光纤电流传感器性能分析与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤电流传感器作为一种新型的电力检测设备,以其特有的优势,有着良好的市场与应用前景。本文以光纤电流传感器的研制为应用背景,主要针对Sagnac式光纤电流传感器的原理和特性开展深入的研究。
     首先,在详细论述Faraday磁光效应原理的基础上,利用琼斯矩阵,构建光纤电流传感器的理论数学模型,并对传感器系统关键光学器件进行偏振误差分析,指出传感器系统指标参数的主要影响因素及相关的改进措施。
     其次,对光纤电流传感器几种常见的信号调制解调方案原理进行阐述,并加以比较分析。在数字闭环光纤电流传感器中,信号处理系统的主要作用是构建闭环反馈系统及进行信号的时序控制和数据处理,实时产生偏置相位及用于补偿外部Faraday磁光旋转信号,并实时跟踪检测实际载流体中电流情况。为了满足系统的检测精度与实时性处理的要求,系统中采用方波+阶梯波闭环信号调制方案进行数字信号处理较为理想。
     再次,创新性地应用光纤系统仿真软件对传感器系统进行功能实时仿真,以达到实时验证的目的,同时进行系统参数合理设置,可以有效地缩短了其产品化、工程化进程,节约成本与时间。针对闭环系统的稳态性能和动态性能设计数字控制器,并在MATLAB/SIMULINK环境下完成整个控制系统模块设计与仿真。仿真结果表明数字闭环光纤电流传感器采用PID控制规律,可以提高系统的动态响应速度。
     另外,为了对光纤电流传感器系统的性能参数有更好的理解,搭建实验样机,对系统中关键器件(如光纤传感头、1/4λ波片)进行了方案设计与实验,提出了光纤传感头振动补偿方案,同时进行初步的电路调制系统设计。
     最终,又提出了一种新型的双模光纤电流传感器结构,摒弃了通常的光纤电流传感器中运用相位调制器外加相位偏置的方法,运用双模光纤中的古依相移提供固定的π/2相位偏置,又利用模式选择耦合器进行分束设计。系统结构更加简单灵活,更利于开环系统的设计与实现。
As a new type of electrical testing equipment, fiber optic current sensor with its unique advantages has a good market and application prospects. In this paper, it takes all-fiber optic current sensor’s application as the background, and makes researches on the principles and characteristics of the system in-depth, mainly for Sagnac-type fiber optic current sensor.
     Firstly, based on the principle of Faraday magneto-optical effect, it used the theory of Jones matrix to build up the mathematical models of fiber-optic current sensor and make polarization error analysis of key optical device in sensor system, then pointed out the main factors of the target parameters of sensor system and gave related improvements.
     Secondly, it is elaborated several common kinds of signal modulation and demodulation principles of fiber optic current sensor, with making comparative analysis. In the system of fiber-optic current sensor with digital closed-loop, signal processing system's main role is to build closed-loop feedback system and make signal timing control and data processing, for real-time generating bias phase and compensating for the external Faraday magneto-optical rotation phase which real-time tracks and detects the current situation of the real fluid. In order to meet the system's detection accuracy and real-time processing requirements, the system adopted the signal processing program of digital closed-loop square-wave + ladder-wave signal modulation, and the result is more desirable.
     Thirdly, it is the innovative application of optical system simulation software for sensor systems functional real-time simulation in order to achieve real-time verification purposes, while system parameters can be reasonably set, which will effectively shorten its product-oriented, engineering process, and save costs and time. It is designed the digital controller of closed-loop system on the steady-state and dynamic performance, and used of the MATLAB/SIMULINK to complete the control system of modules’design and simulation. Simulation results show that the all-digital closed-loop fiber-optic current sensor which used PID control law can improve the system dynamic response speed.
     In addition, in order to have a better understanding of performance parameters in fiber-optic current sensor system, the experimental prototype is built. The key components of the system (such as optical fiber sensing head, 1/4 wave plate) is designed to make related experiment, then it is proposed a new vibration compensation program of optical fiber sensing head and a preliminary circuit modulation system design.
     In the end, a new type of dual-mode fiber-optic current sensor structure is also proposed, which abandons the method of using phase modulator to produce theπ/ 2 phase bias in the usual fiber-optic current sensor system. In the new sensor system, it is used of Gouy phase shift in dual-mode optical fiber to produce fixedπ/ 2 phase shift, and used of mode selector coupler for splitter design. System structure is more simple, flexible and more conducive to open-loop system design and implementation.
引文
[1]孙兵,张丽,吴丽章.全光型大电流光纤电流传感器.传感器世界.2008(2):17-21页, 51页
    [2]方志,邱毓昌,李双.光纤电流互感器的发展.电力建设.2002,23(12):42-44页
    [3]汪秀丽.中国电力系统自动化综述.水利电力科技.31(2):6-26页
    [4]邸荣光,刘仕兵.光电式电流互感器技术的研究现状与发展.电力自动化设备.2006.26(8):98-100页
    [5] J Blake , P Tantaswadi , R T de Carvalho. In line Sagnac Interferometer Current Sensor. IEEE Transaction on PowerDelivery.1996, 11 (1):116-121P
    [6] Richard B.Dyott, Oak Lawn, IL (US).CURRENT SENSOR .United States Patent.2005
    [7]王夏霄,张春熹,张朝阳等.全光纤电流互感器的偏振误差的研究.光子学报.2007,36(2):320-323页
    [8]邱永成.新型全光纤电流传感器光路结构研究.电子科技大学硕士研究生论文.2006:10-12页,20-35页
    [9]张德赛,罗道军,彭剑.国内外光电式电流互感器研究现状.四川电力技术.1995(2):53-60页
    [10]李莉,张心天.光纤电流传感器及其研究现状.光电子技术与信息,2002,15(2):37-41页
    [11]焦斌亮,郑绳楦.用于电力系统的光学电流互感器技术进展.应用光学.2004,25(6):47-53页
    [12]刘晔,苏彦民,王采堂.光纤(光学)电流传感器的现状及发展.应用光学.1998,19:22-24页
    [13]乔峨,安作平,罗承沐等.光电式电流互感器的开发与应用——21世纪互感器技术展望.变压器.2000,(2):40-43页
    [14]尚秋峰,王仁洲,杨以涵.光学电流互感器及其在电力系统中的应用.华北电力大学学报.2001,28(2):14-18页
    [15]刘丰.混合式光纤电流互感器的设计.燕山大学工学硕士学位论文.2003:1-3页
    [16]马仙云,吴维韩,罗承沐等.磁光式光电电流互感器及其双折射问题.高电压技术.1996.22(1):3-5页
    [17]徐雁,罗苏南,叶妙元.光学电流传感器温度影响的理论与试验研究.仪表技术与传感器.2001,2:6-9页
    [18] G. Zhang, S. Li, Z. Zhang etc. Novel Electro-optic Hybrid Current Measurement Instrument for High-voltage Power Lines. IEEE Transactions on Instrumentation and Measurement. 2001. 50(1): 59-62P
    [19]王夏霄,张春熹等.一种新型全数字闭环光纤电流互感器方案.电力系统自动化.2006,30(16):77-80页
    [20]廖延彪.偏振光学[M].北京:科学出版社,2003 :156-160页
    [21] James N.Blake, Scottsdale, Ariz.FIBER OPTICS APPARTUS AND METHOD FOR ACCURATE CURRENT SENSING.United States Patent,1996
    [22]郭慧梅,孔林涛,朱瑞松.椭圆偏振光的实验验证方法.实验室科学.2007,5:74-75页
    [23]焦斌亮.Sagnac干涉型光纤电流传感器研究.燕山大学博士学校论文.2005:35-43页
    [24] Shayne X Short, Alexandr A Tselikov, Josiel U de Arrudaand.et al. ImperfectQuarter2Waveplate Compensation in Sagnac Interfer- ometer-Type Current Sensors. Lightwave Technol.1998, 16 (7): 1212-1219P
    [25]张靖华.椭圆双折射光纤的琼斯矩阵和法拉第效应分析.中国科学技术大学学报.1988,18(4):488-493页
    [26]张靖华.双折射光纤琼斯矩阵的一般表达式及反射传输特性.光子学报.1997,26(6):527-531页
    [27] SHORT X, ALEXANDR A. DE J U. Imperfect quarterwaveplate compensation in Sagnac interferometer-type current sensors.Journal of Lightwave Technology, 1998, 16(7): 1212-1219P
    [28]王夏霄,张春熹,张朝阳等.光纤电流互感器1/ 4λ波片温度特性及其影响研究.激光与红外.2006,36(7):596-598页,603页
    [29]焦斌亮,郑绳楦,王朝晖.一种利用保偏光纤产生圆偏振光的方法.光电工程.2004,31(5):49-51页
    [30]张桂才,王巍译.光纤陀螺仪.国防工业出版社,2002:106-124页
    [31]张桂才.光纤陀螺原理与技术.国防工业出版社,2008:50-60页, 160-170页, 251-260页
    [32]袁玉厂,冯丽爽等.全光纤电流互感器检测系统的设计.光电工程.2006,33(5):95-112页
    [33]王妍,张春熹.带第二反馈回路的全数字闭环光纤陀螺.压电与声光.2005, 27(4):348-351页
    [34] Yah Y, Kim D I, Kim B Y. New digital close-loop processor for a fiber optic gyroscope. IEEE Photonics Technology Letters. 1999, 11(3):361-363P
    [35]顾宏,赵启大,杨功流.数字闭环光纤陀螺仪过调制技术研究.光电子·激光.2008,19(8):1035-1038页
    [36] Lihui Wang, Sun Feng, Wang Rui. Research on the modulation phase distortion error character of Y wave-guide in fiber optic gyroscope. IEEE IITA Workshop 2008. 2008: 847-849P
    [37]刘晔,陈江波等.光源调制全光纤电流互感器的研究.西安交通大学学报,2008,42(4):436-439页
    [38]郑哲.一种光驱动混合式高压光纤电流互感器的研究.燕山大学.2001:3-8页
    [39]曹家年,李绪友等.光纤陀螺数字闭环检测方案中D/A、A/D的配置及数字滤波问题的研究.哈尔滨工程大学学报. 2003,24(4):422-426页
    [40]侯美.干涉式光纤电流传感器的理论与信号处理系统研究.哈尔滨工业大学工学硕士学位论文.2007:29-40页
    [41]张朝阳,张春熹,王夏霄等.闭环全光纤电流互感器相位差的计算与测试.仪器仪表学报.2009,30(1):152-156页
    [42]杨雪郁,廖延彪,吴庚生等.光纤电流传感器的系统Verdet常数的测定.应用激光.1986,7(4):151-154页
    [43]傅怀杰,黄秀钦.光纤环的绕制.光通信研究.1996,1:51-54页
    [44]李绪友.高精度数字闭环光纤陀螺的研究.哈尔滨工程大学博士学位论文.2002:6-8页,71-75页
    [45]陈迎丽,谢良平,陈平等.光纤陀螺中光纤环非互易效应及其补偿技术.科学技术与工程.2008,8(11):3059-3062页
    [46]赵晋洪,舒晓武,牟旭东等.光纤绕线机张力控制系统的研究.光学仪器.2005,27(2):37-41页
    [47]赵晋洪.光纤绕线机精密控制系统的研究.浙江大学硕士学位论文.2005:19-37页
    [48] BOHERT K, CABUS P, NEHRING J.Temperature and vibration insensitive fiber-optic current sensor. Journal of Lightwave Technology, 2002(2012): 267-276P
    [49] K Bohert , P Cabus , J Nehring. Temperature and vibration Insensitive Fiber optic Current Sensor.J.Lightwave.Technol, 2002, 20 (2): 267-276P
    [50] S. X. Short, P.Tantaswadi.etc.An Experimental Study of Acoustic Vibration Effects in Optical Fiber Current Sensors.IEEE Transactions on Power Delivery, 1996. 11(4):1702-1706P
    [51] A.J.Rogers, J.Xu, J. Yao .Vibration Immunity for Optical-Fiber Current Measurement. Journal of Lightwave Technology. 1995, 13(7). 1371-1377P
    [52]焦斌亮、王朝辉、郑绳楦.用于消除震动影响的光纤电流传感器结构.中国激光.2004,31 (4) : 469-472页
    [53]王河林,郑绳楦.椭圆芯双模光纤在电压传感器中的应用与研究.电测与仪表.2006,43(485):13-17页
    [54] Emerging Technologies Working Group, Fiber Optic Sensor Working Group. Optical Current Transducer for Power System: A Review.IEEE trans on Power Delivery,1994,9(4):1778-1788P
    [55]何竞翼,刘德明等.光纤偏振态自动补偿的光纤电流互感器.光学学报.1999,19(12):1678-1681页
    [56]王夏霄等.光纤陀螺磁敏感性的试验研究.北京航空航天大学学报. 2005,31(10):1116-1120页
    [57] FROSIO G. Reciprocal reflection interferometer for a fiber-optic Faraday current sensor. Applied Optics, 1994, 33 (25): 6111- 6122P
    [58] GUIDO F. Reciprocal reflection interferometer for a fiber-optic Faraday current sensor. Applied Optics, 1994, 33 (25):6111-6122P
    [59] MOCT Optical Current Transducer System. USA : Descriptive Bulletin of ABB Power Transmission,2000
    [60]傅鸣非,耿相铭,袁炎等.基于DSP全光纤电流互感器系统研究.电测与仪表.2007,44(501):17-21页
    [61]李红斌.光学电流传感器传感头的研究.光学学报.1997,26(7): 946-949页
    [62]王政平,李庆波,王慧丽等.光学玻璃电流传感头线性双折射的一种测量方法.光子学报.2003,32 (5): 612-614页
    [63] G.W.Day, K.B.Rochford, A.H.Rose.Fundamentals and Problems of Fiber Current Sensor.OFS-11 Eleven International Comference on Optical Fiber Sensors, Japan Society of Applied Physics, 1996, (5):124-129P
    [64] S.Pluta,F.Szczot,M.Madej,S.Zator.Fiber-Optic Links for a Measurement and Control System at a HV Laboratory.SPIE.Optical Fiber and Their Applications.1989,1085:534-543P
    [65]康崇,吕文磊等.光学电流互感器中线性双折射与Faraday效应的分离检测.光学学报.2008.28(1):163-168页
    [66] SHA YNE X S, de ARRUDA J U, AL EXANDR A T, et al .Elimination of birefringence induced scale factor errors in the in-line Sagnac interferometer current sensor. Journal of Lightwave Technology, 1998, 16 (10):1844-1850P