细胞因子诱导的杀伤细胞体外生物活性和杀瘤机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:细胞因子诱导的杀伤细胞体外生物活性的研究
     目的:探讨细胞因子诱导的杀伤细胞(DC-CIK)的体外生物活性。
     方法:从白血病患儿外周血分离淋巴细胞,经过IFN-γ、CD3McAb、IL-2诱导并培养,获得大量的DC-CIK。光镜下观察其细胞形态学及动态增殖情况,流式细胞仪检测DC-CIK细胞免疫表型,MTT法研究DC-CIK细胞对多种白血病细胞株的杀伤活性,ELISA方法测定DC-CIK细胞释放细胞因子IL-12、IFN-γ、TNF-α的表达水平。
     结果:诱导后的DC-CIK细胞形态规则,DC-CIK细胞起初增殖缓慢,第4-8天快速增殖,于第9-10天达到增殖高峰,扩增约100倍。DC-CIK细胞中主要效应细胞是CD3+CD8+双阳性细胞和CD3+CD56+双阳性细胞。MTT结果示DC-CIK对肿瘤细胞B95杀伤作用最强,对Jhhan细胞和M07e细胞杀伤作用较弱。ELISA方法检测,发现诱导培养的DC-CIK细胞上清液中细胞因子IL-12、IFN-γ、TNF-α的分泌水平较高。
     结论:细胞因子诱导培养的杀伤细胞扩增能力和杀伤能力均较强。Th1细胞因子如IL-12、IFN-γ、TNF-α分泌较高,提示DC-CIK可能通过Th1途径发挥杀伤作用。
     第二部分:LFA-1/ICAM-1介导的细胞因子诱导的杀伤细胞体外杀瘤机制的研究
     目的:探讨LFA-1/ICAM-1介导的细胞因子诱导杀伤细胞的体外杀瘤机制。
     方法:从白血病患儿外周血分离淋巴细胞,经过IFN-γ、CD3McAb、IL-2诱导并培养,获得大量的DC-CIK。在予以10μg/ml、20μg/ml等不同浓度小鼠抗人LFA-1单克隆抗体处理后,采用MTT法研究DC-CIK细胞对多种白血病细胞株的杀伤活性,RT-PCR与Western-Blot方法检测GATA-3和T-bet基因表达水平的变化。ELISA方法测定DC-CIK细胞释放细胞因子IL-12、IFN-γ、TNF-α的表达水平。
     结果:诱导后的DC-CIK细胞形态规则,在予以10μg/ml、20μg/ml等不同浓度的LFA-1单克隆抗体处理后,MTT结果表明与阴性对照组相比,20μg/ml LFA-1单克隆抗体封闭的实验组DC-CIK细胞对B95细胞杀伤作用下降最为明显,差异有统计学意义(P<0.05),而对Jhhan细胞和M07e细胞杀伤作用均下降,但差异没有统计学意义(P>0.05; P>0.05)。RT-PCR与Western-Blot结果表明与阴性对照组相比,20μg/mlLFA-1单克隆抗体封闭的B95细胞实验组GATA-3基因mRNA水平和蛋白水平表达增加最为明显,差异有统计学意义(P<0.05;P<0.05)。20μg/mlLFA-1单克隆抗体封闭的B95细胞实验组T-bet基因mRNA水平和蛋白水平表达降低最为明显,差异有统计学意义(P<0.05;P<0.05)。ELISA结果表明与阴性对照组相比,20μg/mlLFA-1单克隆抗体封闭的B95细胞实验组DC-CIK细胞上清液中细胞因子IL-12、IFN-γ、TNF-α分泌水平下降最为明显,差异有统计学意义(P<0.05;P<0.05;P<0.05)。
     结论:GATA-3和T-bet基因参与了LFA-1/ICAM-1介导的DC-CIK杀瘤途径,并且通过分泌Thl型细胞因子IL-12、IFN-γ、TNF-α等发挥杀瘤作用。
     第三部分:T-bet介导的细胞因子诱导的杀伤细胞体外杀瘤机制的研究
     目的:研究T-bet介导的细胞因子诱导的杀伤细胞体外杀瘤的作用机制。
     方法:从白血病患儿外周血分离淋巴细胞,经过IFN-γ、CD3McAb、IL-2诱导,经树突细胞共培养后,获得大量的DC-CIK。在予以1μg/ml、5μg/ml、10μg/ml等不同浓度小鼠抗人T-bet单克隆抗体处理后,采用MTT法研究DC-CIK细胞对多种白血病细胞株的杀伤活性,流式细胞仪检测CD4+CD25+Treg细胞比例,RT-PCR与Western-Blot方法分别检测Foxp3和GATA-3基因表达水平的变化,ELISA方法测定DC-CIK细胞释放细胞因子IL-12、IFN-γ、TNF-a的表达水平。
     结果:诱导后的DC-CIK细胞形态规则,在予以1μg/ml、51μg/ml、10μg/ml等不同浓度小鼠抗人T-bet单克隆抗体处理后,MTT结果表明与阴性对照组相比,10μg/mlT-bet单克隆抗体封闭的实验组DC-CIK细胞对B95细胞杀伤作用下降最为明显,差异有统计学意义(P<0.05),而对Jhhan细胞和M07e细胞杀伤作用均下降,但差异没有统计学意义(P>0.05;P>0.05)。流式结果表明与阴性对照组相比,10μg/mlT-bet单克隆抗体封闭的B95细胞实验组CD4+CD25+Treg细胞表达上调最为明显,差异有统计学意义(P<0.05),而Jhhan细胞实验组和M07e细胞实验组CD4+CD25+Treg细胞表达也上调,但差异没有统计学意义(P>0.05;P>0.05)。RT-PCR与Western-Blot结果表明与阴性对照组相比,10μg/mlT-bet单克隆抗体封闭的B95细胞实验组Foxp3基因mRNA水平和蛋白水平表达增加最为明显,差异有统计学意义(P<0.05;P<0.05)。10μg/m1T-bet单克隆抗体封闭的B95细胞实验组GATA-3基因mRNA水平和蛋白水平表达增加最为明显,差异有统计学意义(P<0.05;P<0.05)。ELISA结果表明与阴性对照组相比,10μg/m1T-bet单克隆抗体封闭的B95细胞实验组DC-CIK细胞上清液中细胞因子IL-12、IFN-γ、TNF-a分泌水平下降最为明显,差异有统计学意义(P<0.05;P<0.05;P<0.05)。
     结论:Foxp3和GATA-3基因参与了T-bet介导的DC-CIK细胞杀瘤途径,其杀瘤机制主要表现为Thl途径活化,而Th2和Treg途径受抑。
Part 1 The biological characteristics of cytokine-induced killer cells in vitro
     Objective:To investigate the biological activity of cytokine-induced killer (CIK) cells in vitro.
     Methods:Lymphocytes isolated from peripheral blood of leukemia children were induced with interferon-gamma (IFN-γ), anti-CD3 monoclonal antibody (CD3McAb) and interleukin-2 (IL-2) and co-cultured with dendrite cells (DCs) to generate DC-CIK cells. The morphology and immunophenotype of these cells were determined by electron microscopy and flow cytometry, respectively. Cytotoxicity of DC-CIK cells against leukemia cell lines was measured by the MTT assay. Interleukin-12 (IL-12), interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α) levels released by DC-CIK cells were quantified by enzyme-linked immunosorbent assays (ELISA).
     Results:Induced DC-CIK cells were regular, round and transparent with variable cell volume and cellular aggregation. At first, its amplification was very slow, and it increased quickly at the 4th-8th day, it reached its peak amplification at the 9th-10th day, at approximately 100-fold.The main effectors cells in this population were CD3+CD8+ cells and CD3+CD56+cells. DC-CIK cells were cytotoxic to B95 cells, Jhhan cells and M07e cells, with the highest cytotoxicity towards B95 cells. The expression levels of IL-12, IFN-γ, and TNF-αin supernatant were very high.
     Conclusion:DC-CIK cells induced with cytokines displayed powerful amplification and strongly killing activities in vitro. It suggested that DC-CIK cells induced with cytokines may play killing activities through Thl pathway in vitro, as a result of high secretion of Thl cytokines, such as IL-12, IFN-y, and TNF-α.
     Part 2 The mechanism of LFA-1/ICAM-1 mediated anti-neoplastic effects of cytokine-induced killer cells
     Objective:To investigate the molecular mechanism underlying LFA-1/ICAM-1 mediated anti-neoplastic effects of cytokine induced killer (CIK) cells.
     Methods:Lymphocytes isolated from peripheral blood of leukemia children were induced with interferon-gamma (IFN-γ), anti-CD3 monoclonal antibody (CD3McAb) and interleukin-2 (IL-2) and co-cultured with dendrite cells (DCs) to generate DC-CIK cells. When treated with LFA-1 monoclonal antibody, cytotoxicity of DC-CIK cells against leukemia cell lines was measured by the MTT assay, while RT-PCR and Western-blot were used to determine mRNA and protein expressions of GATA-3 and T-bet in DC-CIK cells, respectively. IL-12, IFN-γand TNF-αlevels released by DC-CIK cells were quantified by ELISA.
     Results:Induced DC-CIK cells were regular, round and transparent with variable cell volume and cellular aggregation. When treated with mouse anti-human LFA-1 monoclonal antibody, the cytotoxicity decreased mostly towards B95 cells under 20μg/ml LFA-1 monoclonal antibody in comparison with the control group (P<0.05), while it also resulted in a decrease of the cytotoxicity towards Jhhan cells and M07e cells, however there was no statistically significant differences (P> 0.05;P> 0.05). It led to a highest elevation of GATA-3 mRNA and protein levels (P<0.05; P<0.05)and a highest decrease of T-bet mRNA and protein levels (P<0.05; P<0.05)under 20μg/ml LFA-1 monoclonal antibody in B95 cells group in comparison with the control group. The expression levels of IL-12, IFN-γ, and TNF-αin supernatant were lowest under 20μg/ml LFA-1 monoclonal antibody in B95 cells group in comparison with the control group (P<0.05;P<0.05;P<0.05).
     Conclusion:GATA-3 and T-bet were implicated in the LFA-1/ ICAM-1 mediated anti-neoplastic effects of DC-CIK cells via activation of the Thl pathway, with high secretion of Th1 cytokines, such as IL-12, IFN-γ, and TNF-α.
     Part 3 The mechanism of T-bet mediated anti-neoplastic effects of cytokine-induced killer cells
     Objective:To investigate the molecular mechanism underlying T-bet mediated anti-neoplastic effects of cytokine induced killer (CIK) cells.
     Methods:Lymphocytes isolated from peripheral blood of leukemia children were induced with interferon-gamma (IFN-γ), anti-CD3 monoclonal antibody (CD3McAb) and interleukin-2 (IL-2) and co-cultured with dendrite cells (DCs) to generate DC-CIK cells. When treated with T-bet monoclonal antibody, cytotoxicity of DC-CIK cells against leukemia cell lines was measured by the MTT assay. FCM was used to detect CD4+CD25+Treg cells, while RT-PCR and Western-blot were used to determine mRNA and protein expressions of Foxp3 and GATA-3 in DC-CIK cells,respectively. IL-12, IFN-γand TNF-a levels released by DC-CIK cells were quantified by ELISA.
     Results:Induced DC-CIK cells were regular, round and transparent with variable cell volume and cellular aggregation. When treated with mouse anti-human T-bet monoclonal antibody, the cytotoxicity decreased mostly towards B95 cells under 10μg/ml T-bet monoclonal antibody in comparison with the control group (P<0.05), while it also resulted in a decrease of the cytotoxicity towards Jhhan cells and M07e cells, however there was no statistically significant differences (P> 0.05;P> 0.05). Treatment with 10μg/ml T-bet monoclonal antibody resulted in a highest increase in the proportion of CD4+CD25+Treg cells in B95 cells group in comparison with the control group (P<0.05), and it also resulted in an increase in Jhhan cells group and M07e cells group, however there was no statistically significant differences (P> 0.05;P> 0.05). It led to a highest elevation of Foxp3 and GATA-3 mRNA and protein levels(P<0.05;P<0.05;P<0.05;P<0.05)under 10μg/ml T-bet monoclonal antibody in B95 cells group in comparison with the control group. The expression levels of IL-12, IFN-γ, and TNF-αin supernatant were lowest under 10μg/ml T-bet monoclonal antibody in B95 cells group in comparison with the control group (P<0.05;P<0.05;P<0.05).
     Conclusion:Foxp3 and GATA-3 were implicated in the T-bet mediated anti-neoplastic effects of DC-CIK cells via activation of the Thl pathway and suppression of the Th2 and Treg pathways.
引文
1. Sun Y, Chen J, Cai P, et al.Therapy of Relapsed or Refractory Non-Hodgkin's Lymphoma by Antigen Specific Dendric Cells-Activated Lymphocytes.[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi.2010;18(1):219-223.
    2. Olioso P, Giancola R, Di Riti M, et al.Immunotherapy with cytokine induced killer cells in solid and hematopoietic tumours:a pilot clinical trial.[J].Hematol Oncol, 2009,27(3):130-139.
    3. Linn YC, Hui KM.Cytokine-induced killer cells:NK-like T cells with cytotolytic specificity against leukemia.[J].Leuk Lymphoma.2003;44(9):1457-1462.
    4. Alvarnas JC, Linn YC, Hope EG, et al. Expansion of cytotoxic CD3+ CD56+ cells from peripheral blood progenitor cells of patients undergoing autologous hematopoietic cell transplantation.[J].Biol Blood Marrow Transplant,2001; 7(4): 216-222.
    5. Wang FS, Liu MX, Zhang B, et al. Antitumor activities of human autologous cytokine-induced killer (CIK) cells against hepatocellular carcinoma cells in vitro and in vivo.[J].World J Gastroenterol,2002;8(3):464-468.
    6.张嵩,王恩忠,白春学,等.共培养的树突状细胞与CIK细胞的体外增殖和杀瘤活性研究.[J].实验生物学报,2003;36(5):375-380.
    7. Ortaldo JR. Human cytotoxic effector cells:definition and analysis of activity.[J]. Allergol Immunopathol,1991;19(4):145-156.
    8. Lu PH, Negrin RS.A novel population of expanded human CD3+CD56+ cells derived from T cells with potent in vivo antitumor activity in mice with severe combined immunodeficiency.[J].J Immunol,1994; 153(4):1687-1696.
    9. Schmidt-Wolf IG, Negrin RS, Kiem HP, et al.Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity.[J] J Exp Med,1991;174(1):139-149.
    10. Hoyle C, Bangs CD, Chang P, et al.Expansion of Philadelphia chromosome- negative CD3(+)CD56(+) cytotoxic cells from chronic myeloid leukemia patients: in vitro and in vivo efficacy in severe combined immunodeficiency disease mice.[J]. Blood,1998;92(9):3318-3327.
    11. Li SJ, Zhang LS, Chai Y, et al.Killing activity of co-cultured cytokine-induced killer cells and dendritic cells against multi-drug resistant.[J].Zhonghua Zhong Liu Za Zhi. 2007;29(10):733-737.
    12. Yang XJ, Huang JA, Lei W, et al.Antitumor effects of cocultured dendritic cells and cytokine-induced killer cells on lung cancer in vitro and in vivo.[J].Ai Zheng. 2006;25(11):1329-1333.
    13. Ge W, Li CH, Zhang W, et al.Coculture of dendritic cell with cytokine-induced killer results in a significant increase in cytotoxic activity of CIK to tumor cells in vitro and in vivo.[J].Zhonghua Xue Ye Xue Za Zhi,2004;25(5):277-280.
    14. Zhang S, Zhang SQ,Bai CX. The anti-tumor effects of dendritic cells co-cultured with cytokine induced killer cells after chemotherapy. [J].Zhonghua Jie He He Hu Xi Za Zhi,2004;27(5):315-319.
    15.储眉,周健.CIK细胞及其抗肿瘤研究进展。[J].医学综述,2008,14(15):2264-2266.
    16. Marten A, Ziske C, Schottker B,et al. Interactions between dendritic cells and cytokine-induced killer cells lead to an activation of both populations. [J].J Immunother,2001; 24(6):502-510.
    17. Zhang S, Wang EZ, Bai CX, et al. The proliferation profile in vitro and anti-tumor effects of dendritic cells co-culturing with CIK cells. [J].Shi Yan Sheng Wu Xue Bao,2003;36(5):375-380.
    18.李慧,任秀宝,张澎等,树突状细胞对CIK细胞中CD4+CD25+T细胞数量及免疫调节作用的影响。[J].中华医学杂志,2005,85(44):3134-3138.
    19. Zoll B, Lefterova P, Ebert O, et al. Modulation of cell surface markers on NK-like T lymphocytes by using IL-2,IL-7 or IL-12 in vitro stimulation. [J]. Cytokine,2000, 12(9):1385-1390.
    20. Shimizu K, Fields RC, Giedlin M, et al. Systemic administration of interleukin 2 enhances therapeutic efficacy of dendritic cell-based tumor vaccines. [J].Proc Nati Acad Sci USA,1996,96 (5):2268-2273.
    21.唐卓,金润铭。细胞因子诱导的杀伤细胞的临床应用。[J].国际儿科学杂志,2009,36(1):63-65.
    22. Linn YC, Lau SK, Liu BH,et al.Characterization of the recognition and functional heterogeneity exhibited by cytokine-induced killer cell subsets against acute myeloid leukaemia target cell.[J].Immunology,2009;126(3):423-435.
    23. Schmidt-Wolf IG, Lefterova P, Mehta BA,et al.Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine-induced killer cells.[J].Exp Hematol,1993;21(13):1673-1679.
    24. Wei XC, Zhai XH, Han XR, Biological activity of DC-CIK cells and its effect against leukemia cells in vitro.[J].Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2008;16(5):1150-1153.
    25.隋承光,孟凡东,王晓华,等.CIK细胞的制作及对不同肿瘤细胞株体外抗肿瘤作用的研究.[J].中国医科大学学报,2005,34(3):210-211.
    26. Miellot-Gafsou A, Biton J, Bourgeois E, et al. Early activation of invariant natural killer T cells in a rheumatoid arthritis model and application to disease treatment. [J].Immunology,2010; Jan 27.[Epub ahead of print].
    27. Van Kaer L. Natural killer T cells as targets for immunotherapy of autoimmune diseases.[J]. Immunol Cell Biol,2004; 82(3):315-322.
    28. Kong W, Yen JH, Vassiliou E, et al. Docosahexaenoic acid prevents dendritic cell maturation and in vitro and in vivo expression of the IL-12 cytokine family.[J].Lipids Health Dis,2010;9(1):12-13.
    1.王强,冀朝晖,李若瑜。T-bet/GATA3对Th1/Th2分化的调节及其与疾病的关系。国外医学皮肤性病学分册,2005,31(3):189-191.
    2.韩根成,沈倍奋。Th17细胞分化,调节及效应研究进展。生物化学与生物物理进展,2008,35(2):117-123.
    3.赵卫东,凌斌。GATA-3与Th1/Th2的分化。医学综述,2007,13(18):1371-1373.
    4.张春霞,任少敏。T-bet/GATA3与疾病。基础医学与临床,2008,28(3):286-288.
    5. Hultgren OH, Verdrengh M, Tarkowski A.T-box transcription-factor-deficient mice display increased joint pathology and failure of infection control,during staphylococcal arthritis.[J].Microbes Infect,2004;6(6):529-535
    6. Dorfman DM, Van den Elzen P,Weng AP, et al.Differential expression of T-bet,a T-box transcription factor required for Th1 T-cell development,in peripheral T-cell lymphomas.[J].Am J Clin Pathol,2003;120(6):866-873.
    7. Szabo SJ, Kim ST, Costa GL, et al.A novel transcription factor,T-bet, directs Th1 lineage commitment.[J]. Cell,2000;100(6):655-669.
    8. Lametschwandtner G, Biedermann T, Schwarzler C, et al.Sustained T-bet expression confers polarized human TH2 cells with TH1-like cytokine production and migratory capacities.[J]. J Allergy Clin Immunol,2004;113(5):987-994
    9. Li B, Yang P, Zhou H, et al. T-bet expression is upregulated in active Bechcet's disease.[J]. Br J Ophthalmo,2003;87(10):1264-1267.
    10. Kurata H, Lee HJ, Mcclanahan T,et al.Friend of GATA3 is expressioned in native Th cells and functions as a repressor of GATA3-mediated Th2 cell development. [J].J Immunol,2002;68(9):4583-4545.
    11. Airik R, Karner M, Karis A, et al.Gene expression analysis of Gata3-/- mice by using cDNA microarray technology.[J]. Life Sci,2005;76(22):2559-2568.
    12. Zheng W, Flavell Ra. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells.[J].Cell,1997;89(4):587-596.
    13. Schwenger GT, Mordvinov VA, Sanderson CJ.Transcription factor GATA-3 is involved in repression of promoter activity of the human interleukin-4 gene.[J]. Biochemistry,2005;70(9):1065-1069.
    14. Seki N, Miyazaki M, Suzuki W, et al.IL-4-induced GATA-3 expression is a time-restricted instruction switch for Th2 cell differentiation.[J]. J Immunol.2004, 172(10):6158-6166.
    15. Roy S, Wang J, Gupta S, et al. Chronic morphine treatment differentiates T helper cells to Th2 effector cells by modulating transcription factors GATA3 and T-bet.[J].J Neuroimmunol,2004;147(1-2):78-81.
    16. Lund R, Ahlfors H, Kainonen E, et al.Identification of genes involved in the initiation of human Thl or Th2 cell commitment. [J].Eur J Immunol,2005;35(11): 3307-3319.
    17. Chakir H, Wang H, Lefebvre DE, et al. T-bet/GATA-3 ratio as a measure of the Thl/Th2 cytokine profile in mixed cell populations:predominant role of GATA-3.[J].J Immunol Methods,2003;278(1):157-169.
    18. Bian T, Yin KS, Jin SX, et al.Treatment of allergic airway inflammation and hyperresponsiveness by imiquimod modulating transcription factors T-bet and GATA-3. [J].Chin Med J.2006,119(8):640-648.
    19. Tan AH, Goh SY, Wong SC, et al.T helper cell-specific regulation of inducible costimulator expression via distinct mechanisms mediated by T-bet and GATA-3.[J].J Biol Chem,2008;283(1):128-136.
    20. Wei H, Tian Z, Xu X, et al. Expression of transcription factor T-bet/GATA3 in lung cancer patients and its interference by the traditional Chinese herbal medicine. [J].Zhonghua Zhong Liu Za Zhi,2002;24(1):34-37.
    21. Fuchs O.EVI1 and its role in myelodysplastic syndrome, myeloid leukemia and other malignant diseases.[J].Cas Lek Cesk.2006;145(8):619-624.
    22. Mehta BA, Schmidt-Wolf IG, Weissman IL, et al. Two pathways of exocytosis of cytoplasmic granule contents and target cell killing by cytokine-induced CD3+ CD56+ killer cells.[J]. Blood,1995;86(9):3493-3499.
    23. Linn YC, Lau SK, Liu BH, et al.Characterization of the recognition and functional heterogeneity exhibited by cytokine-induced killer cell subsets against acute myeloid leukaemia target cell.[J].Immunology,2009;126(3):423-435.
    24. Kim HM, Lim J, Yoon YD, et al.Anti-tumor activity of ex vivo expanded cytokine-induced killer cells against human hepatocellular carcinoma.[J].Int Immunopharmacol,2007;7(13):1793-1801.
    25. Linn YC, Hui KM. Cytokine-induced killer cells:NK-like T cells with cytotolytic specificity against leukemia.[J].Leuk Lymphoma,2003;44(9):1457-1462.
    1.韩根成,沈倍奋。Th17细胞分化,调节及效应研究进展。生物化学与生物物理进展,2008,35(2):117-123.
    2.李慧,任秀宝,张澎等,树突状细胞对CIK细胞中CD4+CD25+T细胞数量及免疫调节作用的影响。中华医学杂志,2005,85(44):3134-3138.
    3. Tzankov A, Meier C,Hirschmann P, et al.Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma,follicular lymphoma and classical Hodgkin's lymphoma. [J]. Haematologica, 2008; 93(2): 193-200.
    4. Fontenot JD, Gavin MA, Rudensky AY, et al.Foxp3 programs the development and function of CD4+CD25+ regulatory T cells.[J].Nat Immunol,2003;4(4):330-336.
    5. Szabo SJ, Kim ST, Costa GL, et al.A novel transcription factor,T-bet, directs Th1 lineage commitment.[J]. Cell, 2000;100(6):655-669.
    6. Li B, Yang P, Zhou H, et al. T-bet expression is upregulated in active Bechcet's disease.[J]. Br J Ophthalmo, 2003;87(10):1264-1267.
    7. Harris DP,Goodrich S, Gerth AJ, et al.Regulation of IFN-gamma production by B effector 1 cells: essential roles for T-bet and IFN-gamma receptor.[J]J Immunol, 2005;174(ll):6781-6790.
    8. Afkarian M, Sedy JR, Yang J, et al.T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells.[J].Nat Immunol,2002;3(6):549-557.
    9. Placek K, Gasparian S, Coffre M, et al. Integration of distinct intracellular signaling pathways distal regulatory elements directs T-bet expression in human CD4+ T celIs.[J]J Immunol, 20009;183(12):7743-7751.
    10. Martin P,Diaz-Meco MT, Moscal J. The signaling adapter p62 is an important mediator of T helper 2 cell function and allergic airway inflammation.[J].EMSO J,2006;25(l5)3524-3533.
    11. Kaplan MH, Sun YL, Hoey T, et al.Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice.[J].Nature,1996;382(6587):174- 177.
    12. Wei H, Sun R, Xiao W, et al.Traditional Chinese medicine Astragalus reverses predominance of Th2 cytokines and their up-stream transcript factors in lung cancer patients.[J].Oncol Rep,2003;10(5):1507-1512.
    13. Liu J, Tian Z, Sun R. The predominant expression of Th2 type cytokines in human tumor cells.[J].Zhonghua Zhong Liu Za Zhi,1998;20(2):105-107.
    14. Zhu J, Yamane H, Cote-Sierra J, et al.GATA-3 promotes Th2 responses through three different mechanisms:induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Thl cell-specific factors.[J].Cell Res,2006;16(1): 3-10.
    15. Roy S, Wang J, Gupta S, et al. Chronic morphine treatment differentiates T helper cells to Th2 effector cells by modulating transcription factors GATA3 and T-bet.[J].J Neuroimmunol,2004;147(1-2):78-81.
    16. Lund R, Ahlfors H, Kainonen E, et al.Identification of genes involved in the initiation of human Thl or Th2 cell commitment.[J].Eur J Immunol,2005;35(11): 3307-3319.
    17. Murphy KM, Reiner SL.The lineage decisions of helper T cells.[J].Nat Rev Immunol,2002;2(12):933-944.
    18. Cousins DJ, Lee TH, Staynov DZ. Cytokine coexpression during human Thl/Th2 cell differentiation:direct evidence for coordinated expression of Th2 cytokines.[J].J Immunol,2002;169(5):2498-2506.
    19. Rengarajan J, Szabo SJ, Glimcher LH. Transcriptional regulation of Thl/Th2 polarization.[J].Immunol Today,2000;21(10):479-483.
    20.张春霞,任少敏。T-bet/GATA3与疾病。基础医学与临床,2008,28(3):286-288.
    21.王强,冀朝晖,李若瑜。T-bet/GATA3对Th1/Th2分化的调节及其与疾病的关系。国外医学皮肤性病学分册,2005,31(3):189-191.
    22. Ralainirins N, Poli A, Michel T, et al.Control of NK cell functions by CD4+CD25+ regulatory T cells.[J].J Leuk Bio,2007;81(1):144-153.
    23. Thornton AM, Shevach EM. CD4+CD25+immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. [J].J Exp Med,1998;188(2):287-296.
    24. Woo EY, Chu CS, Goletz TJ, et al.Regulatory CD4(+)CD25(+)T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer.[J].Cancer Res,2001;61(12):4766-4772.
    25. Marshall NA, Christie LE, Munro LR, et al.Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma.[J].Blood,2004; 103(5):1755-1762.
    26. Mittal S, Marshall NA, Duncan L, et al. Local and systemic induction of CD4+CD25+regulatory T-cell population by non-Hodgkin lymphoma.[J].Blood, 2008,111(11):5359-5370.
    27. Beyer M, Schultze JL.Regulatory T cells in cancer.[J].Blood,2006,108(3):804-811.
    28. Beyer M, Kochanek M, Giese T, et al.In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma.[J]. Blood,2006,107(10):3940-3949.
    29.卢晓婷,刘俊田。CD4+CD25+调节性T细胞在肿瘤免疫及化疗方面的研究进展。[J].中国肿瘤临床,2008,35(11):656-660.
    30.李亚男,周玉峰,方峰等。MCMV感染对小鼠脾细胞调节性T细胞比率和Thl/Th2转录因子T-bet/GATA3;表达的影响.中华医学杂志,2008,88(42):2999-3002.
    31. Hori S, Nomurat T, Sakaguchi S. Control of regulatory T cells development by the transcription factor Foxp3.[J].Science,2003;299(5609):1057-1061.
    32. Nakamura K, Kitani A, Fuss I, et al.TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice.[J].J Immunol,2004;172(2):834-842.
    33. Tang Q, Henriksen KJ,Bi M, et al.In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes.[J].J Exp Med,2004;199(11):1455-1465.
    34. Mehta BA, Schmidt-Wolf IG, Weissman IL, et al. Two pathways of exocytosis of cytoplasmic granule contents and target cell killing by cytokine-induced CD3+ CD56+killer cells.[J]. Blood,1995;86(9):3493-3499.
    35. Linn YC, Hui KM.Cytokine-induced killer cells:NK-like T cells with cytotolytic specificity against leukemia.[J].Leuk Lymphoma,2003,44(9):1457-1462.
    36. Kim HM, Lim J, Yoon YD, et al.Anti-tumor activity of ex vivo expanded cytokine-induced killer cells against human hepatocellular carcinoma.[J].Int Immunopharmacol,2007,7(13):1793-1801.
    1. Liu QC, Wu WH, Li GR.Effect of lingdankang composite combined dendritic cell-cytokine induced killer cells in treating leukemia.[J].Zhongguo Zhong Xi Yi Jie He Za Zhi.2009;29(4):347-350.
    2. Olioso P, Giancola R, Di Riti M, et al.Immunotherapy with cytokine induced killer cells in solid and hematopoietic tumours:a pilot clinical trial.[J].Hematol Oncol, 2009,27(3):130-139.
    3. Gutgemann S, Frank S, Strehl J, et al. Cytokine-induced killer cells are type natural killer T cells.[J]. Ger Med Sci,2007,5:Doc07.
    4. Ortaldo JR. Human cytotoxic effector cells:definition and analysis of activity.[J]. Allergol Immunopathol,1991;19(4):145-156.
    5. Kaneko T, Fusauch Y, Kakui Y, et al.Cytotoxicity of cytokine-induced killer cells coated with bispecific antibody against acute myeloid leukemia cells.[J].Leuk Lymphoma,1994,14(3-4):219-229.
    6. Foa R, Fierro MT, Cesano A, et al.Defective lymphokine-activated killer cell generation and activity in acute leukemia patients with active disease. [J].Blood, 1991,78(4):1041-1046.
    7. Linn YC, Hui KM.Cytokine-induced killer cells:NK-like T cells with cytotolytic specificity against leukemia.[J].Leuk Lymphoma.2003;44(9):1457-1462.
    8. Linn YC, Lau LC, Hui KM.Generation of cytokine-induced killer cells from leukaemic samples with in vitro cytotoxicity against autologous and allogeneic leukaemic blasts.[J].Br J Haematol,2002,116(1):78-86.
    9.张嵩,王恩忠,白春学,等.共培养的树突状细胞与CIK细胞的体外增殖和杀瘤活性研究.[J].实验生物学报,2003,36(5):375-380.
    10.唐卓,金润铭。细胞因子诱导的杀伤细胞的临床应用。[J].国际儿科学杂志,2009,36(1):63-65.
    11. Schmidt-Wolf IG, Lefterova P, Mehta BA,et al.Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine-induced killer cells.[J].Exp Hematol,1993;21(13):1673-1679.
    12. Zoll B, Lefterova P, Ebert O, et al.Modulation of cell surface markers on NK-like lymphocytes by using IL-2,IL-7 or IL-12 in vitro stimulation.[J].Cytokine, 2000,12(9):1385-1390.
    13. Linn YC, Lau SK, Liu BH,et al.Characterization of the recognition and functional heterogeneity exhibited by cytokine-induced killer cell subsets against acute myeloid leukaemia target cell.[J].Immunology,2009;126(3):423-435.
    14. Hoyle C, Bangs CD, Chang P, et al.Expansion of Philadelphia chromosome-negative CD3(+)CD56(+) cytotoxic cells from chronic myeloid leukemia patients: in vitro and in vivo efficacy in severe combined immunodeficiency disease mice.[J]. Blood,1998;92(9):3318-3327.
    15. Ohkawa T, Seki S,Dobashi H, et al.Systematic characterization of human CD8+ T cells with natural killer cell markers in comparison with natural killer cells and normal CD8+ T cells.[J]. Immunology,2001,103(3):281-290.
    16. Alvarnas JC, Linn YC, Hope EG, et al.Expansion of cytotoxic CD3+ CD56+ cells from peripheral blood progenitor cells of patients undergoing autologous hematopoietic cell transplantation.[J]. Biol Blood Marrow Transplant,2001,7(4): 216-222.
    17.隋承光,孟凡东,王晓华,等.CIK细胞的制作及对不同肿瘤细胞株体外抗肿瘤作用的研究.[J].中国医科大学学报,2005,34(3):210-211.
    18. Li SJ, Zhang LS, Chai Y, et al.Killing activity of co-cultured cytokine-induced killer cells and dendritic cells against multi-drug resistant.[J].Zhonghua Zhong Liu Za Zhi. 2007 Oct;29(10):733-737.
    19. Yang XJ, Huang JA, Lei W, et al.Antitumor effects of cocultured dendritic cells and cytokine-induced killer cells on lung cancer in vitro and in vivo.[J].Ai Zheng.2006 Nov;25(11):1329-1333.
    20. Yang L,Liu FQ,Wang JW, et al.Anti-leukemia activity of T cells impacted by dendritic cells added with sodium selenite.[J].Zhongguo Shi Yan Xue Ye Xue Za Zhi,2008,16(4):892-897.
    21. Zhu HH, Xu KL, Pan XY, et al.Specific anti-leukemic cell effect mediated by dendritic cells pulsed with chronic myelogenous leukemia lysate antigen in vitro.[J].Zhongguo Shi Yan Xue Ye Xue Za Zhi,2003,11(3):278-281.
    22. Li H, Wang C, Yu J, et al.Dendritic cell-activated cytokine-induced killer cells enhance the anti-tumor effect of chemotherapy on non-small cell lung cancer in patients after surgery.[J].Cytotherapy,2009,11(8):1076-1083.
    23.李慧,任秀宝,张澎等,树突状细胞对CIK细胞中CD4+CD25+T细胞数量及免疫调节作用的影响。中华医学杂志,2005,85(44):3134-3138.
    24. Li HF, Yang YH, Shi YJ, et al.Cytokine-induced killer cells showing multidrug resistance and remaining cytotoxic activity to tumor cells after transfected with mdrl cDNA.[J].Chin Med J,2004,117(9):1348-1352.
    25. Kornacker M, Verneris M, Kornacker B, et al.The apoptotic and proliferative fate of cytokine-induced killer cells after redirection to tumor cells with bispecific Ab.[J].Cytotherapy,2006,8(1):13-23.
    26. Dudley ME, Wunderlich JR, Yang JC, et al.Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma.[J].J Clin Oncol,2005,23(10):2346-2357.
    27.韩根成,沈倍奋。Th17细胞分化,调节及效应研究进展。生物化学与生物物理进展,2008,35(2):117-123.
    28. Szabo SJ, Kim ST, Costa GL, et al.A novel transcription factor,T-bet, directs Thl lineage commitment.[J]. Cell,2000;100(6):655-669.
    29. Li B, Yang P, Zhou H, et al. T-bet expression is upregulated in active Bechcet's disease.[J]. Br J Ophthalmo,2003;87(10):1264-1267.
    30. Usui T, Preiss JC, Kanno Y, et al.T-bet regulates Thl responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription.[J].J Exp Med,2006,203(3):755-766.
    31. Monteleone I, Monteleone G, Del Vecchio Blanco G, et al.Regulation of the T helper cell type 1 transcription factor T-bet in coeliac disease mucosa. [J].Gut,2004,53 (8):1090-1095.
    32. Ylikoski E, Lund R, Kylaniemi M, et al.IL-12 up-regulates T-bet independently of IFN-gamma in human CD4+ T cells.[J].Eur J Immunol,2005,35(11):3297-3306.
    33. Seki N, Miyazaki M, Suzuki W, et al.IL-4-induced GATA-3 expression is a time-restricted instruction switch for Th2 cell differentiation.[J]. J Immunol.2004, 172(10):6158-6166.
    34. Kurata H, Lee HJ, Mcclanahan T,et al.Friend of GATA3 is expressioned in native Th cells and functions as a repressor of GATA3-mediated Th2 cell development. [J].J Immunol,2002;68(9):4583-4545.
    35. Kusam S, Toney LM, Sato H, et al.Inhibition of Th2 differentiation and GATA-3 expression by BCL-6.[J].J Immunol,2003,170(5):2435-2441.
    36. Smits HH, van Rietschoten JG, Hikens CM, et al. IL-12-induced reversal of human Th2 cells is accompanied by full restoration of IL-12 responsiveness and loss of GATA-3 expression.[J].Eur J Immunol,2001,31(4):1055-1065.
    37. Zhu J, Yamane H, Cote-sierra J, et al. GATA-3 promotes Th2 responses through three different mechanisms:induction of Th2 cytokine production,selective growth of Th2 cells and inhibition of Thl cell-specific factors.[J].Cell Res,2006,16(1):3-10.
    38.檀卫平,李静,夏焱,等.哮喘患儿转录因子T-bet/GATA3 mRNA比值及其与Th1/Th2平衡间的关系.[J].中山大学学报(医学科学版),2008;29(1):95-98.
    39. Kay AB.The role of T lymphocytes in asthma.[J].Chem Allergy,2006;91:59-75.
    40.刘春涛,王刚,罗凤鸣,等.支气管哮喘患者Th2细胞过度分化与转录因子T-bet和GATA3的调控作用.[J].中华结核和呼吸杂志,2004;27(6):398-402.
    41.张春霞,任少敏。T-bet/GATA3与疾病。基础医学与临床,2008,28(3):286-288.
    42. Li B,Yang P,Zhou H, et al.T-bet expression is upregulated in active Behcet's disease.[J].Br J Ophthalmo,2003;87(10):1264-1267.
    43. Barnes BJ, Moore PA, Pitha PM. Virus-specific activation of a novel interferon regulatory factor,IRF-5,results in the induction of distinct interferon alpha genes.[J].J Biol Chem,2001; 276(26):23382-23390.
    44. Shin H, Wherry EJ.CD8 T cell dysfunction during chronic viral infection.[J].Curr Opin Immunol,2007;19(4):408-415.
    45.李亚男,周玉峰,方峰等。MCMV感染对小鼠脾细胞调节性T细胞比率和 Th1/Th2转录因子T-bet/GATA3表达的影响.中华医学杂志,2008,88(42):2999-3002。
    46. Davide A, Carla S, Lankford, et al. Cytokines and transcription factors that regulate T helper cell differentiation:new players and new insights.[J].J Clin Immunol,2003, 23(4):147-157.
    47. Fochs O, EVI1 and its role in myelodysplastic syndrome,myeloid leukemia and other malignant diseases.[J].Cas Lek Cesk,2006,145(8):619-624.
    48. Dorfman DM, van den Elzen P,Weng AP, et al.Differential expression of T-bet,a T-box transcription factor required for Thl T-cell development,in peripheral T-cell lymphomas.[J].Am J Clin Pathol,2003;120(6):866-873.
    49.王强,冀朝晖,李若瑜。T-bet/GATA3对Thl/Th2分化的调节及其与疾病的关系。国外医学皮肤性病学分册,2005,31(3):189-191.
    50.王婷婷,赵辉,任贺,等.慢性特发性血小板减少性紫癫患者Ⅰ类和Ⅱ类T细胞特点的研究.[J].中华医学杂志,2006,86(10):669-673.
    51. Zhou B, Zhao H, Yang RC, et al. Multi-dysfunctional pathophysiology in ITP.[J].Crit Rev Oncol Hematol,2005,54 (2):107-116.
    52. Olsson B,Andersson PO, Jernas M, et al.T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura.[J].Nat Med,2003,9(9): 1123-1124.
    53. Woo EY, Chu CS, Goletz TJ, et al.Regulatory CD4(+)CD25(+)T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer.[J].Cancer Res,2001;61(12):4766-4772.
    54. Fontenot JD, Gavin MA, Rudensky AY, et al.Foxp3 programs the development and function of CD4+CD25+ regulatory T cells.[J].Nat Immunol,2003;4(4):330-336.
    55. Cosmi L,Liotta F,Angeli R, et al.Th2 cells are less susceptible that Thl cells to suppressive activity of CD25+ regulatory thymocytes because of their responsiveness to different cytokines. [J]. Blood,2004; 103(8):3117-3121.
    56. Woo EY, Chu CS, Goletz TJ, et al.Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer.[J]. Cancer Res,2001,61 (15):4766-4772.
    57. Steitz J, Bruck J, Lenz J, et al. Depletion of CD4+CD25+T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced CD8+ T-Cell-dependent immune defense of B16 melanoma.[J]. Cancer Res,2001,61(24):8643-8646.
    58.李世荣,薛海斌,薛峰等。CD4+CD25+FOXP3+调节性T细胞在肺癌患者外周血中的表达及意义。山东医药,2008,48(44):63-64。
    59. Curiel TJ, Coukos G, Zou L, et al.Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival.[J].Nat Med,2004,10(9):942-949.
    60. Mittal S, Marshall NA, Duncan L, et al. Local and systemic induction of CD4+CD25+regulatory T-cell population by non-Hodgkin lymphoma.[J].Blood, 2008, 111(11):5359-5370.
    61. Beyer M, Schultze JL.Regulatory T cells in cancer.[J].Blood,2006,108(3):804-811.
    62. Beyer M, Kochanek M, Giese T, et al.In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. [J].Blood,2006,107(10):3940-3949.
    63.卢晓婷,刘俊田。CD4+CD25+调节性T细胞在肿瘤免疫及化疗方面的研究进展。[J].中国肿瘤临床,2008,35(11):656-660.
    64. Liu B, Zhao H, Poon MC, et al. Abnormality of CD4+CD25+ regulatory T cells in idiopathic thrombocytopenic purpura.[J].Eur J Haematol,2007,78(2):139-143.
    65. Skakura M, Wada H, Tawara I, et al. Reduced CD4+CD25+T cells in patients with idiopathic thrombocytopenic purpura.[J].Thromb Res,2007,120(2):187-193.
    66.孙丽霞,张金巧,王金铠。CD4+CD25+调节性T细胞与自身免疫性血液病.临床内科杂志,2008,25(8):520-522。
    67. Chen J,Ellison FM, Eckhaus MA, et al. Minor Antigen H60-Mediated Aplastic Anemia Is Ameliorated by Immunosuppression and the Infusion of Regulatory T Cells.[J]. J Immunol,2007,178(7):4159-4168.
    68. Solomou EE, Rezvani K, Mielke S, et al.Deficient CD4+CD25+FOXP3+ T regulatory cells in acquired aplastic anemia. [J].Blood,2007,110(5):1603-1606.
    69. Mehta BA, Schmidt-Wolf IG, Weissman IL, et al. Two pathways of exocytosis of cytoplasmic granule contents and target cell killing by cytokine-induced CD3+ CD56+killer cells.[J]. Blood,1995; 86(9):3493-3499.
    70. Linn YC, Hui KM.Cytokine-induced killer cells:NK-like T cells with cytotolytic specificity against leukemia.[J].Leuk Lymphoma,2003,44(9):1457-1462.
    71. Kim HM, Lim J, Yoon YD, et al.Anti-tumor activity of ex vivo expanded cytokine-induced killer cells against human hepatocellular carcinoma.[J].Int Immunopharm-acol,2007,7(13):1793-1801.
    72. Chang CK,Zdon MJ. Inhibition of tumor necrosis factor-alpha and inducible nitric oxide synthase correlates with induction of IL-10 inseptic rats undergoing laparotomy and laparoscopy. [J]. Surg Laparosbc Endosc Percutan Tech,2002, 12(4):247-251.
    73. Pockaj BA, Basu GD, Pathangey LB, et al.Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer. [J].Ann Surg Oncol,2004,11(3):328-339.
    74. Rabinowich H, Reichert TE, Kashii Y, et al. Lymphocyte apoptosis induced by Fas ligand-expression ovarian carcinoma cells:implications for altered expression of TcR in tumor-associated lymphocytes.[J]J Clin Inves,1998,101(11):2579-2588.
    75.周晓宏,童春容。自体细胞因子诱导的杀伤细胞治疗急性B淋巴细胞白血病22例临床观察。[J].河北医学,2003,9(4):306-308.
    76.石永进,虞积仁,岑溪男,等.细胞因子诱导杀伤(CIK)细胞的大容量扩增与杀伤活性观察.[J].生物医学工程学杂志,2001,18(1):94-96.
    77. Hui D, Qiang L, Jian W, et al.A randomized, controlled trial of postoperative adjuvant cytokine-induced killer cells immunotherapy after radical resection of hepatocellular carcinoma. [J].Dig Liver Dis.2009,41(1):36-41.
    78. Introna M, Borleri G, Conti E, et al. Repeated infusions of donor-derived cytokine-induced killer cells in patients relapsing after allogeneic stem cell transplantation:a phase I study.[J]. Haematologica.2007,92(7):952-959.
    79.童春容,耿彦彪,江倩等。自体细胞因子诱导的杀伤细胞治疗急性淋巴细胞白 血病合并肝炎的首次报告。[J].北京医科大学学报,2000,32(3):251-255.
    80.高飚,肖扬,旁妍等。树突状免疫细胞疗法治疗再生障碍性贫血的临床初步探讨。临床血液学杂志,2009,22(5):249-252.