生殖细胞特异性转录因子SOHLH1及其相关基因在卵巢发育中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在哺乳动物中,卵巢是一个独特又重要的器官。卵原细胞的分化,始基卵泡的形成和到初级卵泡的转变,是卵泡早期发育过程中最关键的环节。始基卵泡的库存大小,闭锁程度都直接影响到雌性哺乳动物的生殖年龄。一旦始基卵泡变少耗尽,便会绝经;如果病理性的始基卵泡过早衰减,便会导致卵巢早衰。在卵巢发育的正常生理过程中,一系列卵细胞特异性转录因子起到了重要的调控作用,SOHLHI就是其中关键的一员。
     SOHLH1是在生殖细胞中特异表达的转录调控因子,在小鼠卵巢始基卵泡及初级卵泡中表达,研究证明SOHLH1在卵泡早期发育阶段发挥重要作用,并被列为非综合征型卵巢早衰的候选基因。Sohlh1基因敲除雌鼠表现为始基卵泡向初级卵泡的发育障碍,卵细胞过早丢失,卵巢萎缩,不能生育。在第一章中,我们以Sohlh1基因敲除小鼠为研究对象,应用基因表达谱芯片技术,发现了若干SOHLH1的上下游基因,并联合各种生物网络资源,建立并完善了生殖细胞发育信号通路的网络结构图谱。
     为证实SOHLH1在卵泡晚期成熟过程中的作用,第二章中,我们构建了Zp3promoter-Sohth1转基因小鼠模型,突破了Sohlh1仅在始基及初级卵泡中表达的局限性,使Sohlh1成功在各级卵泡中表达,通过分析,发现Sohlh1并非卵细胞后期成熟的抑制因子,相反的,Sohlh1的过表达可以促进排卵。
     基于有效动物模型的表现,推测SOHLH1基因突变可能是卵巢早衰的致病原因之一。为了验证假设,在第三章中,我们对96名美国高加索人种POF患者进行SOHLH1基因突变筛查;另外,我们还筛查了SOHLH1的间接调控基因——FIGLA和GDF9,在中国汉族POF患者中的突变情况。通过对以上这三个生殖细胞特异性基因的扩增测序,我们发现了一系列有致病意义的杂合改变,结合功能实验,进一步说明调控生殖细胞发育的信号通路异常会导致人类卵巢早衰的发病。
     第一章探索Sohlh1下游转录调控因子
     目的:Sohlh1是生殖细胞特异性转录调控因子,具有helix-loop-helix(HLH)结构域,Sohlh1基因敲除雌鼠表现为卵细胞过早丢失,卵巢萎缩,成年Sohlh1基因敲除小鼠卵巢仅为正常小鼠卵巢的1/10大,最终以不孕为特点。HLH结构与DNA启动子区域E-Box作用元件相结合调控其它基因的转录表达,Sohlh1作为HLH家族一员,将其敲除,会导致一系列下游基因失调,从而引起卵巢早衰的表现。本实验目的在于探讨Sohlh1敲除小鼠卵巢的过早衰退的途径及筛查Sohlh1的下游基因。
     方法:通过对减数分裂影响因子及进入减数分裂期卵细胞的染色体形态学分析,并应用基因芯片技术,联合比较Sohlh1缺陷新生小鼠卵巢与另外两个生殖细胞特异因子-Lhx8和Nobox缺陷的新生小鼠卵巢芯片数据,分析Sohlh1基因敲除小鼠卵巢异常表型的原因、Sohlh1与Lhx8和Nobox的关联作用,筛选下游靶基因。
     结果:Sohlh1基因敲除小鼠卵巢中影响减数分裂因子Dmc1,Spo11,Msh5和Rec8表达未见明显异常,通过对E15.5胚胎Sohlh1缺陷小鼠卵细胞行Scp3免疫荧光分析,与正常对照比亦无明显区别。进一步行基因芯片检测,分析结果显示,Sohlh1敲除新生小鼠卵巢组织中,494个基因或ESTs表达降低,165个基因表达升高2倍以上。联合Lhx8和Nobox缺陷的基因芯片分析发现有73个基因被Sohlh1,Lhx8和Nobox共同调节,而这其中又有33(45.2%)个为生殖细胞或卵细胞特异基因,且存在5倍以上改变;进一步对33个基因进行表达模式分析,发现Sohlh1,Lhx8和/或Nobox的共同靶基因一般于E18(胚胎18天)以后甚至多数于出生后开始表达,例如Gdf9,Nalp4f,Oas1家族基因等。
     结论:Sohlh1基因敲除小鼠的卵巢早衰表现不是由于减数分裂异常所造成;通过基因芯片的应用,我们找到了Sohlh1及其下游通路上的Lhx8、Nobox基因的共同调节的若干靶基因,对生殖细胞早期发育的调控通路作了进一步的完善。
     第二章Sohlh1转基因小鼠
     目的:Sohlh1作为生殖细胞特异性转录因子,在卵泡发育早期过程中起到了重要作用,其表达具有很强的特异性-仅在小鼠卵巢的卵原细胞、始基卵泡和初级卵泡中表达,而次级卵泡以后则无法检测到。我们猜想Sohlh1在高级卵泡中的缺失表达是卵泡后期发育的关键,如果过量表达可能会影响到卵细胞的成熟、排卵及受精方面的异常,于是在本章节的我们的研究目的是构建在次级卵泡中表达Sohlh1的转基因小鼠,并观察评价该转基因鼠的生殖生育能力。
     方法:Zp3是另一个对卵泡发育和精卵结合起重要作用的卵细胞特异表达因子,在小鼠卵巢的各级卵泡中均有表达。据此,我们应用小鼠Zp3启动子区域,将小鼠Sohlh1开放读码区即转录区衔接于mZp3启动子之后,采用转基因技术获得Sohlh1转基因小鼠。然后对此转基因鼠进行表型分析。
     结果:应用转基因技术,我们获得了5只Sohlh1转基因小鼠,包括2只雌鼠3只雄鼠;将转基因鼠与野生型鼠交配后对子代进行各项实验检测验证,确定我们成功建立了mZp3-Sohlh1转基因小鼠模型;Sohlh1转基因鼠外观体重均于同胞野生型对照小鼠无明显差异,雌鼠卵巢形态大致正常,应用RT-PCR,抗Sohlh1抗体染色进一步证实Sohlh1成功转入卵细胞中并在次级卵泡中表达;有趣的发现是,携带转基因Sohlh1的卵细胞优先于正常卵细胞排卵,尤其雌性子代中携转基因者明显增高。
     结论:我们成功构建了Sohlh1于各级卵泡中持续表达的转基因小鼠模型,Sohlh1并非卵细胞后期成熟的抑制因子,相反的,Sohlh1的过表达可以促进排卵,或可用于动物繁殖中某些基因型的优化。
     第三章生殖细胞特异性基因SOHLH1、FIGLA和GDF9在卵巢早衰发病机制中的作用研究
     第一节美国高加索卵巢早衰患者SOHLH1基因突变筛查
     目的:Sohlh1是生殖细胞特异性转录调控因子,具有helix-loop-helix(HLH)结构域,Sohlh1基因敲除雌鼠表现为始基卵泡向初级卵泡的发育障碍,卵细胞过早丢失,卵巢萎缩,不能生育。Sohlh1基因敲除小鼠的表现型极似人类卵巢早衰的疾病表现,于是推想人类SOHLH1基因突变可能与卵巢早衰发病有关。
     方法:选择96例美国高加索人种POF患者及同类人种对照96人,应用PCR扩增直接测序的方法,对SOHLH1基因的7个外显子包括5'端和3'端非翻译区(UTR)及相应侧翼序列进行突变筛查。
     结果:我们发现了16个包括已知的SNP在内的杂合子改变,其中c.-15 G>A位于Sohlh1基因的启动子区域,在1例患者及3例对照者中均有发现。仅在POF患者中发现的是1例位于第4外显子上、HLH结构域下游的c.423A>G导致K120R氨基酸改变;1例第5外显子上的c.598C>T无意突变,及1例3'UTR区c.1303T>G和2例c.1623A>G,而这些均未在对照组出现。另外,我们于第6个外显子上和3'UTR区新发现了若干改变,但大多都在对照组中也有出现,可能是较为罕见的核苷酸多态。
     结论:c.423A>G所致的K120R,在灵长目动物中属于保守序列,可能会与POF的发病有一定关系;另外,3'UTR是microRNA的结合部位,SOHLH1基因3'UTR所出现的大量SNPs改变,很可能会影响到一系列microRNA的靶定结合,从而致SOHLH1的表达失衡,这或可是导致卵细胞过早丢失的另一原因,有待于进一步的研究。
     第二节中国汉族卵巢早衰患者FIGLA基因突变筛查
     目的:卵巢早衰(POF)是引起高促性腺激素性不孕的一常见疾病,在女性人群中的发病率为1-2%。卵巢早衰的病因具有多样性,部分原因仍考虑为单基因突变引起。而FIGLA,是目前所知的最早调控卵细胞发育成熟的转录因子,Figla基因缺陷雌性小鼠卵巢中无法形成始基卵泡,亦无卵细胞透明带形成,故推测FIGLA基因突变可能会关系到POF。
     方法:选择就诊于我们生殖中心的100例汉族POF妇女,及304例对照进行血样DNA提取,PCR特异扩增包含有FIGLA的5个外显子的区域,进行直接测序(ABI PrismSequencer 3130XL Applied Biosystems);后应用酵母双杂交实验证实其中一缺失突变影响FILGA与TCF3的结合。
     结果:经过突变筛查,我们新发现了3个杂合改变:c.11C>A(p.A4E)在2例POF患者及1例对照中出现,c.15-36del(p.G6fsX66)和c.419-421delACA(p.140delN)仅从POF患者中得到,而未出现在304例对照组中。c.15-36del缺失了22bp核苷酸,导致了移码突变,使FIGLA仅在翻译了与原蛋白相同的6个氨基酸以后错译至66个氨基酸后终止,从而有效的导致了所谓的半剂量效应,即FIGLA效量减半。另一缺失突变c.419-421delACA(p.140delN)在酵母双杂交实验中被证实破坏了FIGLA与TCF3基因的结合,FILGA与TCF3结合后方可启动下游基因ZP2(另一卵细胞发育关键因子)的表达,所以认为此突变对卵细胞发育具有很大程度的显性负效应。
     结论:在中国汉族的POF人群中,有部分的发病与基因FIGLA突变有关。
     第三节中国汉族卵巢早衰患者GDF9基因突变筛查
     目的:卵巢早衰(Premature Ovarian Failure,POF)是指青春期后、40岁以前发生的非生理性的月经停止,伴有促卵泡素(FSH)、黄体生成素(LH)水平的升高、雌激素(E_2)水平的下降以及临床上表现的潮热、不育和生殖器官的萎缩等综合症。而生长分化因子9(GDF9)是由卵细胞分泌的,对卵泡发育起重要作用的生殖细胞生长因子。本研究旨在探求基因GDF9突变是否与国人POF有关。
     方法:收集2003年5月~2006年5月在山东大学山东省立医院生殖医学中心就诊的卵巢早衰患者100例,及有正常生育史和月经史对照96人的外周血。其中卵巢早衰患者的采集符合如下标准:年龄在40岁以下,超过3个月经周期无月经来潮;至少两次不同日血清FSH>40 IU/L,阴道B超监测双侧卵巢未见储备卵泡,并除外染色体异常及免疫性疾病。提取外周血DNA,于GDF9编码区设计3对特异性引物行PCR扩增,先用变性高效液相色谱法(Denaturing High-Performance Liquid Chromatography,DHPLC)检测是否存在杂合双链。如果检测出杂合双链,再用PCR产物直接测序寻找突变位点。
     结果:在100例POF患者中,我们新发现了GDF9编码区3个位点的非同义突变:c.436C>T(p.Arg146Cys),c.712A>G(p.Thr238Ala)和c.1283G>C(p.Ser428Thr),其中c.436C>T和c.1283G>C同时也在对照组中出现。c.712A>G仅存在于POF患者中,该患者为一30岁的继发性闭经女性,无家族性疾病史,FSH 84.6IU/L,LH 39.2IU/L,经阴B超显示子宫缩小(41×33mm),双侧卵巢较实(大小分别为17×12mm和18×14mm),无明显卵泡。另外,我们还发现了3个同义突变位点,其中两个也出现在对照组中。
     结论:我们在100例POF患者中发现了6个位点的突变,其中4个为新发突变,2个为已知突变。新发现突变中两个也同样出现在对照组中,未出现在对照组中的一个(c.588A>C)为同义突变,另一个c.712A>G致丙氨酸错译为苏氨酸(p.Thr238Ala),该位点属于GDF9蛋白编码功能保守区,推测此突变可能会影响GDF9蛋白功能。
ChapterⅠ.Screening Downstream Targets of Sohlh1
     OBJECTIVE:Sohlh1(spermatogenesis and oogenesis specific basic helix-loop-helix transcription factor 1),an oocyte-specific helix-loop-helix(HLH)gene,plays a critical role during early folliculogenesis.Females lacking of Sohlh1 in mice appear to have normal embryonic gonadogenesis,but form imperfect primordial follicles that not progress to primary follicles.The objective of this study is to investigate if meiosis perturbations account for the rapid oocytes loss and also to identify the downstream targets of Sohlh1.
     METHODS:RT-PCR and immunofulorescence were carried out to detect meiosis genes Dmc1,Spo11,Msh5,Rec8 and Scp3 expression in Sohlh1 null mice ovaries or oocytes.Then we compared the gene expression difference of newborn mouse ovaries between wild type and Sohlh1 knockout using Affymetrix 430 2.0 microarray platform.The microarray transcripts profiles from Sohlh1,Lhx8 and Nobox null mice were combined and analyzed to find the common downstream target genes.
     RESULTS:The relative levels of Dmc1,Msh5,Spo11,or Rec8 transcripts were not significantly different between the wild type and Sohlh1 null ovaries.Also no appreciable differences are noted with staining of Scp3 between wild type and Sohlh1 null oocytes. Further we compared Sohlh1 deficient and wild-type ovaries using Affymetrix 430 2.0 microarray platform.494 genes were down-regulated and 165 gene were up-regulated more than 2-fold in Sohlh1 null ovaries.Combining of Lhx8 and Nobox null ovary arrays,we identified a common set of 73 transcripts whose expression level were affected in all Sohlh1, Lhx8 and Nobox deficient mice;and among them,33(45.2%)were preferentially expressed in oocytes with more than 5 fold change.By exploring functional annotation,gene expression patterns analysis and cis-acting sites screening,we discoved a subset of target genes were regulated in the SOHLH1-LHX8-NOBOX pathway.
     CONCLUSION:These results indicate that meiotic components currently known to disrupt early oogenesis are not affected by Sohlh1 deficiency and suggest that oocyte differentiation can be governed by factors independent of meiosis.Downstream transcripts like LHX8, NOBOX,GDF9,PADI6,NALP and OAS1 famlily should be account for the failure in maintenance and differentiation of the oocyte during early folliculargenesis in Sohlh1 dificient mice.
     ChapterⅡ.Sohlh1 Transgenic Mouse
     OBJECTIVE:Mammalian oocytes have been proposed to have important roles in the orchestration of ovarian follicular development and fertility and Sohlh1 is one of the oocyte-specific genes expressed maily in early stage of follicles.To determine whether over-expressed Sohlh1 have functions after the transition from primordial follicles to primary follicles,we generated a Sohlh1 transgenic(Sohlh1~(tg))mouse model.
     MATERIALS AND METHODS:The full coding region of mouse Sohlh1 cDNA was subcloned into the SmaI site of a routine Zp3 promoter-BGH poly-A expression vector.After injection into the male pronucleus of one cell zygotes from F2 of C57 mice,the embryos were transferred to oviducts of foster mothers and correct transgenic mice were indentified by PCR genotyping.Subsequent studies were carried out to investigate the phenotype of Sohlh1 transgenic mice.
     RESULTS:By RT-PCR and immunohistochemistry probed by anti-Sohlh1 antibodies, transgenic active Sohlh1 is detected through all stages of ovarian follicles.Sohlh1~(tg)females can fertilze and Sohlh1~(tg)oocytes were matured and ovulated early than wild type,or, alternatively,the pups from Sohlh1~(tg)females are preferrecially carring Sohlh1~(tg),especially in female pups.
     CONCLUSION:We successfully constructed mZp3-Sohlh1 transgenic mouse strain.The results from the current study indicate that Sohlh1 overexpression during the late follicle stages can promote ovulation.
     ChapterⅢ.Germ-cell Specific Genes-SOHLH1,FIGLA and GDF9 Mutations in Women with Premature Ovarian Failure
     SectionⅠ.Mutation analysis of SOHLH1 in Caucasian Women with POF
     OBJECTIVE:Sohlh1 deficiency in female mice leads to unfertility because of postnatal oocyte loss and failure in transition from primordial to primary follcles.The phenotype mimics human premature ovarian failure(POF)well.The aim of this study is to investigate whether SOHLH1 mutation is associated with human POF.
     MATERIALS AND METHODS:We have directly sequenced SOHLH1 in a cohort of 96 Caucasian POF patients presenting with secondary amenorrhea and high FSH levels and in a control population including 96 women with regular menstrual cycles who had at least one child.
     RESULTS:We have identified 16 novel heterozygous variants.One alteration c.423A>G(K120R)in the downstream of HLH domain is conserved among vertebrate species and also not presented in control samples.On the other hand,several variants were detected in the 3'UTR region,including some only appeared in POF samples and some rare SNPs in both POF and controls.
     CONCLUSION:We propose c.423A>G(K120R)mutation may be involved in POF; nonetheless,a bunch of SNPs identified in SOHLH1 3'UTR region may impact the binding of mircoRNAs which have potential roles in regulating m RNA translation and protein inhibition.
     SectionⅡ.Mutation analysis of FIGLA in Chinese Women with POF
     OBJECTIVE:Premature Ovarian Failure(POF)is a common cause of hypergonadotropic ovarian failure and infertility,affecting 1-2%of women.POF is a genetically heterogenous disease,with few known causative genes.We utilized a candidate gene approach to study if FIGLA,a transcriptional regulator preferentially expressed in the ovary,is mutated in Chinese women with POF.
     MATERIALS AND METHODS:100 Chinese POF women,as well as 304 control age-matched women,were recruited for this study.The coding regions of FIGLA gene were amplified using polymerase chain reaction(PCR)with 4 pairs of specific primers. Sequencing was performed after PCR amplification on ABI Prism Sequencer 3130XL (Applied Biosystems).To further test whether the missense or deleted(c.11C>A and c.419-421delAAC)alleles affect FIGLA's ability to dimerize with itself or TCF3,we employed a yeast two-hybrid strategy to study protein-protein interactions.
     RESULTS:Three novel variants were identified in four POF individuals:c.11C>A(p.A4E), c.15-36del(p.G6fsX66)and c.419-421delACA(p.140delN).The c.15-36delta causes a frameshift mutation with haploinsufficiency.Functional analyses by the yeast two-hybrid assay demonstrated that p.140delN mutation disrupted FIGLA binding to the TCF3 HLH domain.The c.15-36 delta and c.419-421delACA mutations were not present in the 304 control women.
     CONCLUSION:Our findings show that a subset of Chinese women with sporadic premature ovarian failure harbor mutations in FIGLA.Haploinsufficiency in transcription factors is known to cause many human Mendelian disorders,and c.15-36delta frameshift results essentially in haploinsufficiency by terminating FIGLA open reading frame immediately after the first five amino acids.Moreover,we show that the c.419-421delACA disrupts FIGLA's interaction with TCF3.High throughput sequencing of genes involved in the FIGLA pathway will be useful to detect other genes that play critical roles in premature ovarian aging.
     SectionⅢ.Mutation analysis of GDF9 in Chinese Women with POF
     OBJECTIVE:Growth differentiation factor 9(GDF9)is a germ cell specific growth factor secreted by oocytes and crucial for folliculogenesis.Our goal was to determine if perturbations in the GDF9 gene occur in Chinese women having Premature Ovarian Failure (POF).
     MATERIALS AND METHODS:100 POF women and 96 control women,were recruited in the Reproductive Medical Center,Shandong Provincial Hospital,China.Inclusion criteria were defined as twice serum follicle stimulating hormone concentrations greater than 20IU/ml before age of 40 years,and normal karyotype.After genomic DNA was extracted from blood samples,the coding regions of GDF9 were amplified using polymerase chain reaction(PCR)with 3 pair of primers.Heteroduplexes were detected using denaturing high-performance liquid chromatography(DHPLC).Samples which demonstrated heteroduplex formation on DHPLC were then sequenced directly after PCR amplification on an automated sequencer.
     RESULTS:In the POF group,we found 3 nonsynonymous SNPs in the GDF9 gene: c.436C>T(p.Arg146Cys),c.712A>G(p.Thr238Ala)and c.1283G>C(p.Ser428Thr).Novel mutations c.436C>T and c.1283G>C were also discovered in the controls.The only nonsynonymous SNP(c.712A>G)detected in POF group but not in controls was present in a 30-year-old woman with secondary amenorrhea.In addition,we found 3 synonymous(silent) mutations in the POF group,two also present in controls.
     CONCLUSION:Although 4 novel SNPs and 2 additional known mutations were found in the POF cases,all except one(c.712A>G)was either found in controls or was silent.712A>G mutation was not present in controls.712A>G mutation in GDF9 may be associated with POF in our study population.
引文
1. Pangas SA, Choi Y, Ballow DJ, Zhao Y, Westphal H, Matzuk MM, Rajkovic A. Oogenesis requires germ cell-specific transcriptional regulators Sohlhl and Lhx8. Proc Natl Acad Sci U S A. 2006 ;103:8090-5.
    2. Pepling ME, Spradling AC.Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol. 2001 Jun 15;234:339-51
    3. Wylie C.Germ cells. Cell. 1999; 96:165-74.
    4. Borum K.1961. Oogenesis in the mouse. A study of the origin of the mature ova. Exp Cell Res 45:39-47.
    5. Pepling ME.From primordial germ cell to primordial follicle: mammalian female germ cell development. Genesis. 2006;44:622-32.
    6. Kezele PR, Ague JM, Nilsson E, Skinner MK. Alterations in the ovarian transcriptome during primordial follicle assembly and development. Biol Reprod. 2005;72:241-55.
    7. Choi Y, Rajkovic A. Genetics of early mammalian folliculogenesis. Cell Mol Life Sci. 2006 ;63:579-90.
    8. Soyal SM, Amleh A, Dean J. FIGa, a germ-cell specific transcription factor required for ovarian follicle formation. Development 2000; 127:4645-54.
    9. Ballow D, Meistrich ML, Matzuk M, Rajkovic A.Sohlhl is essential for spermatogonial differentiation. Dev Biol. 2006; 294:161-7.
    10. Rajkovic A, Pangas SA, Ballow D, et al. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 2004; 305:1157-9.
    11. Dong J, Albertini DF, Nishimori K, et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 1996; 383:531-5.
    12. Jovine L, Qi H, Williams Z, et al. The ZP domain is a conserved module for polymerization of extracellular proteins. Nat Cell Biol 2002; 4:457-61.
    13. Boja ES, Hoodbhoy T, Fales HM, et al. Structural characterization of native mouse zona pellucida proteins using mass Spectrometry. J Biol Chem 2003; 278:34189- 202
    14. Rankin T, Talbot P, Lee E, et al. Abnormal zonae pellucidae in mice lacking ZP1 result in early embryonic loss. Development 1999;126:3847-55.
    15. Rankin TL, O'Brien M, Lee E, et al. Defective zonae pellucidae in Zp2 null mice disrupt folliculogenesis, fertility and development. Development 2001; 128:1119-26.
    16. Rankin T, Familari M, Lee E, et al. Mice homozygous for an insertional mutation in the Zp3 gene lack a zona pellucida and are infertile. Development 1996; 122:2903-10.
    17. Liu C, Litscher ES, Mortillo S, et al. Targeted disruption of the mZP3 gene results in production of eggs lacking a zona pellucida and infertility in female mice. Proc Natl Acad Sci USA 1996;93:5431-6.
    18. Suzumori N, Yan C, Matzuk MM, Rajkovic A.Nobox is a homeobox-encoding gene preferentially expressed in primordial and growing oocytes.Mech Dev. 2002 ;111:137-41.
    19. Choi Y and Rajkovic A. Characterization of NOBOX DNA binding specificity and its regulation of Gdf9 and Pou5f1 promoters.J Biol Chem. 2006; 281:35747-56.
    20. Choi Y, Ballow DJ,Xin Y and Rajkovic A. Lim homeobox gene, LHX8, is essential for early oocyte differentiation and survival. Development.(Submission)
    21. Edelmann W, Cohen PE, Kneitz B, Winand N. Lia M, Heyer J, Kolodner R, Pollard JW, Kucherlapati R. Mammalian MutS homologue 5 is required for chromosome pairing in meiosis.Nat Genet. 1999;21:123-7
    22. Xu H, Beasley MD, Warren WD, van der Horst GT, McKay MJ. Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis.Dev Cell. 2005;8:949-61.
    23. Pittman DL, Cobb J, Schimenti KJ, Wilson LA, Cooper DM, Brignull E, Handel MA, Schimenti JC. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol Cell. 1998; 1:697-705.
    24. Yoshida K, Kondoh G, Matsuda Y, Habu T, Nishimune Y, Morita T. The mouse RecA-like gene Dmcl is required for homologous chromosome synapsis during meiosis. Mol Cell. 1998; 1:707-18.
    25. Eijpe M, Offenberg H, Jessberger R, Revenkova E, Heyting C.Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1beta and SMC3. J Cell Biol. 2003; 160:657-70.
    26. Lee J, Iwai T, Yokota T, Yamashita M.Temporally and spatially selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis.J Cell Sci. 2003; 116:2781-90.
    27. Tarsounas M, Morita T, Pearlman RE, Moens PB.RAD51 and DMC1 form mixed complexes associated with mouse meiotic chromosome cores and synaptonemal complexes.J Cell Biol. 1999;147:207-20.
    28. Baudat F, Manova K, Yuen JP, Jasin M, Keeney S.Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11.Mol Cell. 2000; 6:989-98.
    29. Romanienko PJ, Camerini-Otero RD.The mouse Spol 1 gene is required for meiotic chromosome synapsis.Mol Cell. 2000; 6:975-87.
    30. Keeney S.Mechanism and control of meiotic recombination initiation.Curr Top Dev Biol. 2001; 52:1-53.
    31. Lammers JH, Offenberg HH, van Aalderen M, Vink AC, Dietrich AJ, Heyting C.The gene encoding a major component of the lateral elements of synaptonemal complexes of the rat is related to X-linked lymphocyte-regulated genes.Mol Cell Biol. 1994 ;14:1137-46.
    32. Dobson, M. J., Pearlman, R. E., Karaiskakis, A., Spyropoulos, B. and Moens, P. B. Synaptonemal complex proteins: occurrence, epitope mapping and chromosome disjunction. J Cell Sci 1994, 107:2749-60.
    33. Moens, P. B. and Spyropoulos, B. Immunocytology of chiasmata and chromosomal disjunction at mouse meiosis. Chromosoma 1995, 104:175-82.
    34. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A,Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.Nat Genet. 2000; 25:25-9.
    35. Zhou Y, Zhou B, Chen K, Yan SF, King FJ, Jiang S, Winzeler EA. Large-scale annotation of small-molecule libraries using public databases.J Chem Inf Model. 2007; 47:1386-94.
    36. Su, A.I., ETA AL. large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci U S A 2002; 99:4465-70.
    37. Choi Y, Qin Y, Berger MF, Bulyk ML, Rajkovic A. Microarray analyses of newborn mouse ovaries lacking Nobox. Biol Reprod. 2007; 77:312-9.
    38. Nilsen, H., et al. Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene. Nucleic Acids Res. 1997; 25: 750-55.
    39. Olsen, L.C., Aasland, R., Wittwer, C.U., Krokan, H.E., Helland, D.E. Molecular cloning of human uracil-DNA glycosylase, a highly conserved DNA repair enzyme. EMBO J. 1989; 8:3121 -5.
    40. Vinson RK, Hales BF. Expression and activity of the DNA repair enzyme uracil DNA glycosylase during organogenesis in the rat conceptus and following methotrexate exposure in vitro. Biochem Pharmacol. 2002;64:711-21
    41. Kavli B, Sundheim O, Akbari M, Otterlei M, Nilsen H, Skorpen F, Aas PA, Hagen L, Krokan HE, Slupphaug G.hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUGl as a broad specificity backup. J Biol Chem. 2002; 277:39926-36.
    42. Horikawa M, Kirkman NJ, Mayo KE, Mulders SM, Zhou J, Bondy CA, Hsu SY, King GJ, Adashi EY.The mouse germ-cell-specific leucine-rich repeat protein NALP14: a member of the NACHT nucleoside triphosphatase family.Biol Reprod. 2005; 72:879-8.
    43. Ihrie RA, Marques MR, Nguyen BT, Horner JS, Papazoglu C, Bronson RT, Mills AA, Attardi LD. Perp is a p63-regulated gene essential for epithelial integrity.Cell. 2005; 120:843-56.
    44. Tatone C, Carbone MC, Gallo R, Delle Monache S, Di Cola M, Alesse E, Amicarelli F.Biol Reprod. 2006; 74:395-402.
    45. Mahakali Zama, A., Hudson, F. P., 3rd and Bedell, M. A.Analysis of hypomorphic KitlSl mutants suggests different requirements for KITL in proliferation and migration of mouse primordial germ cells. Biol Reprod.2005; 73: 639-47.
    46. Matsui, Y., Toksoz, D., Nishikawa, S., Nishikawa, S., Williams, D., Zsebo, K. and Hogan, B. L. Effect of Steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture. Nature.1991; 353: 750-2.
    47. Morita, Y., Manganaro, T. F., Tao, X. J., Martimbeau, S., Donahoe, P. K. and Tilly, J. L. Requirement for phosphatidylinositol-3'-kinase in cytokine-mediated germ cell survival during fetal oogenesis in the mouse. Endocrinology. 1999; 140: 941-9.
    48. Pesce, M., Di Carlo, A. and De Felici, M. The c-kit receptor is involved in the adhesion of mouse primordial germ cells to somatic cells in culture. Mech Dev.1997; 68:37-44.
    49. Resnick, J. L., Bixler, L. S., Cheng, L. and Donovan, P. J. Long-term proliferation of mouse primordial germ cells in culture. Nature. 1992; 359:550-1.
    50. Sakata, S., Sakamaki, K., Watanabe, K., Nakamura, N., Toyokuni, S., Nishimune, Y., Mori, C. and Yonehara, S. Involvement of death receptor Fas in germ cell degeneration in gonads of Kit-deficient Wv/Wv mutant mice.Cell Death Differ. 2003;10:676-86.
    51. Wade RH, Kozielski F.Structural links to kinesin directionality and movement.Nat Struct Biol. 2000; 7:456-60.
    52. Miki H, Setou M, Hirokawa N; RIKEN GER Group; GSL Members. Kinesin superfamily proteins (KIFs) in the mouse transcriptome. Genome Res. 2003; 13:1455-65.
    53. Nakagawa T, Tanaka Y, Matsuoka E, Kondo S, Okada Y, Noda Y, Kanai Y, Hirokawa N.Identification and classification of 16 new kinesin superfamily (KIF) proteins in mouse genome. Proc Natl Acad Sci U S A. 1997; 94:9654-9.
    54. Hirokawa N.The mechanisms of fast and slow transport in neurons: identificationand characterization of the new kinesin superfamily motors. Curr Opin Neurobiol. 1997; 7:605-14.
    55. Hirokawa N, Takemura R.Kinesin superfamily proteins and their various functions and dynamics.Exp Cell Res. 2004; 301:50-9.
    56. Midorikawa R, Takei Y, Hirokawa N. KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity. Cell. 2006; 125:371-83.
    57. Hoepfner S, Severin F, Cabezas A, Habermann B, Runge A, Gillooly D, StenmarkH, Zerial M.Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B.Cell.2005; 121:437-50.
    58. Tiab L, d'Alleves Manzi V, Borruat FX, Munier F, Schorderet D. Mutation analysis of KIF21A in congenital fibrosis of the extraocular muscles (CFEOM) patients.Ophthalmic Genet. 2004; 25:241-6.
    59. Traboulsi EI, Engle EC. Mutations in KIF21A are responsible for CFEOM1 worldwide. Ophthalmic Genet. 2004; 25:237-9.
    60. Piddini E, Schmid JA, de Martin R, Dotti CG. The Ras-like GTPase Gem is involved in cell shape remodelling and interacts with the novel kinesin-like protein KIF9. EMBO J. 2001; 20:4076-87.
    61. Bleil JD, Wassarman PM. Synthesis of zona pellucida proteins by denuded and follicle-enclosed mouse oocytes during culture in vitro.Proc Natl Acad Sci U S A. 1980; 77:1029-33.
    62. Bleil JD, Wassarman PM. Structure and function of the zona pellucida: identification and characterization of the proteins of the mouse oocyte's zona pellucida.Dev Biol. 1980 ;76:185-202
    63. Player MR, Torrence PF. The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol Ther 1998; 78:55-113.
    64. Zhou Y, Zhou B, Chen K, Yan SF, King FJ, Jiang S, Winzeler EA. Large-scale annotation of small-molecule libraries using public databases. J Chem Inf Model. 2007; 47:1386-94.
    1. Pangas SA, Choi Y, Ballow DJ, Zhao Y, Westphal H, Matzuk MM, Rajkovic A.Oogenesis requires germ cell-specific transcriptional regulators Sohlhl and Lhx8.Proc Natl Acad Sci U S A. 2006;103:8090-5.
    2. Rajkovic A, Pangas SA, Ballow D, et al. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 2004;305:1157-9
    3. Elvin JA, Yan C, Wang P, Nishimori K, Matzuk MM. Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol 1999; 13:1018-34.
    4. Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol. 1998; 12:1809-17.
    5. Epifano O, Liang LF, Familari M, Moos MC Jr, Dean J.Coordinate expression of the three zona pellucida genes during mouse oogenesis. Development. 1995; 121:1947-56.
    6. McNatty KP, Lawrence S, Groome NP, Meerasahib MF, Hudson NL, Whiting L, Heath DA, Juengel JL. Meat and Livestock Association Plenary Lecture 2005. Oocyte signalling molecules and their effects on reproduction in ruminants. Reprod Fertil Dev. 2006; 18:403-12.
    7. McNatty KP, Smith P, Moore LG, Reader K, Lun S, Hanrahan JP, Groome NP, Laitinen M, Ritvos O, Juengel JL.Oocyte-expressed genes affecting ovulation rate.Mol Cell Endocrinol. 2005; 234:57-66.
    1. Simpson JL, Rajkovic A. Ovarian differentiation and gonadal failure. Am J Med Genet .1999;89:186-200
    2. Coulam CB, Adamson SC, Annegers JF. Incidence of premature ovarian failure. Obstet Gynecol.1986;67:604-6
    3. Conway GS, Kaltsas G, Patel A, Davies MC, Jacobs HS.Characterization of idiopathic premature ovarian failure. Fertil Steril.1996;64: 337-41
    4. Cramer DW, Xu H, Harlow BL. Family history as a predictor of early menopause. Fertil Steril. 1995;64:740-5
    5. Beck-Peccoz P, Persani L. Premature ovarian failure. Orphanet J Rare Dis.2006;1 :9-14
    6. Suzumori N, Pangas SA, Rajkovic A. Candidate genes for premature ovarian failure. Curr Med Chem. 2007; 14: 353-7
    7. Toniolo D, Rizzolio F. X chromosome and ovarian failure. Semin Reprod Med. 2007;25:264-71
    8. Terracciano A, Chiurazzi P, Neri G. Fragile X syndrome. Am J Med Genet C Semin Med Genet .2005;137:32-7
    9. Pietrobono R, Tabolacci E, Zalfa F, Zito I, Terracciano A, Moscato U, Bagni C, Oostra B, Chiurazzi P, Neri G. Molecular dissection of the events leading to inactivation of the FMR1 gene. Hum Mol Genet. 2005;14:267-77
    10. Sullivan AK, Marcus M, Epstein MP, Allen EG, Anido AE, Paquin JJ, Yadav-Shah M, Sherman SL. Association of FMR1 repeat size with ovarian dysfunction. Hum Reprod. 2005;20:402-12
    11. Bodega B, Bione S, Dalpra L, Toniolo D, Ornaghi F, Vegetti W, Ginelli E, Marozzi A . Influence of intermediate and uninterrupted FMR1 CGG expansions in premature ovarian failure manifestation. Hum Reprod. 2006; 21:952-7.
    12. Hagerman PJ, Hagerman RJ. The fragile-X premutation: a maturing perspective. Am J Hum Genet. 2004; 74:805-16.
    13. Schmidt D, Ovitt CE, Anlag K, Fehsenfeld S, Gredsted L, Treier AC, Treier M . The murine wingedhelix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development. 2004;131: 933-42
    14. Uda M, Ottolenghi C, Crisponi L, Garcia JE, Deiana M, Kimber W, Forabosco A, Cao A, Schlessinger D, Pilia G. FOXL2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Human Molecular Genetics. 2004; 13: 1171-81
    15. Fokkema IF, den Dunnen JT, Taschner PE. LOVD: easy creation of a locus-specific sequence variation database using an "LSDB-in-a-box" approach. Hum Mutat .2005;26: 63-8
    16. Bione S, Rizzolio F, Sala C, Ricotti R, Goegan M, Manzini MC, Battaglia R, Marozzi A, Vegetti W, Dalpra L, et al. Mutation analysis of two candidate genes for premature ovarian failure, DACH2 and POF1B. Hum Reprod. 2004; 19:2759-66
    17. Lacombe A, Lee H, Zahed L, Choucair M, Muller JM, Nelson SF, Salameh W, Vilain E. Disruption of POF1B binding to nonmuscle actin filaments is associated with premature ovarian failure. Am J Hum Genet. 2006;79:113-9
    18. Shelling AN, Burton KA, Chand AL, van Ee CC, France JT, Farquhar CM, Milsom SR, Love DR, Gersak K, Aittomaki K, et al. Inhibin: a candidate gene for premature ovarian failure. Hum Reprod. 2000:15:2644-9
    19. Woad KJ, Watkins WJ, Prendergast D, Shelling AN. The genetic basis of premature ovarian failure. Aust NZ J Obstet Gynaecol. 2006;46: 242-4
    20. Groome NP, Illingworth PJ, O'Brien M, Cooke I, Ganesan TS, Baird DT and McNeilly . Detection of dimeric inhibin throughout the human menstrual cycle by two-site enzyme immunoassay. Clin Endocrinol 1994;40:717-23
    21. Groome NP, Illingworth PJ, O'Brien M, Pai R, Rodger FE, Mather JP and McNeilly. Measurement of dimeric inhibin B throughout the human menstrual cycle. J Clin Endocrinol Metab. 1996;81:1401-5
    22. Marozzi A, Porta C, Vegetti W, Crosignani PG, Tibiletti MG, Dalpra L, Ginelli E . Mutation analysis of the inhibin alpha gene in a cohort of Italian women affected by ovarian failure. Hum Reprod.2002;17:1741-5
    23. Dixit H, Rao KL, Padmalatha V, Kanakavalli M, Deenadayal M, Gupta N, Chakravarty BN, Singh L. Expansion of the germline analysis for the INHA gene in Indian women with ovarian failure. Hum Reprod. 2006;21:1643-4
    24. Qin Y, Choi Y, Zhao H, Simpson JL, Chen ZJ, Rajkovic A. NOBOX homeobox mutation causes premature ovarian failure. Am J Hum Genet. 2007; 81:576-81
    25. Laissue P, Christin-Maitre S, Touraine P, Kuttenn F, Ritvos O, Aittomaki K, Bourcigaux N, Jacquesson L, Bouchard P, Frydman R,et al. Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure.Eur J Endocrinol 2006; 154: 739-44
    26. Dixit H, Rao LK, Padmalatha V, Kanakavalli M, Deenadayal M, Gupta N, Chakravarty B, Singh L. Mutational screening of the coding region of growth differentiation factor 9 gene in Indian women with ovarian failure. Menopause. 2005;12:749-54
    27. Chand AL, Ponnampalam AP, Harris SE, Winship IM, Shelling AN. Mutational analysis of BMP15 and GDF9 as candidate genes for premature ovarian failure. Fertil Steril. 2006; 86:1009-12
    28. Kovanci E, Rohozinski J, Simpson JL, Heard MJ, Bishop CE, Carson SA. Growth differentiating factor-9(GDF9) mutations may be associated with premature ovarian failure (POF). Fertil Steril.2007;87:143-6
    29. Zhao H, Qin Y, Kovanci E, Simpson JL, Chen ZJ, Rajkovic A. Analyses of GDF9 mutation in 100 Chinese women with premature ovarian failure. Fertil Steril. 2007; 88:1474-6
    30. Di Pasquale E, Beck-Peccoz P, Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am. J. Hum. Genet. 2004;75: 106-11
    31. Wittenberger MD, Hagerman RJ, Sherman SL, McConkie-Rosell A, Welt CK, Rebar RW, Corrigan EC, Simpson JL, Nelson LM. The FMR1 premutation and reproduction. Fertil Steril. 2007; 87:456-65
    32. Matzuk MM, Lamb DJ. Genetic dissection of mammalian fertility pathways. Nat Cell Biol. 2002; Suppl:s41-9
    33. Pangas SA, Choi Y, Ballow DJ, Zhao Y, Westphal H, Matzuk MM, Rajkovic A.Oogenesis requires germ cell-specific transcriptional regulators Sohlhl and Lhx8.?roc Natl Acad Sci U S A. 2006; 103:8090-5.
    34. Choi Y, Ballow DJ, Xin Y and Rajkovic A. Lim homeobox gene, LHX8, is essential for early oocyte differentiation and survival. Development.(Submission)
    35. Rajkovic A, Pangas SA, Ballow D, et al. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 2004; 305:1157-9
    36. Soyal SM, Amleh A, Dean J. FIGalpha, a germ cell-specific transcription factor required for ovarian follicle formation. Development. 2000; 127: 4645-54
    37. Liang L, Soyal SM, Dean J. FIGalpha, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes. Development. 1997;124: 4939-47
    38. Dong J, Albertini DF, Nishimori K, et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 1996;383:531—5
    39. Aittomaki K, Lucena JL, Pakarinen P, Sistonen P, Tapanainen J, Gromoll J, Kaskikari R, Sankila EM, Lehvaslaiho H, Engel AR, et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell 1995; 82:959-68
    40. Jiang M, Aittomaki K, Nilsson C, Pakarinen P, Iitia A, Torresani T, Simonsen H, Goh V, Pettersson K, de la Chapelle A, et al. The frequency of an inactivating point mutation (566C->T) of the human follicle-stimulating hormone receptor gene in four populations using allele-specific hybridization and time-resolved fluorometry. J Clin Endocrinol Metab. 1998;83:4338-43
    41. Dierich A, Sairam MR, Monaco L, Fimia GM, Gansmuller A, LeMeur M, Sassone-Corsi P. Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci USA. 1998;95:13612-7
    42. Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet. 1997;15:201-204
    43. Oswami D, Conway GS. Premature ovarian failure. Hum Reprod Update. 2005; 11:391-410
    44. Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000; 403:901-6.
    45. Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res. 2004; 32:D109-11.
    46. Hafner M, Landgraf P, Ludwig J, et al. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods. 2008; 44:3-12.
    47. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of posttranscriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9:102-14.
    48. Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development. 2005; 132:4645-52.
    49. Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 2007; 8:23-36.
    50. Huntriss J, Gosden R, Hinkins M, Oliver B, Miller D, Rutherford AJ, Picton HM. Isolation, characterization and expression of the human Factor In the Germline alpha (FIGLA) gene in ovarian follicles and oocytes. Mol Hum Reprod .2002;8:1087-95
    51. Bayne RA, Martins da Silva SJ, Anderson RA. Increased expression of the FIGLA transcription factor is associated with primordial follicle formation in the human fetal ovary. Mol Hum Reprod. 2004; 10: 373-81
    52. Littlewood TD, Evan GI. Transcription factors 2: helix-loop-helix. Protein Prof. 1995;2:621-702
    53. Athanikar JN, Osborne TF. Specificity in cholesterol regulation of gene expression by coevolution of sterol regulatory DNA element and its binding protein.Proc Natl Acad Sci U S A. 1998; 95:4935-40
    54. Yatsenko AN, Roy A, Chen R, Ma L, Murthy LJ, Yan W, Lamb DJ, Matzuk MM . Non-invasive genetic diagnosis of male infertility using spermatozoal RNA: KLHL10 mutations in oligozoospermic patients impair homodimerization. Hum Mol Genet .2006; 15:3411-3419
    
    55. Morris JA, Kandpal G, Ma L, Austin CP. DISCI (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum Mol Genet 2003; 12: 1591-608.
    56. Joshi S, Davies H, Sims LP, Levy SE, Dean J.Ovarian gene expression in the absence of FIGLA, an oocyte-specific transcription factor. BMC Dev Biol. 2007 ; 13:67-79
    57. Seidman JG, Seidman C. Transcription factor haploinsufficiency: when half a loaf is not enough. J Clin Invest. 2002; 109: 451-5
    58. Jones S. An overview of the basic helix-loop-helix proteins. Genome Biol .2004; 5:226
    59. Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM.Growth differentiation factor-9 is required during early ovarian folliculogenesis.Nature. 1996; 383:531-5.
    60. Galloway SM, McNatty KP, Cambridge LM, Laitinen MP, Juengel JL,Jokiranta TS, et al. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosagesensitive manner. Nat Genet. 2000; 25:279-83.
    61. Juengel JL, Hudson NL, Heath DA, Smith P, Reader KL, Lawrence SB, O'Connell AR, Laitinen MP, Cranfield M, Groome NP, Ritvos O, McNatty KP.Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biol Reprod. 2002; 67:1777-89.
    62. Wilson T, Wu XY, Juengel JL, Ross IK, Lumsden JM, Lord EA, Dodds KG, Walling GA, McEwan JC, O'Connell AR, McNatty KP, Montgomery GW. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol Reprod. 2001; 64:1225-35.
    63. Mazerbourg S, Klein C, Roh J, Kaivo-Oja N, Mottershead DG, Korchynskyi O,Ritvos O, Hsueh AJ.Growth differentiation factor-9 signaling is mediated by the type I receptor,activin receptor-like kinase 5.Mol Endocrinol. 2004; 18:653-65.
    64. Moore RK, Otsuka F, Shimasaki S.Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells.J Biol Chem. 2003;278:304-10.
    65. Liao WX, Moore RK, Otsuka F, Shimasaki S.Effect of intracellular interactions on the processing and secretion of bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9. Implication of the aberrant ovarian phenotype of BMP-15 mutant sheep.J Biol Chem. 2003; 278:3713-9.
    66. Elvin JA, Yan C, Wang P, Nishimori K, Matzuk MM. Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol 1999; 13:1018-34.
    67. Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol. 1998; 12:1809-17.
    68. Carabatsos MJ, Elvin J, Matzuk MM, Albertini DF.Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice.Dev Biol. 1998;204:373-84.
    69. Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, Prasad SV, Skinner SS, Dunbar BS, Dube JL, Celeste AJ, Matzuk MM. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol. 2001; 15: 854-66.
    70. McNatty KP, Lawrence S, Groome NP, Meerasahib MF, Hudson NL, Whiting L, Heath DA, Juengel JL. Meat and Livestock Association Plenary Lecture 2005. Oocyte signalling molecules and their effects on reproduction in ruminants. Reprod Fertil Dev. 2006; 18: 403-12.
    71. Dixit H, Rao LK, Padmalatha VV, Kanakavalli M, Deenadayal M, Gupta N,Chakrabarty B, Singh L.Missense mutations in the BMP15 gene are associated with ovarian failure.Hum Genet. 2006; 119: 408-15.
    72. Di Pasquale E, Rossetti R, Marozzi A, Bodega B, Borgato S, Cavallo L, Einaudi S, Radetti G, Russo G, Sacco M, Wasniewska M, Cole T, Beck-Peccoz P, Nelson LM,Persani L.Identification of new variants of human BMP15 gene in a large cohort of women with premature ovarian failure.J Clin Endocrinol Metab. 2006; 91: 1976-9.
    73. Ledig S, Ropke A, Haeusler G, Hinney B, Wieacker P.BMP15 mutations in XX gonadal dysgenesis and premature ovarian failure.Am J Obstet Gynecol. 2008;198:84.e1-5.
    74. Zhang P, Shi YH, Wang LC, Chen ZJ. Sequence variants in exons of the BMP-15 gene in Chinese patients with premature ovarian failure.Acta Obstet Gynecol Scand. 2007;86:585-9.
    75. Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, Powell R, et al. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod 2004;70: 900-9.
    76. Liao WX, Moore RK, Shimasaki S. Functional and molecular characterization of naturally occurring mutations in the oocyte-secreted factors bone morphogenetic protein-15 and growth and differentiation factor-9. J Biol Chem 2004; 279: 17391-6.
    77. Wilbur WJ, Lipman DJ. Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci USA 1983; 80: 726-30.