治疗病毒性心肌炎[J」.吉林中医药,1994:3:18
    42.李七一,等.益心气法在急性病毒性心肌炎中的应用「J」.南京中医学院学报,1991;2:77
    43.曹洪欣,等.参白口服液治疗VMC后遗症的临床研究「J〕.中国中医药科,1997;(l):33
    44.沈博生.益气养阴法治疗病毒性心肌炎之我见〔J].上海中医杂志,2000,34(11).14
    45.彭天庆,恙英珍.黄芪对柯萨奇B3病毒核糖核酸作用的研究及其机理探讨〔J〕.中国中西医结合杂志,1994,14(11):664
    46.尚涛,杨英珍,杨学义,等.黄芪对小鼠急性病毒性心肌炎作用心肌细胞电生理研究[J].中国中西医结合杂志,1994,14(5):292
    47.刘晶星,陆德源,陈曙霞,等.苦参抗柯萨奇B组病毒的初步研究.上海第二医科大学学报,1991,11(2):140.
    48.陈福祥,刘晶星,陆德源.苦参总碱体外抗柯萨奇B病毒3型(CVB3)作用试定及其机理的初步研究.中华实验和临床病毒.1995,9(2):18.
    49.刘晶星,陈福祥,陈曙霞.苦参总碱抗柯萨奇B病毒作用机理研究[J].上海第二医科大学学报,1996,16(3):183-185.
    50.陈婷婷,陈曙霞,刘晶星.苦参总碱有效成分对柯萨基B3m病毒感染的HeLa细胞的保护作用.中国实验临床免疫学志,1997,9(1):18-21.
    51.朱莉,刘晶星,钱富荣.苦参总碱对小鼠脾细胞产生干扰素的影响[J].上海第二医科大学学报,1998,18(3):204-206.
    52.陈福祥,刘晶晶,路德源.苦参总碱体外抗柯萨奇B3型作用测定及其机理的初步研究[J].中华实验和临床病毒学杂志1995.39(2):15
    53.申元英,等,大黄在体内抗柯萨奇病毒B3的实验研究[J]中国病毒学,2001, 16(1):B5-8
    54.陈相健,陆曙,耿茜,等.黄芪总皂苷对CVB3感染心肌细胞cTnl、SERCA2活性及mRNA表达的影响[J].中国病理生理杂志,200016(10):1087
    55.吴伟忠,杨英珍,金佩英,等.黄芪对BALB/C小鼠感染CoxsakieB:病毒后T细胞免疫的影响[J].中国病毒学报,1992,7(2);129-133
    56.曹洪欣,等.病毒性心肌炎TNF-α、IL-6、IFN-γ的变化及参白口服液防治作用的研究[J],中国中医药杂志.2002,(9)1:30
    1. Kandolf R ,Klingel K ,Mertsching H ,et al. Molecular studies one nteroviral heart disease: patenrs of acute and persistent infections.Eur Heart J, 1991,12 (suppl D ):49 -55.
    2. Kawai C .From myocarditis to cardiomyopathy:mechanism of in flammation and cell death. Leaming from the past for the future. Circulation, 1991, 99:1091一1100.
    3. Friman G, Wesslen L, Foahlman J, et al. The epidemiology of in fections Of myocarditis, lymphocytic myocarditis and dilated. cardiomyopathy. Eur Heart J, 1995,16(suppl O ):36 -41.
    4. Koide H ,Kitaura Y,DeguchiH ,et al .Genomic detection of enteroviruses in the myocardium studies on animal hearts with Coxsackievirus B3 myocarditis and endomyocardial biopsies from patients with myocarditis and dilatedcardiomyopathy.Jpn CircJ ,1992,56:1081一1093.
    5. Martino TA,Liu P,Sole MJ. Viral infection and the pathogenesis of dilated cardiomyopathy. Cir Res,1993,74:182-188.
    6. Mason J W.Myocarditis and dilated cardiomyopathy:an inflammatory link.Cardiovascular Research 2003;60:5-10.
    7. Lewis DA, Dhala A. Syncope in the pediatric patient.The cardiologist's perspective. Pediatr Clin North Am, 1999,46:205-219
    8.杨英珍主编。病毒性心脏病[M].第一版.上海:上海科学技术出版社。2001:27,52-53
    9. Wolfgram LJ,Beisel KW,Hersknowitz A,et a1.Variations in the suecepubility to CVB3 induced myocarditis among different strains of mice J lmmunol.1986:5:1856
    10. Servemi GM,MestroniL ,Falaaschi A et al .J Clin Micro1 993,31( 5):1345-1349
    11. Woodruf JF.Viral Myocarditis (review). Am J Pathol,1980,101:427-482
    12. Yang YZ,Jin PY,Guo Q,et al.Effect of Astragulas membranaceus on natural killer cell activity and induction of alpha-and gamma-interferon in patients with Coxsackie B viral myocarditis.Chin Med J(Engl), 1990, 103(4):304-307.
    13. Ying YZ,Jin PY,Guo Q,et al.Treatment of experimental Coxsackie B-3 viral myocarditis with Astragalus membranaceus in mice.Chin Med J(Engl),1990,103(1):14-18.
    14.彭程,胡晋红等.正交试验优选苦参方中苦参有效成分的提取工艺[J].药学服务与研究,2007,7(2):124-125
    15.刘勇,熊阳,黄绳武.不同提取方法对苦参生物碱的影响[J]。河南中医学院学报,2004,19(6):38-39
    16.吴永平,曾园,曹正中.黄芪活性成分最佳提取工艺探讨[J].时珍国医国药2001, 12(10):867-868
    17.中国药典[S].一部.2005:141
    18.张中苏张林英.苦参薄层色谱法的改进[J].中国中药杂志1995,20(3):171-172
    19.中国药典[S].一部.2005: 212
    20.李建伟.酸性染料比色法测定苦参药材中总生物碱的含[J].2007,21(5):331-332
    21.刘喜纲,刘翠哲,常金花.应用酸性染料比色法测定总生物碱的含量[J].中国药房2007,18(11):875-876
    22.程岚,李瑞海,袁子民等. HPLC-ELSD测定补血胶囊中黄芪甲苷的含量[J].中成药.2007,29(10):1539-1540
    23.王光忠,胡克.高效液相色谱一蒸发光散射检测法测定静心胶囊中黄芪甲苷的含量[J].中国医院药学杂志2006,26(9):1066
    24.田娟,王维皓,高慧敏等. HPLC测定复方苦参注射液中苦参碱、槐定碱和氧化苦参碱的含量[J].中国中药杂志,2007,32(2):222-223
    25.颜培宇于晓红张德山等。黄芪多糖注射液对免疫功能低下小鼠血清IL一4和IFN-4影响的实验研究[J].内蒙古中医药.2007,10:35-36
    26.李晓梅,鞠玉琳.中药“FH’’对小鼠血清溶血素和淋巴细胞转化的影响[J].延边大学农学学报.2005.27(3):197-198
    27.曲晓波.扶正除疫颗粒对免疫功能低下动物免疫调节作用的实验研究[J].长春中医学院学报.2005,21(1):37-38
    28.李华,肖顺汉等.国窖1 573对小鼠免疫功能的影响[J].酿酒.2005,32(1):74
    29.隆雪明,刘湘新,丁小波等.艾叶复方制剂对小鼠免疫功能的影响[J].中国兽医杂志,2008,44(2):51
    30.张宸豪,高俊涛等.红芪提取物对柯萨奇病毒抑制作用的研究.吉林医药学院学报.2005;26(3):132
    31.张巧玲,杨占秋等.4种药用植物提取物体外抗柯萨奇病毒B3作用的研究.武汉大学学报.2005;26(2):157
    32.张宸豪,高梅等.板蓝根对柯萨奇病毒抑制作用的研究.第四军医大学吉林军医学院学报.2003;25(3):125
    33.揣侠,陆春雨等.柯萨奇病毒性心肌炎的研究进展.河北医科大学学报.2004;25(2):112
    34.苏琦华,訾自强等.黄芪对体外B组柯萨奇病毒持续感染抑制作用的研究.天津医科大学学报.2004;10(3):382
    35.李双杰,张召才,陈瑞珍,等.黄芪甲苷治疗Balb/C小鼠CVB病毒性心肌炎疗效研究[J].中华实用中西医杂志,2004,4(17):681—683.
    36.焦霞,沈其昀.苦参生物碱的临床及药理研究进展.2002;13(3):192
    37.熊常初,张宏考,聂炜娟.病毒性心肌炎的中医研究进展.中华医学丛刊.2004;(1):7
    38.张俊清,陈峰等.现代中药研究的边缘学科领域一中药药代动力学的研究进展[J].时珍国医国药,2007,18(4):844-845
    39.孟根达来,王毅,贾福群.反相离子对高效液相色谱法测定人血浆中苦参碱和氧化苦参碱[J].药物分析杂志. 2003,23(6):440-442
    40.张蕾,王志伟. HPLC.MS法同时测定大鼠血浆中苦参碱、氧化苦参碱和氧化槐果碱的浓度及其药代动力学[J].药学学报. 2008,43(8):843—847
    41.钟大放.以加权最小二乘法建立生物分析标准曲线的若干问题[J].药物分析杂志,1996,16(5):343
    42.陈志扬,郑青山,孙瑞元.大型药理学计算软件DAS的功能介绍[J].中国临床药理学于治疗学,2002,7(6):562
    43.陈曙霞.抗柯注射液对柯萨奇B3病毒性心肌炎和扩张型心肌病持续感染干预的实验研究[J].临床心血管病杂志,2003,19(4):222~224.
    44.刘文春,黄星原黄芪注射液对病毒性心肌炎小鼠生存率及预后的影响[J].湖北中医杂志,2004,26(7):10-l1.
    45.郭棋,彭天庆,杨英珍,等.黄芪对柯萨奇B3病毒感染培养大鼠心肌细胞Ca2+内流及其RNA复制的影响.中国中西医结合杂志,1995,15(8):48-485
    46. Renes J,Helin M,Vaino P,et al. Clinical outcome and letf ventricular function
    23years after acute coxsaekie viurs myoperiearditis.Eur HeartJ,1990:11:182-188.
    47. Clarke SJ,McStay GP,Halestrap AP,et al.Sanglifehrin A acts as a potent inhibitor of the mitochordial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporine A.J Bio Chem,2002,277(38):34793-34799.
    48. Padalko E,Nuyens D,De Palma A,et a1.The interfeion inducer ampligen [Poly(I)-Poly(C12U)]markedly protects mice against Coxsackie B3 virus-induced myocartfitis [J] Antimiciob Agents Chemother , 2004 ,48(1267-274.
    49. Daliento L , Calabrese F , Tona F , et a1.Successful treatment of enterovirus-induced myocarditis with interferon-al-pha [J] J Heart Lung Transplant,2003,22(2):214-217
    50. Griffin LD,Keanrey D,NiJ,et al.Analysis of formalin-fixed and frozen myoeardial autopsy smaples of viral genome in childhood myoearditis and dialted cardimyopathy with Endoeardial fibroelastosis using polymerase chain reaction (PCR).Cardlovas Phatol,1995;4(l)3-11.
    51. Henke,A.,Launhardt,H.,Klement,K.,Stelzner,A.,et al.Apoptotsis in coxsackievirus B3-caused diseasesInteraetion between the capsid proteinVP2 and the Proapoptotic protein siva.J.Virol,2000,74:4284-4290
    52. Alter P,Jobmann M,Meyer E,Pankuweit S,Maiseh B.ApoPtosis in myoearditis and dilatecardiomyoPathy:dose enterovirus genome Persistence Protect from apoptosis from apoptosis? An endomyoeardial bioPsy study.Cardiovasc Pathol,2001,10(5):229-34
    53. Ville Kyto,Antti Saraste,Jan Fohlman,Nils-G.llbaek,et al.Cardiomyoeyte ApoPtosis after antiviral WIN 54954 treatment in murine Coxsackie virusB3 myocarditis. Seand Cardiovase J,2002,36(l):187一192
    54. Saraste A, Arola A, Vuorinen T,et al.Cardiomyocyte apoptosis in experimentalcoxsackievirus B3 myocarditis.Cardiovasc Pathol,2003,12(5):255-262.
    55. Desagher S,Osen-Sand A,Nichols A,et al.Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis[J].J Cell Biol,1999,144(5):891-901.
    56. Carthy CM,Yanagawa B,Luo HL,et al.Bcl-2 and Bcl-xL overexpression inhibits cytochromosome c release,activation of multiple caspases and virus release following coxsackievirus B3 infection. Virology,2003,313:147-157
    57. Huber SA,Born W,O’Brien R.Dual functions of murine cd cells in inflammation and autoimmunity in coxsackievirus B3-induced myocarditis:role ofVc1+ andVc4+cells.Microbes and Infection,2005,7:537–543
    58.张蕾,王志伟. HPLC.MS法同时测定大鼠血浆中苦参碱、氧化苦参碱和氧化槐果碱的浓度及其药代动力学[J].药学学报. 2008,43(8):843—847
    59.北京医学院等.中草药成分化学.北京:人民卫生出版社,1980:136