FINEMET型软磁合金的结晶动力学和磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文系统研究了FINEMET型软磁合金的晶化动力学和磁性,主要结果如下:
     利用标准的单辊甩带技术在大气环境下成功制备了Fe_(73.5)Si_(13.5)B_9Cu_1Nb_(3-x)Mo_x(x=1,2,3), Fe(73.5)Si_(13.5)B_9Cu_1Nb_(3-x)V_x(x=1,2), Fe(73.5-x)Co_xSi_(13.5)B_9Cu_1Nb_3(x=10,30,50)和Fe_(73.5)Si_(13.5-x)Ge_xB_9Cu_1Nb_3(x=3,6)非晶薄带。利用差示扫描量热法(DSC)研究了非晶薄带的晶化动力学行为,实验研究发现:非晶薄带的晶化特征温度随着升温速率的增加而升高,表明非晶薄带的晶化具有明显的动力学特征。分别采用Kissinger、Ozava和Augis-Bennett方法计算了非晶薄带的晶化表观激活能。利用JMA模型计算了表征非晶薄带晶化过程中形核和长大行为的局域Avrami因子n随晶化分数α的变化关系,从而确定了上述非晶薄带一次晶化的机制为:随着晶化过程的进行,由扩散控制的三维形核和晶粒生长的整体晶化,形核率逐渐减小过渡为一维形核和生长的表面晶化,形核率近似为零。
     利用定制的单辊甩带机在大气环境下成功制备了宽度为10mm,厚度约为0.03mm的Fe_(73.5)Si_(13.5)B_9Cu_1Nb_1Mo_2和Fe_(73.5)Si_(13.5)B_9Cu_1Nb_2V_1非晶薄带,饶制成环状铁芯样品后在不同温度下对其进行晶化退火处理,然后测量其磁滞回线。实验结果发现,Fe_(73.5)Si_(13.5)B_9Cu_1Nb_1Mo_2非晶薄带样品经过470℃保温45min预退火处理,540℃保温60min等温晶化处理后获得了最优的磁性能,频率为1kHz下测得的磁性能数据为:Hm=199.1A/m,BS=0.4760T,HC=8.43A/m,Ps=4.708W/kg,Br=0.1908,μ=2.391mH/m;Fe_(73.5)Si_(13.5)B_9Cu_1Nb_2V_1非晶薄带样品经过470℃保温45min预退火处理,545℃保温60min等温晶化处理后获得了最优的磁性能,频率为1kHz下测得的磁性能数据为:Hm=197.88A/m,BS=0.690T,HC=6.933A/m,Ps=3.384W/kg,Br=0.1678,叠片系数为0.63。通过磁性能的比较可以看出:Fe_(73.5)Si_(13.5)B_9Cu_1Nb_2V_1铁芯1kHz频率下的软磁性能要优于Fe_(73.5)Si_(13.5)B_9Cu_1Nb_1Mo_2铁芯。
     利用550℃保温60min晶化退火处理后的Fe_(63.5)Co_(10)Si_(13.5)B_9Cu_1Nb_3薄带样品,对其进行球磨、筛分、包覆处理、冷压成型和去应力退火处理,制备成内外径尺寸分别为10mm×20mm的环状磁粉芯样品。研究了粉末颗粒尺寸、粘结剂含量、压制成型压力和去应力退火时间对Fe_(63.5)Co_(10)Si_(13.5)B_9Cu_1Nb_3纳米晶磁粉芯的密度、有效磁导率以及品质因子的影响。实验结果发现其最佳制备工艺参数为:环氧树脂含量为3%,最佳成型压力为174kN,最佳去应力退火工艺为100℃保温11h。相应的磁性能为:有效磁导率最高达到55,而且在5MHz的频率范围内具有良好的频率稳定性,250kHz对应的最大的品质因子为35。
     利用普通热处理+磁场热处理两步热处理的方式对FINEMET铁芯进行了热处理,研究了磁场方向、磁场强度和热处理温度对铁芯磁滞回线的影响。实验结果发现:随着横磁处理温度的增加,FINEMET铁芯磁滞回线的形状逐渐呈现直线型(恒导磁性),横磁处理可以减小磁芯的磁导率和铁损;随着纵磁处理温度的增加,FINEMET铁芯磁滞回线的形状逐渐呈现矩形,纵磁处理可以提高磁芯的磁导率和铁损;FINEMET非晶薄带铁芯样品经过纵向+横向复合磁场热处理后,其磁滞回线兼具横磁和纵磁处理两者的优点,从而表现出优良的软磁性能。
Crystallization kinetics and magnetic properties of FINEMET-type soft magnetic alloy areinvestigated systematically in present thesis. Following are the main results:
     Amorphous ribbons of the alloys Fe_(73.5)Si_(13.5)B_9Cu_1Nb_(3-x)Mo_x(x=1,2,3),Fe(73.5)Si_(13.5)B_9Cu_1Nb_(3-x)V_x(x=1,2), Fe(73.5-x)Co_xSi_(13.5)B_9Cu_1Nb_3(x=10,30,50) andFe_(73.5)Si_(13.5-x)Ge_xB_9Cu_1Nb_3(x=3,6) are successfully synthesized by the standard single copperwheel melt spinning technique in the air atmosphere. The crystallization kinetics ofamorphous ribbons have been investigated systematically by means of non-isothermalDifferential Scanning Calorimetry (DSC). Our investigations indicate that crystallizationcharacteristic temperatures are shifted to the higher temperatures with increasing heating rate,which means the nanocrystallization process has kinetic effects. The crystallization activationenergies of amorphous ribbons have been calculated by using Kissinger, Ozava andAugis-Bennett models based on differential thermal analysis data. The local Avrami exponentn for primary crystallization is calculated using Johnson-Mehl-Avrami (JMA) equation. Thesignificant variation of local Avrami exponent n with crystallized volume fraction αdemonstrats that the primary crystallization kinetics of amorphous ribbons varies at differentstages. In the initial stage, the crystallization mechanism is bulk crystallization with threedimensional nucleation and grain growth controlled by diffusion at decreasing nucleation rate.In the following stage, it is surface crystallization with one dimensional nucleation and graingrowth at a near-zero nucleation rate.
     Amorphous ribbons with width of10mm and thickness of0.03mm forFe_(73.5)Si_(13.5)B_9Cu_1Nb_1Mo_2and Fe_(73.5)Si_(13.5)B_9Cu_1Nb_2V_1are successfully synthesized by thecustom single copper wheel melt spinning machine in the air atmosphere. The hysteresisloops of the toroidal shaped amorphous magnetic cores annealed at different temperatures aremeasured. The experimental results show that: the Fe_(73.5)Si_(13.5)B_9Cu_1Nb_1Mo_2amorphous coreannealed at470℃for45min firstly and then nanocrystallization at540℃for60minexhibits excellent soft magnetic properties. The following is the magnetic data measured at1kHz: Hm=199.1A/m,BS=0.4760T,HC=8.43A/m,Ps=4.708W/kg,Br=0.1908,μ=2.391mH/m;Fe_(73.5)Si_(13.5)B_9Cu_1Nb_2V_1amorphous core annealed at470℃for45min firstly and thennanocrystallization at545℃for60minexhibits excellent soft magnetic properties. Thefollowing is the magnetic data measured at1kHz: Hm=197.88A/m,BS=0.690T,HC=6.933A/m,Ps=3.384W/kg,Br=0.1678,lamination factor=0.63。The soft magnetic properties ofFe_(73.5)Si_(13.5)B_9Cu_1Nb_2V_1nanocrystalline core at1kHz are better than that ofFe_(73.5)Si_(13.5)B_9Cu_1Nb_1Mo_2nanocrystalline core.
     The Fe_(63.5)Co_(10)Si_(13.5)B_9Cu_1Nb_3amorphous ribbons are first nanocrystallized by annealing at550℃for60min in vacuum and then converted topowders by milling with a planetary ballmill. The toroidal shaped soft magnetic cores with an outer diameter of20mm and an innerdiameter of10mm are prepared according to the following process: sieving-insulationcoating-cold molding-stress free annealing. The effects of powder size, binder content,molding pressure and stress relief annealing time on the density, the effective permeabilityand the quality factor of Fe_(63.5)Co_(10)Si_(13.5)B_9Cu_1Nb_3magnetic powder core are studiedsystematically. Our investigations indicate that the optimum process parameters ofFe_(63.5)Co_(10)Si_(13.5)B_9Cu_1Nb_3nanocrystalline magnetic powder core are listed as follows:insulation content is3%, forming pressure is174kN, annealing temperature is100℃,annealing time is11h. The corresponding magnetic properties show: the effectivepermeability μehas high frequency stability within the frequency range of5MHz andmaximum value of μeis55, the quality factor Q first increases to35at250kHz and thendecreases with increasing frequency.
     The heat treatment process of FINEMET core is two-step heat treatment (ordinary heattreatment and magnetic heat treatment). The influence of the direction of the magnetic field,the strength of the magnetic field and the heat treatment temperature on the hysteresis loop ofthe core have been investigated systematically. The experimental results show that: the shapeof hysteresis loop gradually transformed into approximate straight line (permeability isconstant) with increasing transverse magnetic annealing temperature. Transverse magneticannealing can decrease the permeability and loss.The shape of hysteresis loop graduallytransformed into approximate rectangular with increasing longitudinal magnetic annealingtemperature. Longitudinal magnetic annealing can increase permeability and loss. The shapeof hysteresis loop of FINEMET core treated by Longitudinal and transverse compositemagnetic annealing have the characteristics both of them, so FINEMET core exhibit excellentsoft magnetic properties.
引文
[1] Needham J, Science and Civilization In China, Vol4.1, Cambridge University Press,1962
    [2] Gibert W, De magnete, English Translation, Dover, New York,1958
    [3] Curie P, Compt. Rend.,118,796,859(1894)1134-1136; J.de.Phys.,4,197(1895)263;Ann. De Chim. Phys.,5(7)(1895)289.
    [4] Langevin P, J. Phys.,4(1905)678, Ann. De. Chim. Phys.,5(8),(1905)70.
    [5] Weiss P, J. Phys. Redium,6(1907)661.
    [6] W. Heisenberg. Zur Theorie des ferromagnetismus [J]. Z. Physik,49(1928)619-636.
    [7]姜寿亭,铁磁性理论[M].科学出版社,1993.
    [8]戴道生,钱昆明,铁磁学(上册)[M].科学出版社,1987.
    [9] Buschow K H J. Ferromagnetic Materials Vol.1. Ed. E. P. Wohlfarth, North-Holland,Amsterdam,1980.
    [10]徐京娟,邓志煜,金属物理性能分析[M].上海科学技术出版社,1988.
    [11]陈军,硅钢生产技术及其发展[J].鞍钢技术,2(2001)28-30.
    [12]诸葛兰剑,李Ⅱ东,热处理工艺对KHP-2坡莫合金磁导率的影响[J].磁性材料与器件,2(1996)50-53.
    [13]王占国,陈立泉,屠海令,中国材料工程大典卷13[M].北京:化学工业出版社,2005
    [14]Klement W, Willens R H, Duwez P. Non-crystalline Structure in Solidified Gold-SiliconAlloys [J]. Nature,187(1960)869-870.
    [15]Ohandley R C. Modem Magnetic Materials Principle and Applications [M]. JohnWiley&Sons,lnc,New York,2000.410.
    [16]王绪威,非晶态材料及应用[M].北京:高等教育出版社,1992.
    [17]Yoshizawa Y, Oguma S, Yamauchki K. New Fe-based soft magnetic-alloys composed ofultrafine grain-structure [J]. J Appl Phys,64(1988)6044-6046.
    [18]Yoshizawa Y, Yamauchi K, Yamane T, et al. Common mode choke cores using the newFe-based alloys composed of ultrafine grain structure [J]. J Appl Phys,64(1988)6047-6049.
    [19]Michael E M, Matthew A, Willard, et a1. Amorphous and nanocrystalline materials forapplication as soft magnets [J]. Progress in Materials Science,44(1999)291-433.
    [20]Lubhorsky F E,非晶态合金[M].柯成,唐与谌,罗阳等译,北京:冶金工业出版社,1989.
    [21]周少雄等,非晶态物理与软磁材料的产业化[J].物理,3l (7)(2002)430-436.
    [22]Kramer J. Noconducting modification of metals [J]. Annln Phys.,19(1934)37-64.
    [23]Kramer J. Der amorphe Zustand der Metalle[J]. Z. Phys.,106(1937)675-691.
    [24]Brenner A, Riddell G E. Deposition of nickel and cobalt by chemical reduction [J]. J.Res.Natl. Bur. Stand,39(1947)385-388.
    [25]Gilman J J. Flow via dislocations in ideal glasses [J]. J. Appl. Phys.,44(1973)675-679.
    [26]Chen H S. Plastic flow in metallic glasses under compression [J]. Scripta Metall,7(1973)931-935.
    [27]Lu Z P, Li Y, Ng S C.Reduced glass transition temperature and glass forming ability ofbulk glass forming alloys [J]. J Non-Cryst Solids.270(1-3)(2000)103-114.
    [28]Inoue A, zhang T, Masumoto T. Glass-forming ability of alloys [J]. J Non-cryst Solids,156-158(1993)473-480.
    [29]Turnbull D, Under what conditions can a glass be formed [J]. Contemporary Physics10(1969)473-488.
    [30]张荣生,刘海洪,快速凝同技术[M].北京:冶金工业出版社,1994.
    [31]惠希东,陈国良,块体非晶合金[M].北京:化学工业出版社,2007.
    [32]吴文飞,姚可夫,非晶合金纳米晶化的研究进展[J].稀有金属材料与工程.34(4)(2005)505-509.
    [33]王一禾,杨膺善等,非晶态合金[M].北京:冶金工业出版社,1989.
    [34]FE卢博斯基,非晶态金属合金[M].北京:冶金工业出版社,1989.
    [35]Turnbull, Fisher J C. Rate of Nucleation in Condensed Systems [J]. J. Chem. Phys.(17)(1949)71-73.
    [36]Christian J W. The theory of transformations in Metals and Alloys [M],2ndEdition,Pergamon Press,New York,1975.
    [37]胡荣祖,史启祯,热分析动力学[M].北京:科学出版社,2001.
    [38]Christian J W. The Theory of Transformation in Metals and Alloys [M],UnitedKingdom,Oxford,Pergamon,1975.
    [39]Avrami M. Granulation phase change and microstructure Kinetics of phase change [J]. J.Chem. Phys.,9(1941)177-184.
    [40]Henderson D W. Thermal analysis of non-isothermal of crystallization kinetics in glassforming liquids [J]. J. Non-Cryst. Solids,30(1979)301-315.
    [41]Shepilov M P,Baik D S. Computer simulation of crystallization kinetics for the modelwith simultaneous nucleation of randomly—oriented ellipsoidal crystals [J]. J. Non-Cryst.Solids,171(1994)141-156.
    [42]Baram J,Erukhimovitch V. Application of thermal analysis methods to nucleation andgrowth transformation kinetics,part II [J]. Therm. Acta,323(1998)43-51.
    [43]Johnson M A, Mehl R F. Reaction kinetics in processes of nucleation and growth [J].Trans. Am. Inst. Mining and Metallurgical Engineering,135(1939)416-458.
    [44]Doyle C D. Kinetic analysis of thermo gravimetric data [J].5(1961)285-292;Estimatingisothermal life from thermo gravimetric data [J]. J. Appl. Polym. Sci,6(1962)639-642.
    [45]Murray P, White J. Kinetics of the thermal dehydration of clays,Part IV, Interpretationof the differential thermal analysis of the clay minerals [J]. Trans. Brit. Ceram. Soc.,54(1955)204-238.
    [46]Ozawa T. Kinetic analysis of derivative curves in thermal analysis [J]. J. thermal analysis,2(1970)301-324.
    [47]Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Anal. Chem.,29(11)(1957)1702-1706.
    [48]Ozawa T. A new method of analyzing thermagravimetric data [J]. Bull. Chem. Soc.(Japan),35(1965)1881-1886.
    [49]Augis J A and Bennett J E. Calculation of the Avrami parameters for heterogeneous solidstate reactions using a modification of the Kissinger method [J]. J. Them. Anal.,13(1978)283-292.
    [50]Herzer G. Grain structure and magnetism of nanocrystalline ferromagnets [J]. IEEE.Trans on Magn.25(5)(1989)3327-3329.
    [51]Herzer G. Magnetization process in nanocrystalline ferromagnets [J]. Mater Sci. Eng. A,133(1991)1-5.
    [52]Hone K, Hiraga K, Wang Q et al. Microstructure of Fe73.5Si13.5B9Nb3Cu1nanocrystallinesoft magnetic material investigated by APFIM and HRTEM [J]. Surface science,266(1992)385-390.
    [53]Hono K, Li J L, Ueki Y et al. Atom probe study of the Crystallization process of anFe73.5Si13.5B9Nb3Cu1amorphous alloy [J]. Appl. Surf. Sci.,67(1993)398-406.
    [54]Zhu F, Wang N, Busch R, et al. Twinned structure of Fe2B in an annealedFe73.5Cu1Nb3Si13.5B9soft magnetic alloy [J]. Philosophical magazine letters,64(3)(1991)157.
    [55]Zemcik T,Jiraskova Y,Zaveta K, et al. Structure, magnetic properties and moessbauerspectroscopy of amorphous and nanocrystalline Fe73.5CulNb3Sil6.5B6[J]. Matter. Lett.,10(1991)313.
    [56]Fujinami M, Hashiguchi Y, Yamamato J. Crystalline transformations in amorphousFe73.5CulNb3Si16.5B6alloy [J]. Japan,J. Appl. Phys.,29(1990)477.
    [57]He K Y, Sui M L, Liu Y, et al., A structural investigation of a Fe73.5CulNb3Si13.5B9nanocrystalline soft magnetic material [J]. J. Appl. Phys.,75(7)(1994)3684-3686.
    [58]Sui M L, He K Y, Xiong L Y, et al. Structural characteristics of a nanocrystallineFe-Cu-Nb-Si-B softmagnetic alloy [J]. J. Mater. Sci.Eng. A,181/182(1994)1405-1409.
    [59]Hone K, Hiraga K, Wang Q, et al. Microstructure of Fe73.5Si13.5B9Nb3Culnanocrystallinesoft magnetic material investigated by APFIM and HRTEM [J]. Surface science,266(1992)285-390.
    [60]Herzer G. Grain-structure and magnetism of nanocrystalline ferromagnets [J]. IEEE.Trans. Magn,25(1989)3327-3329.
    [61]Herzer G. Grain-size dependence of coercivity and permeability in nanocrystallineferromagnets [J]. IEEE. Trans. Magn,26(1990)1397-1402.
    [62]Hernando A, Vazquez M, Kulik T, et al. Analysis of the dependence of spin-spincorrelations on the thermal treatment of nanocrystalline materials [J]. Phys. Rev. B,51(1995)3581-3586.
    [63]Hernando A, Navarro I. Iron exchange-filed penetration into the amorphous interphase ofnanocrystalline materials [J]. Phys. Rev. B,51(1995)3281-3284.
    [64]Suzuki K, Cadogan J M. Random magnetocrystalline anisotropy in two-phasenanocrystalline systems [J]. Phys. Rev. B,58(1998)2730-2739.
    [65]Suzuki K, Cadogan J M, Cochrane J W. Effect of intergranular magnetic coupling onsoft magnetic and magnetotransport properties in nanocrystalline materials [J]. Scrip.Mater.,48(2003)875-880.
    [66]McHenry M E, Willard M A, Laughlin D E. Amorphous and nanocrystalline materialsfor applications as soft magnets [J]. Prog. Mater. Sci.,44(4)(1999)291-433.
    [67]Lu W, Yan B, Huang W. Complex primary crystallization kinetics of amorphousFinemet alloy [J]. J. Non-Cryst. Solids,351(2005)3320-3324.
    [68]Phan M H, Peng H X, Wisnom M R, et al. Effect of annealing on the microstructure andmagnetic properties of Fe-based nanocomposite materials [J]. Composites Part A:Applied Science and Manufacturing,37(2)(2006)191-196.
    [69]Barandiaran J M, Teller I, Garitaonandia J S, et al. Kinetic aspects of nano-crystallizationin Finemet-like alloys [J]. J. Non-Cryst. Solids,329(2003)57-62.
    [70]Crespo D, Pradell T, Clavaguera-Mora M T, et al. Microstructural evaluation of primarycrystallization with diffusion-controlled grain growth [J]. Phys. Rev. B,55(1997)3435-3444.
    [71]Hampel G, Pundt A, Hesse J. Crystallization of Fe73.5Cu1Nb3Si13.5B9structure andkinetics examined by X-ray diffraction and Mossbauer effect spectroscopy [J]. J. Phys.:Condens. Matter,4(1992)3195-3214.
    [72]Christian J M. The Theory of Transformations in Metals and Alloys,2ndEd., Pergamon,New York,1975.
    [73]Jiri Malek. The application of Johnson-Mehl-Avrami model in the thermal analysis of thecrystallization kinetics of glasses [J]. Thermochimica Acta,267(1995)61-73.
    [74]Nowosielski R, Wyslocki J J, Wnuk I et al. Nanocrystalline soft magnetic compositecores [J]. J. Mater. Process. Technol.,175(2006)324-329.
    [75]Kolano-Burian A, Ferenc J, Kulik T. Structure and magnetic properties of hightemperature nanocrystalline FeCo-Nb-Si-B alloys [J]. Mater. Sci. Eng. A,375-377(2004)1078-1082.
    [76]Kolano-Burian A, Kulik T, Vlasak G, et al. Effect of Co addition on nanocrystallizationand soft magnetic properties of (Fe1-xCox)73.5Cu1Nb3Si13.5B9alloy [J]. J. Magn. Magn.Mater.,272–276(2004)1447-1448.
    [77]Ghosh G, Chandrasekaran M, Delaey L. Isothermal crystallization kinetics of Ni24Zr76and Ni24(Zr-X)76amorphous alloys [J]. Acta Metall. Mater.,39(5)(1991)925-936.
    [78]Sun N X, Zhang K, Zhang X H, Liu X D, Lu K. Nanostruct. Mater.,7(1996)637-649.
    [79]Lu K, Liu X D, Yuan F H. Synthesis of the NiZr2intermetallic compound nanophasematerials [J]. Physica B,217(1996)153-159.
    [80]Sun N X, Liu X D, Lu K. An explanation to the anomalous Avrami exponent [J]. Scr.Mater.,34(1996)1201-1207.
    [81]Borrego J M, Conde C F, Conde A et al. Crystallization of Co-containing Finemet alloys[J]. J. Non-Cryst. Solids,287(1-3)(2001)120-124.
    [82]Yoshizawa Y, Fujii S, Ping D H et al. Magnetic properties of nanocrystallineFeMCuNbSiB alloys (M: Co, Ni)[J]. Scr. Mater.,48(7)(2003)863-868.
    [83]Klug H P, Aleksander L E: Willey, New York,1974.
    [84]Herzer G: Handbook of Magnetic Materials.10(1997)415-462.
    [85]Zhou J, Cui Y F, Liu H S. Magnetic properties of Fe78.4Si9.5B9Cu0.6Nb2.5nanocrystallinealloy powder cores [J]. Journal of Materials Science,46(23)(2011)7567-7572.
    [86]Legg V E. Magnetic measurements at low flux densities using the A-C bridge [J], TheBell System Technical Journal,15(1936)39-63.
    [87]Cremaschi V, Saad A, Ramos M J. Magnetic and structural characterization of Finemettype alloys with addition of Ge and Co [J]. Journal of Alloys and Compounds,369(2004)101-104.
    [88]Blazquez J S, Roth S, Conde A. Effect of partial substitution of Ge for B on the hightemperature response of soft magnetic nanocrystalline alloys [J]. Journal of Alloys andCompounds,395(2005)313-317.
    [89]Muraca D, Cremaschi V J, Sirkin H. Effect of the addition of Ge to the FINEMET alloy[J]. Journal of Magnetism and Magnetic Materials,311(2007)618-622.
    [90]Shahria F, Beitollahia A, Shabestaria S G. Structural characterization andmagnetoimpedance effect in amorphous and nanocrystalline AlGe-substitutedFeSiBNbCu ribbons [J]. Journal of Magnetism and Magnetic Materials,312(2007)35-42.
    [91]Muraca D, Cremaschi V, Moya J. Structural and magnetic correlation of Finemet alloyswith Ge addition [J]. Journal of Magnetism and Magnetic Materials,320(2008)810-814.
    [92]Muraca D, Cremaschi V, Moya J. FINEMET type alloy without Si: Structural andmagnetic properties [J]. Journal of Magnetism and Magnetic Materials,320(2008)1639-1644.
    [93]Muraca D, Silveyra J, Pagnola M. Nanocrystals magnetic contribution to FINEMET-typesoft magnetic materials with Ge addition [J]. Journal of Magnetism and MagneticMaterials,321(2009)3640-3645.
    [94]Moya J A. Nanocrystals and amorphous matrix phase studies of Finemet-like alloyscontaining Ge [J]. Journal of Magnetism and Magnetic Materials,322(2010)1784-1792.
    [95]Cremaschi V, Saad A, Moya J. Evolution of magnetic, structural and mechanicalproperties in FeSiBNbCuAlGe system [J]. Physica B,320(2002)281-284.
    [96]Cremaschi V, Sanchez G, Sirkin H. Magnetic properties and structural evolution ofFINEMET alloys with Ge addition [J]. Physica B,354(2004)213-216.
    [97]Moya J A, Cremaschi V J, Sirkin H. From Fe3Si towards Fe3Ge in Finemet-likenanocrystalline alloys: Mossbauer spectroscopy [J]. Physica B,389(2007)159-162.
    [98]Muraca D, Moya J, Cremaschi V J. Amorphous and nanocrystalline fraction calculus forthe Fe73.5Si3.5Ge10Nb3B9Cu1alloy [J]. Physica B,398(2007)325-328.
    [99]Adam Puszkarz, Micha1Wasiak, Pawe1Uznanski. Structural properties and Mossbauerspectroscopy of Finemet-doped with Ge [J]. Vacuum,83(2009) S245-S248.
    [100]郭世海张羊换王煜祁焱王新林,横向磁场热处理对高饱和磁感应强度Fe基非晶磁性能的影响[J],磁性材料及器件,40(3)(2009)38-40.
    [101]郭世海,张羊换,王煜,祁焱,全白云,王新林,Fe基非晶合金的恒导磁性能研究[J],功能材料,38(11)(2007)1790-1792.
    [102]张善庆,莫卫红,王广生等,Fe-Co软磁合金真空磁场热处理工艺研究[J],航空材料学报,2003年,23(z1)