水稻OsCOI基因表达载体构建及其遗传转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻(Oryza sativa L.)苗期冷害是导致水稻减产的重要因素之一。为了发掘新的耐冷基因、诠释其耐冷分子机制并应用分子育种的手段提高水稻苗期耐冷性,前期从已构建的水稻苗期低温诱导表达正向抑制差减cDNA文库中,发现了一个受低温诱导上调表达的功能未知的C2H2型锌指结构域蛋白新基因(OsCOI)。本研究通过PCR的方法从水稻中克隆了该基因,构建其植物过表达和RNA干扰(RNAi)表达载体,并通过农杆菌介导转入水稻基因组中,获得了相应的转基因水稻株系。为进一步研究OsCOI的功能,探讨其在水稻耐冷性分子机制和分子育种中的应用价值奠定了基础。取得的主要研究结果有:
     1.通过PCR技术克隆了OsCOI基因的cDNA,序列分析表明该cDNA片段全长为1235 bp,开放阅读框810 bp,编码269个氨基酸。核苷酸序列同源性分析表明,该基因与GenBank中已登记的AK072942的同源性高达100%。生物信息学分析表明,该基因编码一个含有两个C2H2锌指结构域的锌指蛋白。
     2.分别构建了OsCOI基因的过表达载体pAHLG-OsCOI和RNAi表达载体p1300-OsCOIRNi1/2。采用电激法将两种表达载体导入根癌农杆菌中,并利用设计的两对特异性引物进行农杆菌菌落PCR检测,证明两种质粒均已导入农杆菌中。
     3.通过农杆菌介导的遗传转化方法,用上述两种表达载体将OsCOI基因导入粳稻品种日本晴中。在含有潮霉素的培养基上筛选获得了3株过表达植株和12株RNAi表达植株。进一步利用PCR方法检测转基因植株,初步证明目的基因已经整合到T0代植株中。
Chilling injure in seedling period is one of major limiting factors for productivity of rice (Oryza sativa L.). To improve rice cold tolerance in seedling period, it is important to exploit novel cold-resistant genes, elucidate the underlying molecular mechanism and utilize the genes in cold-resistant molecular breeding. A novel cold-inducible gene encoding a putative C2H2-type zinc finger protein, designated OsCOI (Oryza sativa Cold-Inducible), has been identified in our former research. In this study, the gene was cloned by PCR method from rice. Plant binary over-expression and RNAi-expression vectors were construted and transformed into rice by Agrobacterium-mediated, and obtained some transgenic rice plant lines. The work established a basis for further studying the function and application potential of the gene in rice seedling cold tolerance. The main results were as following:
     1. The cDNA of OsCOI gene was cloned by PCR method from rice. The sequence analysis showed that the total length of cDNA was 1235 bp with an open reading frame encoding 269 amino acids. Homology analysis of the nucleotide sequence showed that the identity was 100% to the published sequence AK072942. The results from bioinformatics software analysis showed that the gene wae a zinc finger protein with two C_2H_2domains.
     2. Over-expression and RNAi-expression vectors were constructed and identificated by the enzymes digesting, and the different vectors were transformed into Agrobacterium tumefaciens by electroporation, which were proved by PCR assay with two pairs of specific primers of the gene.
     3. The OsCOI gene was transformed into japonica rice variety Nipponbare using the two plant expression vectors by Agrobacterium-mediated approach. Three over-expression transgenic plants and twelve RNAi transgenic plants were obtained by screening in the media contained hygromycin. The results of PCR assay showed that the gene had been integrated into rice genome of T0 plants.
引文
[1] Sthapit B R, Witcombe J R.Inheritance of tolerance to chilling stress in rice during germination and plumule greening [J].Crop Sci.1998,38(3):660-665.
    [2]应存山.中国稻种资源[M].北京:中国农业科技出版社,1993.71-75.
    [3]戴陆园,叶昌荣,徐福荣.水稻耐冷性研究I.稻冷害类型及耐冷性鉴定评价方法概述[J].西南农业学报.2002,15(1):41-45.
    [4]戴陆园,刈屋国男,叶昌荣.水稻耐冷性研究II.云南稻种资源耐冷性鉴定[J].西南农业学报.2002,15(3):47-51
    [5] Nakagahra M, Okuno K,Vaughan D.Rice genetic resources:history,conservation,investigative characterization and use in Japan[J].Plant Mol Biol.1997,35(1-2):69-77.
    [6] Fujino K,Sekiguchi H,Sato T,et al.Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.)[J].Theor Appl Genet.2004,108(5): 794-799.
    [7] Mahajan S, Tuteja N. Cold, salinity and drought stresses:An overview[J].Archives of Biochemistry and Biophysics.2005,444(2):139-158.
    [8] Pearce R S.Plant freezing and damage [J].Annu Bot.2001,87(4):417-424.
    [9] Doucet C J,Byass L,Worrall D,et al.Distribution and characterization of recrystallization inhibitor activity in plant and lichen species from the UK and maritime Antarctic[J]. Cryobiology.2000, 40(3):218-227.
    [10] Worrall D,Elias L,Ashford D, et al. A carrot leucine-rich-repeat protein that inhibits ice recrystallization[J].Science.1998,282(2):115-117.
    [11]赵凌,王才林,张亚东,等.花粉管介导的转抗冻蛋白基因(AFP)水稻[J].江苏农业学报.2006, 22(4):315-317.
    [12] Devries A L. Antifreeze glycopeptides and peptides: Interactions with ice and water[J].Meth Enzymol.1986,127:293-302.
    [13] Meyer K,Keil M,Naldrett M J.A leucine-rich repeat protein of carrot that exhibits antifreeze activity[J].FEBS Lett.1999,447(2-3):171-178.
    [14]梁慧敏,夏阳,王太明.植物抗寒冻、抗旱、耐盐基因工程研究进展[J].草业学报.2003,12(3): 1-7.
    [15]李跃强,宜维健,盛承发.植物的低温蛋白[J].生态学报.2004,249(5):1034-1039.
    [16]王国莉,郭振飞.植物耐冷性分子机理的研究进展[J].植物学通报.2003,20(6):671-679.
    [17] Shinozaki K, Yamaguchi-Shinozaki K.Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways[J].Curr.Opin. Plant Biol.2000,3(3):217-223.
    [18] Li M X, Karen S,Jian K Z.Cell signaling during cold,drought,and salt stress[J].Plant Cell. 2002,14:165-183.
    [19] Heather K,Daniel G Z,Haruko O,et al.Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element[J].Plant Physiol.2004,135(3):1710-1717.
    [20]金建凤,高强,陈勇,等.转移拟南芥CBF1基因引起水稻植株脯氨酸含量提高[J].细胞生物学杂志.2005, 27(1):73-76.
    [21] Song S I,Kim Y S,Jang H J,et al.Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to a biotic stress without stunting growth[J].Plant Physiol.2005,138: 341-351.
    [22] Apel K, Hirt H.Reactive oxygen species:metabolism oxidative stress,and signal transduction [J].Annu Rev Plant Biol.2004,55:373-379.
    [23] Kang H M, Saltveit M E.Reduced chilling tolerance in elongating cucumber seedings radicles is relater to their reduced antioxidant enzyme and DPPH-radical scavenging activity[J].Plant physiol.2002,115(2):244-250.
    [24] Sato Y,Murkami T,Funatsuki H,et al.Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings[J].J Expe Bot.2001,52(354):145-151.
    [25] Liu Q,Kasuga M,Sakuma Y,et al.Two transcription factors,DREB1 and DREB2,with and EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression,respectively,in Arabidopsis[J]. Plant Cell.1998,10(8):1391-1406.
    [26] Thomashow M F.PLANT COLD ACCLIMATION: Freezing tolerance genes and regulatory mechanisms[J].Annu.Rev.Plant Physiol.Plant Mol.Biol.1999,50:571-599.
    [27] Yamaguchi S K, Shinozaki K.Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stress[J].Annu Rev Plant Biol.2006,57: 781-803.
    [28] Novillo F, Alonso J M, Ecker J R, et al.CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J].Proc. Natl. Acad. Sci. USA.2004,101(11):3985-3990.
    [29] Chinnusamy V, Ohta M,Kanrar S,et al. ICE1:A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J].Genes Dev.2003,17(8):1043-1054.
    [30] Chinnusamy V, Zhu J, Zhu J K.Gene regulation during cold acclimation in plants[J].Physiol Plant.2006,126:52-61.
    [31] Agarwal M,Hao Y,Kapoor A,et al.A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J].J Biol Chem.2006, 281(49):37636-37645.
    [32] Dong C H,Agarwal M,Zhang Y,et al.The negative regulator of plant cold responses,HOS1,is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J].Proc Natl Acad Sci USA.2006,103(21):8281-8286.
    [33] Miura K,Jin J B,Lee J.SIZ1-Mediated Sumoylation of ICE1 Controls CBF3/DREB1A Expression and Freezing Tolerance in Arabidopsis[J].Plant Cell.2007,19(4):1403-1414.
    [34] Zhu J,Dong C,Zhu J K.Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation[J].Current Opinion in Plant Biology.2007, 10(3):290-295.
    [35] Zhu J,Shi H,Lee BH,et al.An Arabidopsis homeodomain transcription factor gene,HOS9, mediates cold tolerance through a CBF-independent pathway[J].Proc Natl Acad Sci USA.2004,101(26):9873-9878.
    [36] Zhu J, Verslues PE, Zheng X,et al.HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants[J].Proc Natl Acad Sci USA.2005,102(28):9966-9971.
    [37] Li C C, Rutger J N. Inheritance of cool temperature seedling vigor in rice and its relationship with other agronomic characters[J].Crop Sci.1980,20(3):295-298.
    [38]刘之熙,刘云开,詹庆才.水稻孕穗期耐冷基因的CAPs标记辅助选择[J].湖南农业大学学报(自然科学版).2008,34(2):127-131.
    [39]刘之熙.水稻耐冷性QTLs定位和耐冷性分子标记辅助选择育种的研究[D].长沙:中南大学,2008.
    [40] Xiong Z M,Min S K,Wang G L,et al.Genetic analysis of cold tolerance at the seedling[J]. Chinese J Rice Sci.1990,4(2):75-78.
    [41] Nagamine T.Genetic control of tolerance to chilling injury at seeding stage in rice,Oryza sativa L[J].Japan J Breed.1991,41(1):35-40.
    [42] Bertin P,Kinet J M,Bouharmont J.Evaluation of chilling sensitivity in different rice varieties relationship between screening procedures applied during germination and vegetative growth Oryza sativa L[J].Euphytica.1996,89(2):201-210.
    [43]梁谊.亚洲水稻耐冷性研究现状[J].云南农业大学学报.1998,13(1):135-138.
    [44]曾亚文,申时权,徐福荣,等.Genetic variation of cold tolerance characters of Yuan rice landraces at indica and japonica rice cropping regions [J].Chinese J Rice Sci.2000, 14(3):133-138.
    [45] Qian Q, Zeng D L, He P, et al.The QTL analysis of seedling cold tolerance in a double haploid population derived from anther culture of hybrid of indica/japonica [J].Chinese Sci Bulletin.2000,45(5):240-244.
    [46]屈婷婷,陈立艳,章志宏,等.水稻籼粳交DH群体苗期耐冷性基因的分子标记定位[J].武汉植物学研究.2003, 21(5):385-389.
    [47]滕胜,曾大力,钱前,等.低温条件下水稻发芽力QTL的定位分析[J].科学通报.2001, 46(13):1104-1108.
    [48] Dubouzet J G, Sakuma Y, Ito Y, et al. OsDREB genes in rice Oryza sativa L,encode transcription activators that function in drought,high-salt and cold responsive gene expression[J].Plant Journa.2003,33(4):751-763.
    [49] Candida V, Franca L, Marcella B, et al.Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants[J].Plant Journal.2004,37(1):115-127.
    [50] Liu K, Wang L, Xu Y, et al.Overexpression of OsCOIN,a putative cold inducible zinc wingerprotein,increased tolerance to chilling,salt and drought,and enhanced proline level in rice[J].Planta.2007,226(4):1007-1016.
    [51] Dai X, Xu Y, Ma Q, et al.Overexpression of an R1R2R3 MYB gene,OsMYB3R-2,increases tolerance to freezing, drought,and salt Stress in transgenic Arabidopsis[J].Plant Physiology. 2007,143(4):1739-1751.
    [52] Guo S, Kemphues K J.Par-1,a gene required for establishing polarity in C.elegans embryos, encodes a putative Ser/Thr Kinase that is asymmetrically distributed[J].Cell.1995,81(4): 611-620.
    [53] Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in C.elegans[J].Nature.1998,391(6669):806-811.
    [54] Hammond S M, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells [J].Nature.2000,404(6775):293-296.
    [55] Plasterk R H.RNA Silencing: The Genome's Immune System[J].Science.2002,296(5571): 1263-1265.
    [56] Bernstein E,Caudy A A,Hammond S M,et al.Role for a bidentate ribonuclease in the initiation step of RNA interference[J].Nature.2001,409(6818):363-366.
    [57] Blaszczyk J,Tropea J E,Bubunenko M,et al.Crystallographic and modeling studies of RNase suggest a mechanism for double-stranded RNA cleavage[J].Structure.2001,9(12):1225-1236.
    [58] Geley S, Muller C.RNAi: ancient mechanism with a promising future [J].Experimental Gerontology.2004,39(7):985-998.
    [59] Hammond S M,Candy A A,Hannon G J.Post-transcriptional gene silencing by double-stranded RNA[J].Nat Rev Gen.2001,2(2):110-119.
    [60] Silva J M, Hammond S M, Hannon G J.RNA interference:a promising approach to antiviral therapy[J].Trends Mol Med.2002,8(11):505-508.
    [61] Gil J, Esteban M.Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action[J].Apoptosis.2000,5(2):107-114.
    [62] Lipardi C, Wei Q,Paterson B M.RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs[J].Cell.2001,107(3): 297-307.
    [63] Rdmaswamy G, Slack F J.siRNA:A guide for RNA silencing[J].Chemistry Biology.2002, 9(10):1053-1055.
    [64] Sijen T, Fleenor J, Simmer F,et al.On the role of RNA amplification in dsRNA-trigered gene silencing[J].Cell.2001,107(4):465-476.
    [65]赵楠,林璟瑜,王淑芳,等.过表达B基因的转基因微型番茄的获得[J].南开大学学报.2006,39(4):103-107.
    [66]吴昊,余琳,唐向荣,等.拟南芥AtLH基因过量表达引起叶向下性卷曲和晚开花[J].植物学报.2004,46(9):1106-1113.
    [67]刘文奇,陈旭君,徐晓晖,等. ERF类转录因子OPBPI基因的超表达提高烟草的耐盐能力[J].植物生理与分子生物学学报.2002, 28(6):473-478.
    [68] Cao Y F,Wu Y F,Zheng Z,et al.Over expression of the rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco[J].Physiological and Molecular Plant Pathology.2006,67(3-5):202-211.
    [69]丁在松,赵明,荆玉祥,等.玉米PPC基因过表达对转基因水稻光合速率的影响[J].作物学报.2007,33(5):717-722.
    [70]李杰,任宏伟,黄洁虹,等.外源报告基因EGFP在盐藻中实现瞬时表达[J].中国生物化学与分子生物学报.2003,19(3):338-342.
    [71]戚元成,张世敏,王丽萍,等.谷胱甘肽转移酶基因过量表达能加速盐胁迫下转基因拟南芥的生长[J].植物生理与分子生物学学报.2004, 30(5):517-522.
    [72]李卫,郭光沁,郑国锠.根癌农杆菌介导遗传转化研究的若干新进展[J].科学通报.2000, 45(8):798-807.
    [73]王忠华,舒庆尧,崔海瑞,等.Bt杀虫基因与Bt转基因抗虫植物研究进展[J].植物学通报.1999,16(1),51-58.
    [74] Raineri D M,Bottino P,Gondon M P,et a1.Agrobacterium-mediated transfornmtion of rice (Oryza sativa L.)[J].Nature Biotechnology.1990,8:33-38.
    [75] Chan M T, Chang H H,Ho S L,et a1.Agrobacterium-mediated production of transgenic rice plants expressing a chimeric a-amylase promoter/b-glucuronidase gene[J].Plant Mol Bio. 1993,22:491-506.
    [76] Hiei Y,Ohta S,Kumari T,et a1.Efficient transformation of rice(Oryza saliva L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA[J].The Plant J. 1994,6(2):271-282.
    [77] Rashid H A,Yokoi S A,Toriyama K A,et al.Transgenic plant production mediated by Agrobacterium in Indica rice[J].Plant Cell Reports.1996,15:727-730.
    [78]叶松青,储成才,曹守云,等.提高水稻转化效率几个主要因索的研究[J].遗传学报,2001,28(10):933-938.
    [79]易自力,曹守云,王力,等.提高农杆菌转化水稻频率的研究[J].遗传学报.2001, 28(4):352- 358.
    [80] Dong J,Teng W,Buchholz W G,et a1.Agrobacterium-mediated transformation of Javanica rice[J].Molecular Breeding.1996,2:267-276.
    [81] Kumria R, Waie B, Rajarm M V. Plant regeneration from transformed embryogenic callus of an elite Indica rice via Agrobacterium [J]. Plant Cell, Tissue and Organ Culture. 2001, 67(1): 63-71.
    [82] Cheng X Y. Agrobacterium-transformation rice plants expressing synthetic CryIAcb andCryIA(c) genes are highly tro to striped stem borer an yellow stem borer[J].Proc Natl Sci USA .1998,95:1-6.
    [83] Ishida Y, Satia H, Ohta S,et al.High efficient transformation of maize (zea mays L.) mediated by Agrobacterium tumefaciens [J].Nuture Bio /Technol.1996,14:745-750.
    [84] Khush G S. Origin, dispersal, cultivation and variation of rice [J]. Plant Molecular Biology, 1997, 35(1-2):25-34.
    [85] Zhang H Z, Li S, Li W, et al.A major QTL conferring cold tolerance at the early seedling stage using recombinant inbred lines of rice(Oryza sativa L.)[J].Plant Science.2005,168 (2): 527-534.
    [86]萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T(金冬雁、黎孟枫译).分子克隆实验指南[M](第二版).北京:科学技术出版社,1992:908.
    [87] Kim J C, Lee S H, Cheong Y H, et al. A novel cold-inducible zinc finger protein from soybean,SCOF-1,enhances cold tolerance in transgenic plants[J].Plant J.2001,25(3):247-259.
    [88] Takatsuji H, Nakamura N, Katsumoto Y. A new family of zinc finger proteins in petunia: structure,DNA sequence recognition,and floral organ-specific expression[J].Plant Cell.1994, 6(7):947-958.
    [89]刘巧泉,张景六,王宗阳,等.根癌农杆菌介导的水稻高效转化系统的建立[J].植物生理学报.1998,24(3):259-271.
    [90]王志成,易自力,蒋建雄,等.农杆菌介导转化水稻方法的改进[J].长沙理工大学学报(自然科学版).2008,5(3):98-103.
    [91] Potrykus I.Gene transfer to plants: assessment and perspectives physiol[J].Physiol Plant.1990, 79:125-134.
    [92]胡利华.抗草甘膦(EPSPs)基因及柠檬酸合酶(CS)基因对水稻的遗传转化[D].武汉:华中农业大学,2005.
    [93]朱凤呈.SUSIBA2过量表达和SUSIRI-RNAi载体的构建及其对水稻的转化[D].厦门:福建农林大学,2007.
    [94]潘素君,戴良英,刘雄伦,等.广谱抗稻瘟病基因Pi9对籼稻的转化研究[J].分子植物育种.2006,4(5):650-654.