光子晶体微腔特性研究及其在痕量气体浓度测量中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来纳米材料和高精度加工与制备技术的不断提高为光学技术的深入开展提供了技术基础和条件,使光学集成技术逐渐成为人们关注的热点,并且在光学集成领域占有重要地位,光学微腔技术的研究在这一背景下得到了空前重视,出现了一些创造性的成果。为了深入研究光学微腔的特性,本文针对光子晶体微腔进行了结构上的设计;并计算了金属反射薄膜对其辐射特性的影响;讨论了光子晶体KTP缺陷微腔在痕量气体浓度测量系统中的应用;构建了光子晶体微腔气室的光纤环路测量实验系统。
     首先,在光子晶体平板微腔结构的基础上,引入金属反射薄膜,利用金属在近红外区的高反射性,分别分析了金和银两种金属对三角晶格光子晶体微腔辐射特性的影响。通过反射薄膜与光子晶体平板之间形成空气间隙高度的变化,研究了该变化对光子晶体微腔谐振波长、品质因子和辐射线宽等特性的影响;利用时域有限差分法对所设计的结构进行了计算,得到了空气间隙的变化过程中光子晶体平板微腔内的场强分布特性,实现了Q值最大时腔内场的均匀分布,为可调谐光子晶体激光器的制备提供了理论基础。
     其次,在三角晶格硅基底光子晶体平板结构中心位置引入KTP晶体,构成光子晶体点缺陷微腔结构。利用平面波展开法计算了KTP晶体的半径变化对光子晶体禁带范围的影响;通过设置不同的KTP晶体半径,得到禁带范围不同的光子晶体微腔结构特性。
     在实验设计中,进一步设计光纤环路衰荡痕量气体浓度测量系统,制备相应禁带范围的光子晶体微腔结构,将KTP缺陷光子晶体微腔固定于气室中,根据待测气体在近红外区域的吸收峰波长,保证吸收峰信号光频率通过光子晶体微腔,实现测量系统中噪声信号的滤除。
     最后,构建了基于光子晶体微腔气室的痕量气体浓度测量实验测量系统,对系统中的关键器件:掺铒光纤放大器和可调光衰减器等进行了性能测试实验。得出基于Labview的数据采集系统用以接收不同浓度时的气体衰荡时间,绘制了气体衰荡拟合曲线。根据光纤环路衰荡原理得到了NH3的典型浓度衰荡曲线,验证了光子晶体微腔在痕量气体浓度测量中应用的可行性。
In recent years, the appearance of nanomaterials and fabrication for high-precisionplay important roles for thorough investigation of optical technique which leadsintegration optics to the hotspot. The optical microcavity is proposed and has significantplace in integration optics field. Some creative achievements emerge one after another. Inorder to investigate the properties of microcavity, we present a photonic crystalmicrocavity and calculate the emission characteristics. Furthermore, the application ofphotonic crystal defect microcavity in concentration measurement of trace gas isrepresented and proved experimentally.
     First of all, we introduce the metallic reflective film on both sides of photonic crystalslab. In consideration of the high reflectivity of metal in infrared region, the influence ofmetallic film on triangle lattice photonic crystal microcavity is analyzed. The variation ofair band located between the photonic crystal slab and metal has an effect on emissioncharacteristics of photonic crystal microcavity, such as resonant wavelength, quality factorand emission linewidth. Uniform distribution of field is achieved at the maximum qualityfactor which leads to the possibility of tunable photonic crystal laser.
     Secondly, KTP crystal is injected into the center of Si-substrate photonic crystal slabwith triangle lattice by which the defect microcavity is formed. We calculate the bandgapof photonic crystal microcavity with different radius of KTP using planar wave expansionmethod. The dependence of radius of KTP crystal on bandgap of photonic crystal isobtained.
     In addition, the concentration measurement system of trace gas based on fiber loopring-down method is proposed. The photonic crystal microcavity with KTP defect is fixedin the gas cell. According to the absorption wavelength in infrared region of interest gas,the signal light can pass through the photonic crystal microcavity with specular bandgaprange and the noise is prohibited.
     Finally, on the basis of photonic crystal microcavity, the experimental setup forconcentration measurement of trace gas is established. The performance tests of key elements in system are accomplished. The ring down time of trace gas at differentconcentration is received by the data acquisition system programmed by Labview. Thecorresponding fitting curve is plotted according to the data stored by personal computer.Moreover, the ring down curve of typical concentration is obtained theoretically by whichthe application of photonic crystal microcavity in concentration measurement of trace gasis proved.
引文
[1] Miller S E. Integrated optics: An introduction[J]. J. Bell Syst. Tech.,1969,48(7):2059-2068
    [2] Kumar A, Yu S F, Li X F. Random laser action in dielectric-metal-dielectric surfaceplasmon waveguides[J]. Applied Physics Letters,2009,95(23):231114-231114-3
    [3] Belotti M, Galli M, Gerace D, et al. All-optical switching in silicon-on-insulator photonicwire nano-cavities[J]. Optics Express,2010,18(2):1450-1461
    [4] Rayleigh L. Further applications of Bessel’s functions of high order to the whisperinggallery and allied problems[J]. Philosophical Magazine,1914,27(157):100-109
    [5] McCall S L, Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers[J].Applied Physics Letters,1992,60(3):289-291
    [6]董春华.回音壁模式微腔量子电动力学的实验研究[D].合肥:中国科技大学博士论文,2011
    [7] Kiraz A, Atatüre M, Imamo lu A. Quantum-dot single-photon sources: Prosects forapplication in linear optics quantum-information processing[J]. Physical Review A,2004,69(3):032305-032305-4
    [8] Kasprzak J, Reitzenstein S, Muljarov E A, et al. Up on the Jaynes-Cummings ladder of aquantum-dot/microcavity system[J]. Nature Materials,2010,9:304-308
    [9] Letokhov V S. Generation of light by a scattering medium with negative resonanceabsorption[J]. Soviet Physics Jetp,1968,26(4):835-840
    [10] Cao H, Zhao Y G, Ho S T, et al. Random laser action in semiconductor powder[J].Physical Review Letters,1999,82(11):2278-2281
    [11]马向阳,陈陪良,李东升,等.室温电抽运硅基ZnO薄膜的随机激光[J].中国光学,2007,45(2):7
    [12]王可嘉,张清泉,吕健涛,等.一维随机激光器中准态模的饱和特性研究[J].应用光学,2007,28(6):746-750
    [13] Costela A, Garcia-Moreno I, Cerdan L, et al. Dye-doped poss solutions: randomnanomaterials for laser emission[J]. Advanced Materials,2009,21(4):4163-4166
    [14] Dominguez C T, Maltez R L, Reis R M S, et al. Dependence of random laser emission onsilver nanoparticle density in PMMA films containing rhodamine6G[J]. Journal of theoptical society of America B,2011,28(5):1118-1123
    [15] Lawandy N M, Balachandran R M, Gomes A S L, et al. Laser action in strongly scatteringmedia[J]. Nature,1994,368:436-438
    [16] Chen C W, Jau H C, Wang T, et al. Random lasing in blue phase liquid crystals[J]. OpticsExpress,2012,20(21):23978-23984
    [17] Chen R, Utama M B, Peng Z P, et al. Excitonic properties and near-infrared coherentrandom lasing in vertically aligned CdSe nanowires[J]. Advanced Materials,2011,23(11):1404-1408
    [18] Yang H Y, Yu S F, Lau S P et al. Ultraviolet coherent random lasing in randomlyassembled SnO2nanowires[J]. Applied Physics. Letters,2009,94(24):241121-241121-3
    [19] Mascheck M, Schmidt S, Silies M,et al. Observing the localization of light in space andtime by ultrafast second-harmonic microscopy[J]. Nature Photonics,2012,6:293~298
    [20] Liang H K, Yu S F, and Yang H Y. Directional and controllable edge-emitting ZnOultraviolet random laser diodes[J]. Applied Physics Letters,2010,96(10):101116-101116-3
    [21] Kumar A, Yu S F, Li X F. Random laser action in dielectric-metal-dielectric surfacePlasmon waveguides[J]. Applied Physics Letters,2009,95(23):231114-231114-3
    [22] Zhai T R, Zhang X P, Pang Z G, et al. Random laser based on waveguided plasmonic gainchannels[J]. Nanoletters,2011,11(10):4295-4298
    [23] Liu H, Liu J S, Feng B, et al. The competition between two polarization states intwo-dimensional random medium[J]. Optics Communication,2008,281(10):2964-2969
    [24] Zhang Q Q, Liu J S, Wang K J, et al. Time evolution of power spectra fromtwo-dimensional passive random media with different shapes[J]. Optics Communication,2008,281(14):3856-3860
    [25] Liu H, Liu J S, Lv J T, et al. The research on polarization states with local pumping intwo-dimensional active random medium[J]. Optics Communication,2009,282(5):1004-1008
    [26] Mishchenko M, Travis L D, Lacis A A. Multiple scattering of light by particles: radiativetransfer and coherent backscattering[M]. Cambridge: Cambridge University Press,2006:365-404
    [27] Andreasen J, Asatryan A A, Botten L C, et al. Modes of random lasers[J]. Advanced inOptics and Photonics,2011,3(1):88-127
    [28] Stano P, Jacquod P. Suppression of interactions in multimode random lasers in theAnderson localized regime[J]. Nature Photonics,2013,7:66-71
    [29] Lv J T, Liu J S, Liu H, et al. Theoretical investigation on temporal properties of randomlasers pumped by femtosecond-lasing pulses[J]. Optics Communication,2009,282(11):2104~2109
    [30] Ardakani A G, Mahdavi S M, Bahrampour A R. Tuning of random lasers by means ofexternal magnetic fields based on the Voigt effect[J]. Optics and Laser Technology,2013,47(8):121-126
    [31]Redding B, Choma M A, and Cao H. Spatial coherence of random laser emission[J].Optics Letters,2011,36(17):3404-3406
    [32]Redding B, Choma M A, and Cao H. Speckle-free laser imaging using random laserillumination. Nature Photonics,2012,6:355-359
    [33]常伟,范广涵,谭春华,等.光子晶体的发展及制备研究[J].华南师范大学学报,2006,(1):48-53
    [34] Tolmachev V A, Astrova E V, Piyugina J A, et al.1D photonic crystal fabricated by wetetching of silicon[J]. Optical Materials,2005,27(5):831-835
    [35]许兴胜,熊志刚,孙增辉,等.半导体量子阱材料微加工光子晶体的光学特性[J].物理学报,2006,55(3):1248-1252
    [36]许兴胜,张道中.二维光子晶体微加工方法的研究与进展[J].科学通报,2006,51(20):2337-2346
    [37]杜伟,许兴胜,韩伟华,等.高质量二维光子晶体结构刻蚀掩膜版的制作方法[J].半导体学报,2006,27(9):1640-1644
    [38] Ozbay E, Bulu I, Aydin K, et al. Physics and applications of photonic crystals[J]. Photonicsand Nanostructures,2004,2(2):87-95
    [39] Yuan J H, Lu Y Y. Photonic bandgap calculations with Dirichlet-to-Neumann maps[J].Journal of the optical society of Ameirca A,2006,23(12):3217-3222
    [40] Galindo-Linares E., Halevi P, S′anchez A S. Tuning of one-dimensional Si/SiO2photoniccrystals at the wavelength of1.54μm[J]. Solid State Communications,2007,142:67-70
    [41] Takahata T, Hoshino K, Matsumoto K, et al. Transmittance tuning of photonic crystalreflectors using an AFM cantilever[J]. Sensors and Actuators,2006,128(1):197-201
    [42] Fan S H. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems[J].Applied Physics Letters,2002,80(6):908-910
    [43] Robinson S, Nakkeeran R. Photonic crystal ring resonator based bandpass filter[C].National conference on communications,2011:1-4
    [44] Yoshihiro A, Asano T, Song B S. Investigation of high-Q channel drop filters usingdonor-type defects in two-dimensional photonic crystal slabs[J]. Applied Physics Letters,2003,83(8):1512-1514
    [45] Djavid M, Monifi F, Ghaffari A, et al. Heterosturcture wavelength division demultiplexersusing photonic crystal ring resonators[J]. Optical Communication,2008,281(15-16):4028-4032
    [46] Mahmoud M Y, Bassou G, Taalbi A. A new optical add-drop filter based ontwo-dimensional photonic crystal ring resonator[J]. Optik,2013,124(17):2864-2867
    [47] Li L, Liu G Q, Huang K, et al. A new photonic crystal channel drop filter[C]. Symposiumon photonics and optoelectronics,2012:1-3
    [48] Zhao Y N, Li K Z, Wang X H, et al. A compact in-plane photonic crystal channel dropfilter[J]. Chinese Physics B,2011,20(7):074210-074210-6
    [49] Habibiyan H, Ghafoor-Fard H, Rostami A. Tunable all-optical photonic crystal channeldrop filter for DWDM systems[J]. Journal of Optics A: Pure and Applied Optics,2009,11(6):065102-065102-10
    [50] Djavid M, Abrishamian M S. Multi-channel drop filters using photonic crystal ringresonators[J]. Optik,2012,123(2):167-170
    [51] Sharkawy A, Shi S, Pratrher D W. Multichannel wavelength division multiplexing withphotonic crystals[J]. Applied Optics,2001,40(14):2247-2252
    [52] Song B S, Nagashima T, Asano T, et al. Resonant-wavelength tuning of a nanocavity bysubnanometer control of a two-dimensional silicon-based photonic crystal slabstructure[J]. Applied Optics,2009,48(26):4899-4903
    [53]文科,王荣,汪井源,等.基于混合导光型光子晶体光纤的波分复用器研究[J].光学学报,2009,29(4):1088-1091
    [54]唐发林,刘桂强,黎磊,等.二维三角晶格光子晶体三通道解波分复用器[J].光子学报,2012,11(12):1470-1474
    [55] Takano H, Song B S, Asano T, et al. Highly efficient multi-channel drop filter in atwo-dimensional hetero photonic crystal[J]. Optics Express,2006,14(8):349-3496
    [56] Kuo C W, Chang C F, Chen M H, et al. A new approach of planar multi-channelwavelength division multiplexing system using asymmetric super-cell photonic crystalstructures[J]. Optics Express,2006,15(1):198-206
    [57] Rostami A, Banaer H A, Nazari F, et al. An ultra compact photonic crystal wavelengthdivision demultiplexer using resonance cavities in a modified Y-branch structure[J]. Optik,2011,122(16):1481-1485
    [58] Selim R, Pinto D, Obayya S S A. Novel fast photonic crystal multiplexer-demultiplexerswitches[J]. Optics Quantum Electronics,2011,42(8):425-433
    [59] Zhang J, Xu X M, He L J. Three-wavelength multiplexer/demultiplexer based on photoniccrystal ring resonator and cavities[C]. Proc. SPIE8308, Optoelectronic Materials andDevices VI,2011,83081T
    [60]周兴平,疏静,卢斌杰,等.基于三角晶格光子晶体谐振腔的双通道解波分复用器[J].光学学报,2013,33(1):0123001-0123001-5
    [61] Yang D Q, Tian H P, Wu N N, et al. Nanoscale torsion-free photonic crystal pressuresensor with ultra-high sensitivity based on side-coupled piston-type microcavity[J].Sensors and Actuators A,2013,199(1):30-36
    [62] Xu Z F, Cao L C, Gu C, et al. Micro displacement sensor based on line-defect resonantcavity in photonic crystal[J]. Optics Express,2006,14(1):298-305
    [63] Kita S, Nozaki K, Baba T. Refractive index sensing utilizing a cw photonic crystalnanolaser and tis array configuration[J]. Optics Express,2008,16(11):8174-8180
    [64] Chow E, Grot A, Mirkarimi L W, et al. Ultracompact biochemical sensor built withtwo-dimensional photonic crystal microcavity[J]. Optics Letters,2004,29(10):1093-1096
    [65]李皓.新型光学和微腔激光器生物传感效应研究[D].上海:复旦大学博士论文,2011
    [66] Chakravarty S, Zou Y, Lai W C, et al. Slow light engineering for high Q high sensitivityphotonic crystal microcavity biosensors in silicon[J]. Biosensors and Bioelectronics,2012,38(1):170-176
    [67] Chakravarty S, Lai W C, Zou Y, et al. Multiplexed specific label-free detection ofNCL-H358lung cancer cell line lysates with silicon based photonic crystal microcavitybiosensors[J]. Biosensors and Bioelectronics,2013,43(15):50-55
    [68] Lai W C, Chakravarty S, Zou Y. Silicon photonic crystal microcavity biosensors for labelfree highly sensitive and specific lung cancer detection[C]. IEEE Photonics Conference,2012:443-444
    [69] Canet Ferrer J, Prieto I, Mu oz-Matutano G, et al. Excitation power dependence of thePurcell effect in photonic crystal microcavity lasers with quantum wires[J]. AppliedPhysics Letters,2013,102(20):201105-201105-5
    [70] Painter O, Husain A, Scherer A, et al. Lithographic tuning of a two-dimensional photoniccrystal laser array[J]. IEEE Photonics Technology Letters,2000,12(9):1126-1128
    [71] Gourdon F, Chakaroun M, Fabre N, et al. Optically pumped lasing from organictwo-dimensional planar photonic crystal microcavity[J]. Applied Physics Letters,2012,100(21):213304-203304-5
    [72] Nozaki K, Baba T. Quasiperiodic photonic crystal microcavity lasers[J]. Applied PhysicsLetters,2004,84(24):4875-4877
    [73] Painter O, Lee R K, Scherer A, et al. Two-dimensional photonic band-gap defect modelaser[J]. Science,1999,284:1819-1821
    [74]许桂雯,欧阳征标,阮双琛,等.光子晶体激光器的最新进展[J].中国激光,2004,31(增刊):79-81
    [75]郑婉华,王宇飞,周文君,等.超低阈值横向腔光子晶体面发射激光器[J].红外与激光工程,2012,41(12):3198-3202
    [76] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J].Physical Review Letters,1987,58(20):2059-2062
    [77] John S. Strong localization of photons in certain disordered dielectric superlattices[J].Physical Review Letters,1987,58(23):2486-2490
    [78] Van J M, Woldering L A, Tierkstra R W, et al. Inverse-woodpile photonic band gap crystalwith a cubic diamond-like structure made from single-crystalline silicon[J]. AdvancedFunctional Materials,2011,22(1):25-31
    [79] Michette A. Vol. Ⅲ of Handbook of Optics[M]. New York: McGraw-Hill Companies,2000,861-865
    [80] Dobrowolski J A. Vol. Ⅰo f Handbook of Optics[M]. New York: McGraw-Hill Companies,1978,1006-1008
    [81] Koch T L, Leonberger F J, Suchoski P G. Vol II of Handbook of Optics[M]. New York:McGraw-Hill Companies,1995,564-580
    [82] Winn J N, Fink Y, Fan Shanhui, et al. Omnidirectional reflection from a one-dimensionalphotonic crystal[J]. Optics Letters,1998,23(20):1573-1575
    [83]葛震彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社,1993,1-10
    [84] Li J, Huang W H, Han Y C. Tunable photonic crystals by mixed liquids[J]. Colloids andSurfaces A: Physicochem,2006,279(1-3):213-217
    [85] Yeh P, Yariv A, Hong C S. Electromagnetic propagation in periodic stratified media[J]. I.General theory.1977,67(4):423-438
    [86] Kosobukin V A. Surface-enhanced magneto-optical effects in free magneticsuperlattices[J]. Solid State Communications,1997,101(7):497-501
    [87] Gourdon F, Chakaroun M, Fabre N, et al. Lasing action from organic two-dimensionalplanar photonic crystal microcavity[C].2012Conference on Lasers and Electro-optics,1-2
    [88] G’erard J, Gayral B. Strong Purcell effect for InAs quantum boxes in three-dimensionalsolid-state microcavities. Journal of lighwave technologies,1999,17(11):2089-2095
    [89] Sun T, Qiu Z R, Su H M, et al. Dynamics of random laser and coherent backscattering oflight from ZnO amplifying random medium[J]. Applied Physics Letters,2007,91(24):241110-241110-2
    [90] Cao H, Zhao G, Ong H C, et al. Ultraviolet lasing in resonators formed by scattering insemiconductor polycrystalline films[J]. Applied Physics Letters,1998,73(25):3656-3657
    [91] Cao H, Zhao Y G, Ong H C, et al. Far-field characteristics of random lasers[J]. PhysicalReview B,1999,59(23):15107-15111
    [92] Cárdenas-Sevilla G A, Finazzi V, Villatoro J, et al. Photonic crystal fiber sensor array basedon modes overlapping[J]. Optics Express,2011,19(8):7596-7602
    [93] Ren F F, Ye J D, Lu H, et al. Spectrum broadening of high-efficiency second harmonicgeneration in cascaded photonic crystal microcavities[J]. Optics Express,2013,21(1):756-763
    [94] Mehta K K, Orcutt J S, Ram R J. Fano line shapes in transmission spectra of siliconphotonic crystal resonators[J]. Applied Physical Letters,2013,102(8):081109
    [95] Liu Y Z, Liu R J, Feng S, et al. Multichannel filters via Γ-M and Γ-K waveguide couplingin two-dimensional triangular-lattice photonic crystal slabs[J]. Applied Physical Letters,2008,93(24):241107-241107-3
    [96] Lenglé K, Gay M, Bramerie L, et al. Wavelength division demultiplexing and crosstalkassessment of a photonic crystal filter[J]. IEEE Photonics Technologies Letters,2012,24(23):2109-2111
    [97]周长柱,王晨,李志远.硅基二维平板光子晶体高Q微腔的制作和光谱测量.物理学报,2012,61(1):014214-014214-2
    [98] Kim S H, Kim S K, Lee Y H. Vertical beaming of wavelength-scale photonic crystalresonators[J]. Physica. Review B,2006,73(23):235117-235117-4
    [99] Kim S H, Huang J Q, Scherer A. From vertical-cavities to hybrid metal/photonic-crystalnanocavities: towards high-efficiency nanolasers[J]. Journal of the Optical Society ofAmerica B,2012,29(4):577-588
    [100] Akahane Y, Asano T, Song B S, et al. High-Q photonic nanocavity in a two-dimensionalphotonic crystal[J]. Nature,2003,425:944-947
    [101] Scullion M G, Falco A D, Krauss T F. Slotted photonic crystal cavities with integratedmicrofluidics for biosensing applications[J]. Biosensors and Bioelectronics,2011,27(1):101-105
    [102] Pal S, Guillermain E, Sriram R, et al. Silicon photonic crystal nanocavity-coupledwaveguides for error-corrected optical biosensing[J]. Biosensors and Bioelectronics,2011,26(5):4024-4031
    [103] Johnson S G, Fan S H, Villeneuve P R, et al. Guided modes in photonic crystal slabs[J].Physical Review B,1999,60(8):5751-5758
    [104]张克潜,李德杰.微波与光电子学中的电磁理论[M].北京:科学电子工业出版社,99-102
    [105] Lee J Y, Hahn J W. Theoretical analysis on the dynamic absorption saturation in pulsedcavity ring down spectroscopy[J]. Appliled Physics B,2004,79(5):653-662
    [106] Zhang C M, Zhao B C, Bin X L, et al. Interference image spectroscopy for upperatmospheric wind field measurement[J]. Optik,2006,117(6):265-270
    [107] Brown S S, Stark H, Ravishankara A R. Cavity ring-down spectroscopy for atmospherictrace gas detection: application to the nitrate radical(NO3)[J] Applied Physics B,2002,75(2-3):173-182
    [108] Xia H, Liu W Q, Zhang Y J, et al. An approach of open-path gas sensor based on tunablediode laser absorption spectroscopy[J]. Chinese Optics Letters,2008,6(6):437-440
    [109] O’Keefe A, Deacon D A G. Cavity ring-down optical spectrometer for absorptionmeasurements using pulsed laser sources[J]. Review of Scientific Instrument,1988,59(12):2544-2551
    [110]曹琳,王春梅,陈扬,等.光外差腔衰荡光谱理论研究[J].物理学报,2006,55(12):6354-6359
    [111] Ye F, Zhou C M, Qi B, et al. Continuous-wave cavity ring-down evanescent-field sensingwith a broadband source based on frequency-shifted interferometry[J]. Sensors andActuators B: Chemical,2013,184(31):150-155
    [112] Giusfredi G, Bartalini S, Borri S, et al. Saturated-Absorption cavity ring-downspectroscopy[J]. Physical Review Letters,2010,104(11):110801-110801-4
    [113] Mazzotti D, Cancio P, Castrillo A, et al. A comb-referenced difference-frequencyspectrometer for cavity ring-down spectroscopy in the4.5μm region[J]. Journal of OpticsA: Pure and Applied Optics,2006,8(7): S490-S493
    [114] Xun M, Sajeev J. Quantum-dot all-optical logic in a structured vacuum[J]. PhysicalReview. A,2011,84(1):013830-013830-18
    [115] Foteinopoulou S, Kafesake M, Economou E N, et al. Two-dimensional polaritonic photoniccrystals as terahertz uniaxial metamaterials[J]. Physical Review B,2011,84(3):035128-035128-22
    [116] Michael J T, Darren D. H, Kevin D. M, et al. Cavity-ringdown molecular spectroscopybased on an optical frequency comb at1.45-1.65μm[J]. Optics Letters,2007,32(3):307-309……