棉花隐性核雄性不育系“21A”的遗传和不育机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花具有明显的杂种优势,应用核雄性不育系生产杂交种是杂种优势利用的有效途径之一。选育综合性状好、配合力效应高的核雄性不育系是配制高优势杂种的前提。
     本研究以利用辐射诱变和回交培育的“21A”雄性不育系为材料,对该不育系的花器官形态、花粉育性、不育基因的遗传及等位性、杂种配合力和miRNA差异表达进行了分析,主要结果如下:
     (1)通过比较不育株和可育株花器官形态发现,不育株花较小,无花粉或有花粉但无生活力,经碘化钾染色,多数不着色或着色较浅,表明不育株花粉完全败育。
     (2)对“21A”不育系进行了遗传分析。“21A”雄性不育系与鲁棉研21号杂交的F1可育,其自交F2中可育株和不育株分离比例为3:1,不育株和可育株兄妹交,其后代Ft可育株和不育株分离比例为1:1,表明该不育系为单隐性核雄性不育系基因控制。
     (3)对“21A”单隐性核雄性不育系基因进行了等位性测验。用“21A”核雄性不育系与不同棉花品种配制的杂交种,分别与目前已知的棉花单隐性核雄性不育系洞A(msc1)、1355A(msc2)、阆A(msc3)、81A(msc7)的不育株授粉,结果发现其后代均为可育株,这表明“21A”单隐性核不育基因与上述4个陆地棉单隐性核雄性不育基因彼此是非等位基因,因此,可以把它作为一个新的隐性核雄性不育基因。
     (4)采用NCⅡ遗传交配设计,分别用“21A”不育系和鲁棉研21号作母本,5个常规棉品种作父本,配制杂交组合,对10个组合的F1产量和品质性状的竞争优势和配合力进行分析,结果表明,该不育系杂种在子棉产量、皮棉产量和伸长率等性状上优势明显;各性状的一般配合力高,子指的GCA表现尤为突出,易于筛选高优势的杂交组合。
     (5)提取不育株和可育株三个时期的花蕾RNA,分别用cy3和cy5标记,混合均匀后与三张miRNAs芯片上的探针进行杂交。结果表明有8个miRNAs在不育株和可育株花蕾的三个发育时期差异表达显著,它们可能与花粉败育有关。通过计算机预测了这8个差异表达miRNAs的22个靶基因,其中,miR166和miR156/miR157分别靶向棉花编码ATHE-15、SPL3及RNA解旋酶的基因。
The heterosis in cotton is very obvious, especially in increasing the yield potential. And utilization of male sterility in heterosis has a good developmental prospect. In order to get good hybrid seeds, the premise is that breed new male sterile line which has better traits and general combining ability (GCA).
     In this study, the male sterility of“21A”has been observed successfully by induced mutation breeding and back cross breeding. Flower Morphologies of“21A”plants, pollen is sterile or fertile, genetic and allelic tests,analyzation competitive heterosis and combining ability and microRNA microarray were applied to“21A”.The results were as follows:
     (1) Morphological comparison of flower between“21A”male sterile and fertile plants was made and found that the flowers of male sterile plants were smaller than those of fertile plants.There was no pollen or a little in the anthers of male sterile plants .Stain anthers using potassium iodide of male sterile ones and the results showed that they were not be stained or light staining.The results proved that the pollen of male sterile plants was sterile completely.
     (2) Genetic analysis for“21A”male-sterile line were made. The ratio between NO. of fertile and sterile plants was 3:1 and 1:1 in the F2 and Ft generations respectively. Segregation results showed that the male sterility in“21A”was controlled by a pair of single-recessive gene.
     (3) Allelic tests for“21A”male-sterile line were made and the results indicated that the male sterility in“21A”was none-allelic to msc1, msc2, msc3 and msc7 discovered in P. R. China till now. It is proposed that 21A male-sterile gene symbol be tentatively named a new one.
     (4) Crosses were made by NCⅡ, using“21A”male sterility line and Lumianyan21 as male parents respectively and five normal cultivars as female parents, to analyze competitive heterosis and combining ability of F1 hybrids. The results indicated that“21A”hybrid cottons showed obvious heterosis in seed-lint yield, lint yield and elongation percentage and better general combining ability (GCA) , especially in seed index. It is easy to observe better cross combinations and product hybrid seeds using“21A”male sterile line.
     (5) Total RNA at different stages, i.e., sporogenous cell stage, pollen mother cell (PMC) stage, and pollen grain stage, were isolated using Norgen kit. Microarrays were hybridized with Cy3 and Cy5 fluorescence-labeled probe pairs of sterile pants plus fertile plants. The results showed that 8 new cotton miRNAs which were expressed differently between sterile and fertle plants at diffent stages of buds. And 22 target genes were predicted which maybe related to pollen abortion. MiR166 and miR156/157 could target 3 target genes respectively, ATHE-15, SPL3 and RNA helicase.
引文
[1].陈冬妍,张天真.陆地棉核雄性不育基因的分子标记定位及相关基因的克隆和功能分析[D]. 2008, 5.
    [2].陈旭升,狄佳春,刘剑光,等.棉花杂种优势应用研究现状及发展趋势[J].中国农业科技导报, 2002, 4(3): 43-46.
    [3].冯福祯.棉花雄性不育种质简介[J].中国棉花, 1988, 15(3): 15-16.
    [4].冯象秦,张法治.浅谈洞A核不育系及制种[J].中国棉花, 2001, 28(8): 35-36.
    [5].盖钧镒.作物育种学各论[M].第2版.北京:中国农业出版社, 2006: 436-441.
    [6].顾万春.统计遗传学[M].北京:科学出版社, 2004: 292-298.
    [7].黄观武,张东铭,苟云高,等.对我国陆地棉雄性不育基因的初步分析[J].四川农业科技, 1982, (2): 1-4.
    [8].侯磊,肖月华,李先碧,等.棉花洞A雄性不育系花药发育的mRNA差别显示[J].遗传学报, 2002, 29 (4): 359-363.
    [9].胡延吉.植物育种学[M].北京:高等教育出版社, 2003: 184-190.
    [10].黄观武,苟云高,张东铭,等.棉花核不育的二级繁殖及利用[J].西南农业学报, 1992, 5(1): 7-13.
    [11].黄观武.陆地棉高强纤维雄性不育系的培育[J].棉花学报, 1985,试刊(1): 41-46.
    [12].黄晋玲,李炳林,安泽伟,等.棉花晋A细胞质雄性不育系的细胞形态学观察[J].植物遗传资源科学, 2001, 2(3): 28-31.
    [13].李加纳.数量遗传学概论[M].第2版.重庆:西南师范大学出版社, 2007: 201-206.
    [14].刘海河.西瓜17AB核雄性不育两用系的不育机理研究[D].南京:南京农业大学, 2005.
    [15].刘继华.棉花杂种优势利用与雄性不育研究进展[J].棉花学报, 1997(4): 169-175.
    [16].刘金兰,黄观武.洞A型核雄性不育材料花粉不同发育时期的超微结构观察[J].棉花学报, 1994, 6(4): 193-195.
    [17].刘金兰,黄观武.棉花洞A型雄性不育材料花粉发育的细胞形态学观察[J].棉花学报, 1994, 6(2): 70-73.
    [18].吕有军,付亮,王彩霞,等.国内棉花雄性不育性研究现状、问题、对策[J].种子, 2005, 24(1): 44-49.
    [19].马小定,邢朝柱.棉花双隐性细胞核雄性不育系与保持系花粉发育期差异表达基因分析[M]. 2007.
    [20].毛树春. 2006棉花增产原因浅析——人努力,天帮忙,科技兴棉显威力[J].中国棉花生产景气报告, 2006, 21: 18-19.
    [21].牟方生,毛正轩,龚一耘,等.棉花抗虫核不育系GA18的杂优利用研究[J].湖南农业大学学报(自然科学版), 2007, 33-34.
    [22].潘家驹,阂留芳,刘康.陆地棉芽黄基因应用于杂种棉的研究[J].南京农业大学学报, 1998, 21(3): 7-14.
    [23].茹鹏,过量表达microRNA167转基因植株的研究[D], 2006.
    [24].邵圣才.棉花温敏雄性不育两用系研究与利用[J].中国棉花, 2000, 27(12): 18-20.
    [25].施尚泽.棉花转基因抗病虫核不育系S2-28A的选育[J]. 2007.
    [26].舒克孝.国外棉花雄性不育的研究进展[J].国外农业科技, 1981(3): 1-6.
    [27].宋宪亮,孙学振,刘英欣.棉花ms5ms6核雄性不育花药中碳水化合物和游离氨基酸的变化[J].棉花学报, 2001, 13(6): 334-336.
    [28].宋宪亮,孙学振,王洪刚.棉花洞A型核雄性不育系花药败育过程中的生化变化[J].西北植物学报, 2004, 24(2): 243-247.
    [29].宋宪亮,孙学振,王明林,等.陆地棉双隐性核不育系(ms5ms6)花药发育过程中POD活性和内源激素动态变化初探[J].中国农业科学, 2003, 36(7): 861-863.
    [30].汤泽生.棉花洞A雄性不育小孢子败育的细胞学观察[J].南充师范学院学报(自然科学版), 1982(2): 23-27.
    [31].王国英,郭小平. 4个陆地棉核不育系的育性稳定性观察和1355A核不育基因定位[D]. 2007.
    [32].王治斌,安华,杨伯祥.棉花抗虫不育系的优势与遗传研究[J].江西棉花, 2006, (28)4: 6-11.
    [33].邢朝柱,靖深蓉,郭立平,等.转Bt基因抗虫棉双隐性核雄性不育系—中抗A[J].中国棉花·品种介绍. 1999, 26(6): 27.
    [34].杨业华,刘海燕,吴征彬,等.棉花转Rol基因雄性不育系研究初报[J].中国棉花, 2005, 32(3): 17.
    [35].余筱南,陈金湘,李瑞莲,等.棉花温敏雄性不育系的选育与应用研究简报[J].棉花学报, 2003, 15(6): 380-381.
    [36].宇文璞.棉花不育系对温度反应研究初报[J].中国棉花, 1990, 17(2): 19-20.
    [37].张超,毛正轩,牟方生,等.几个棉花核不育抗虫杂交种(F1)的抗虫性及经济性状分析[J].植物遗传资源学报, 2006, 7(1): 31-34.
    [38].张慧军,王寰宇,石跃进,等.雄性不育基因对棉花的遗传转化[J].棉花学报, 2007, 19(4): 261-266.
    [39].张天真,冯义军,潘家驹.我国发现的4个棉花核雄性不育系的遗传分析[J].棉花学报, 1992, 4(1): 1-8.
    [40].张天真,靖深蓉.杂种棉选育的理论与实践[J].科学出版社, 1998.
    [41].张天真,潘家驹,冯福祯.一个有芽黄标记的棉花核雄性不育系的遗传学鉴定[J].中国农业科学, 1989, 22(4): 17-21.
    [42].张天真,潘家驹.陆地棉473A核雄性不育系小孢子败育的细胞学研究[J].南京农业大学学报, 1991, 14(3): 7-11.
    [43].张天真,潘家驹.陆地棉msc3, msc7核雄性不育系花粉败育的细胞学观察[J].棉花学报, 1991, 3(1): 9-14.
    [44].张天真.棉花的核雄性不育及其在杂交制种中的应用[J].种子, 1989(1): 1-5.
    [45].张相琼,张东铭,周宏俊,等.棉花抗病核不育两用系的培育及应用研究[J].棉花学报, 1999, 11(6): 297-302.
    [46].郑玉姝,赵朴,赵宏坤. MicroRNA及其应用前景.2007, (18)1:119-121.
    [47].秦一雨,全志伟,李济宇. MiRNA检测方法学的研究进展.医学研究生学报, 2007, 20(11): 1198-1201.
    [48].周仲华,陈金湘.棉花温敏雄性不育的细胞学特征、生化基础及其分子标记的研究[D]. 2006.
    [49]. Achard P, Herr A, Baulcombe D C, et al. Modulation of floral development by a gibberellins-regulated microRNA. Development, 2004, 131: 3357-3365.
    [50]. Adai A, Johnson C, Mlotshwa S, et al. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res, 2005, 15(1): 78-91.
    [51]. Aida M, Ishida T, Fukaki H, et al. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997(9): 841-857.
    [52]. ARTS M G M, Hodge R, Kalanticis K, et al. The Arabidopsis male sterility protein shares similarity with reductases in elongation condensation complexes. Plant Journal, 1997, 12: 615-623.
    [53]. Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell, 2003, 15: 2730-2741.
    [54]. Axtell M J, Bartel D P. Antiquity of microRNAs and their targets in land plants. Plant Cell, 2005, 17(6): 1658-1673.
    [55]. Baker C C, Sieber P, Wellmer F. The early extra petals mutant uncovers a role for miR164c in regulating petal number in Arabidopsis. Curr Biol, 2005, 15: 303-315.
    [56]. Barbara M A, Chris S. Positive selection for male-sterile mutants of Arabidopsis lacking adenine phosphoribosyl transferase activity. Plant Physiology, 1988, 86: 1150-1154.
    [57]. Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297.
    [58]. Bowman B T. Analysis of a dominant male- sterile character in upland cottonⅡ: Cytological study. Crop Sci, 1978, 18: 730-736.
    [59]. Calin G A, Sevignani C, Dumitru C D, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA, 2004, 101(9): 2999-3004.
    [60]. Cardon G H, Hohmann S, Nettesheim K, et al. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition .Plant J, 1997, 12: 367-377.
    [61]. Carmell M A, Hannon G J. RNase III enzymes and the initiation of gene silencing. Nature Struct Mol Biol, 2004, 11: 214-118.
    [62]. Carmell M A, Xuan Z, Zhang M Q, et al. The Argonaute family: tentacles thatreach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev, 2002, 16(21): 2733-2742.
    [63]. Carrington J C, Ambros V. Role of microRNAs in plant and animal development. Science, 2003, 301: 336-338.
    [64]. Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303: 2022-2025.
    [65]. Chen X. MicroRNA biogenesis and function in plants. FEBS Lett, 2005, 579: 5923-5931.
    [66]. Chendrimada T P, Gregory R I, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 2005, 436(7501): 740-744.
    [67]. Coen E S,Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353: 31-37.
    [68]. Elbashir S M, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J, 2001, 20(23): 6877-6888.
    [69]. Endrrizzi J E. Genetics, cytology and evolution of Gossypium. Advance in Genetics, 1985, 25: 971-975.
    [70]. Errampalli D, Patton D, Castle L. et al. Embryonic lethal and T-DNA insertional mutagenesis in Arabidopsis. The Plant cell, 1991, 3(2): 149-157.
    [71]. Floyd S K, Bowman J L. Gene regulation: ancient microRNA target sequences in plants. Nature, 2004. 428: 485-486.
    [72]. Franco-Zorrilla J W, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity .Nat Genet, 2007, 39: 1033-1037.
    [73]. Gandikota M, Birkenbihl R P, Hohman S, et al. The miRNA156/157 reconition element in the 3’UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedings. Plant J, 2007, 49: 683-693.
    [74]. Gramantieri L, Ferracin M, Fornari F, et al. CyclinG1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res, 2007, 67 (13): 6092-6099.
    [75]. Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell, 2004, 14(6): 787-799.
    [76]. Justus Norman, Leinweber C L. A heritable partially male sterile character in cotton. Hered, 1960, 51: 191-192.
    [77]. Justus Norman, Meyer J R. Roux J B, et al. A partially male-sterile character in Upland cotton. Crop Sci, 1963: 428-429.
    [78]. Lau N C, Lim L P, Weinstein E G, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001, 294(5543): 858-862.
    [79]. Laufs P, Peaucelle A, Morin H, et al. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 2004, 131: 4311-4322.
    [80]. Lee R C, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science, 2001, 294(5543): 862-864.
    [81]. LI J, Liang C Y, Yang J L, et al. Cloning of the APRT Gene from Rice and Analysis of Its Association with TGMS. Acta Botanica Sinica, 2003, 45(11): 1319-1328.
    [82]. Liang R Q, Li W, Li Y, et al. An oligonueleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold Probe. Nueleic Acids Res, 2005, 33: el7
    [83]. Lim L P, Lau N C, Weinstein E G, et al. The microRNAs of Caenorhabditis elegans. Genes Dev, 2003, 17: 991-1008.
    [84]. Mallory A C, Bartel D P, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell, 2005, 17: 1360-1375.
    [85]. Mallory A C, Reinhart B J, Jones-Rhoades M W, et al., MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5'region. EMBO J, 2004b, 23: 3356-3364.
    [86]. Millar A A, Waterhouse P M. Plant and animal microRNAs: similarities and differences. Funct Integr Genomics. 2005(5): 129-135.
    [87]. Moschos S A, W illiams A E, Perry M M, et al. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysac charide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomic, 2007, 8(1): 240.
    [88]. Muhammad Y K B, Muhammad I, Rizwan Y, et al. Identification of micro-RNAs in cotton. Plant physiology Biochemistry, 2008, 46: 739-751.
    [89]. Murthi A N. Histological studies on five male-sterile strains of upland cotton. Crop Sci, 1974, 14: 558-565.
    [90]. Nagpal P, Ellis C M, Weber H, et al. Auxin response factors ARF6 and ARF8promote jasmonic acid production and flower maturation. Development, 2005, 132: 4107-4118.
    [91]. Palatnik J F, Wbllmann H, Sehommer C, et al. Sequenee and expression differences underlie funetionals Peeialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell, 2007, 13: 115-125.
    [92]. Papp I, Mette M F, Aufsatz W, et al. Evidence for nuclear processing of plant microRNA and short interfering RNA precursors. Plant Physiol, 2003, 132(3): 1382-1390.
    [93]. Patrick S, Frank W, Jacqueline G, et al. Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development, 2007, 134: 1051-1060.
    [94]. Reinhart B J, Weinstein E G, Rhoades M.W, et al. MicroRNAs in Plants. Genes, 2002, 16: 1616-1626.
    [95]. Reyes J L, Chua N H. ABA induction of miRl59 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J, 2007, 49: 592-606.
    [96]. Rhoades M W, Reinhart B J, Lim L P, et al. Prediction of plant microRNA targets.Cell, 2002, 110: 513-520.
    [97]. Richmond T R, Kohel R J. Analysis of a completely male-sterile character in American Upland cotton. Crop Sci, 1961, 1: 397-401.
    [98]. Sawhney V K. Shukla A. Male sterility in flowering plants: are plant growth substances involved? American Journal of Botany, 1994, 81(12): 1640-1647.
    [99]. Schwab R, Palatnik J F, Riester M, et al. Specific effects of microRNAs on the plant transcriptome. Dev cell, 2005, 8: 517-527.
    [100]. Sempere L F, Freemantle S, Pitha-Rowe I, et al. Expression profiling of mammalian microRNAs uncovers a subset of brain expressed microRNAs with possible roles in murine and humaneuronal differentiation. Genome Biol, 2004, 5(3): R13
    [101]. Singh S, Sawhney V K. Temper ature effects on endogenous indole-3-aceticacid levels in leaves and stamens of the normal and male sterile“stamenless-2”mutant of tomato (Lycoperrsicon esculentumMill). Plant Cell & Environment, 1992, 15: 373-377.
    [102]. Song J J, Smith S K, Hanon G J, et al. Crystal structure of Argonaute and its implications for RISC slicer activity. Science, 2004, 305(5689): 1434-1437.
    [103]. Stone J M, Liang X, Neke E R, et al. Arabidopsis AtSPL14, plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. Plant J, 2005, 41: 744-754.
    [104]. Tsuji H,Aya K,Ueguchi-Tanaka M, et al. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleuroneeells and anthers. Plant J, 2006, 47: 427-444.
    [105]. Turcotte E L. Inheritance of male-sterile mutant Ms10 in American pima cotton. Crop Sci, 1988(25): 688-690.
    [106]. Vaucheret H, Mallory A C, Bartel D P. AGOI homeostasis entails coexpression of MIR168 and AGOI and preferential stabilization of miR168 by AGOI. Mol. Cell, 2006, 22(1): 129-136.
    [107]. Wang J W,Wang L J, Mao Y B, et al. Control of Root CaP Fomration by MicorRNA-Targeted Auxin Response Factosr in Arabidopsis. Plant cell.online version, 2005.
    [108]. Wienholds E, Kloosterman W P, Miska E, et al. MicroRNA expression in zebrafish embryonic development. Science, 2005, 309(5732): 310-311.
    [109]. Wu G, Poethig R S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development, 2006, 133: 3539-3547.
    [110]. Xing Q H, Ru Z G, Li J, et al. Cloning a second form of adenine phosphoribosyl transferase gene (TaAPT2) from wheat and analysis of its association with thermo-sensitive genic male sterility (TGMS). Plant Science, 2005, 169: 37-45.
    [111]. Yin Z J, Li C H, Han X L, et al. Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene, 208, 414: 60-66.
    [112]. Yu B, Yang Y Z, Li J J, et al. Methylation as a crucial step in plant microRNA biogenesis. Science, 2005, 307(5711): 932-935.
    [113]. Zeng Y, Cullen B R. Sequence requirements formicroRNA processing and function in human cells. RNA (New York), 2003, 9(1): 112-123.
    [114]. Zhang B H, Pan X P, Edmund J, et al. Identification of soybean microRNAs and their targets. Planta, 2008, 229: 161-182.
    [115]. Zhang B H, Wang Q, Pan X P. MicroRNAs and their regulatory roles in plants. Plant Biol, 2006, 57: 19-53.
    [116]. Zhang B, Pan X, and Anderson T A. Identification of 188 conserved maize microRNAs and their targets. FEBS Lett, 2006a, 580: 3753-3762.
    [117]. Zhang Y. miRU: an automated plant miRNA target prediction server. Nucleic Acids Res, 2005, 33: W701-704.