含钾岩石生物转化中的微生物多样性与作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钾是农作物生长必需的大量营养元素之一,而我国钾肥资源短缺,因此通过生物转化将我国含量丰富的低品位含钾岩石生产成生物钾肥不但能拓宽我国钾肥生产资源,还可以缓解农业生产钾肥紧张的状况。微生物在含钾岩石生物转化过程中发挥重要作用,对含钾岩石生物转化过程中微生物的多样性进行研究,进而对其风化含钾岩石的机制进行探讨,有利于为进一步改进含钾岩石生物转化工艺提供理论依据。
     为研究蚯蚓(Pheretima carnosa)对低品位含钾矿石风化的促进作用,用含钾矿粉喂养了蚯蚓,然后对喂养蚯蚓前后含钾矿粉水溶性和硝酸浸提液中钾、铝、铁、钙等元素进行了测定,结果表明:饲养过蚯蚓的钾矿粉与不加蚯蚓的对照样品相比,前者水溶性和硝酸浸提液中钾、铝、铁、钙等四种元素含量均明显高于后者,其中水溶性钾、铝、铁、钙等元素含量比后者分别高5.64%、20.25%、27.52%、17.21%,硝酸浸提液中钾、铝、铁、钙等元素含量比后者分别高6.59%、3.94%、4.36%、8.49%。上述结果说明蚯蚓能促进含钾矿粉的风化。为揭示与蚯蚓促进含钾矿粉风化相关的微生物群落结构,用16S rRNA基因克隆文库和限制性酶切片段长度多样性分析(ARDRA)技术研究了蚯蚓肠道内容物及喂养环境样品中细菌的多样性,研究结果表明:除含钾矿粉初始样品细菌的多样性很低外,喂养蚯蚓10d的含钾矿粉及在这些含钾矿粉喂养10d的蚯蚓肠道内容物、黄棕壤及黄棕壤中喂养10d的蚯蚓肠道内容物等四种样品中都具有很高的微生物多样性;蚯蚓肠道与蚯蚓生存环境虽共有一些相同种类的微生物,但各个样品细菌群落结构相差很大;γ-变形杆菌(Gammaproteobacteria)是蚯蚓肠道优势菌群,在蚯蚓肠道内对矿粉风化可能起重要作用;与含钾矿石风化相关的微生物菌落结构随环境变化而改变,含钾矿石的风化是由多种微生物共同作用的结果。
     堆肥固态发酵是生物转化含钾岩石的有效技术。为获得堆肥固态发酵的有效菌种,我们对耐高温钾矿物溶解细菌进行了分离和筛选。从饲喂含钾矿粉的蚯蚓肠道内分离到了一株耐高温的钾矿物溶解菌EGT,16S rRNA基因序列和系统发育结果可以确定该菌为一种链霉菌(Streptomyces sp);采用固态发酵法用该链霉菌对以钾长石为主要成份的含钾矿粉进行发酵处理,ICP的检测结果表明用该链霉菌处理后的发酵物料水溶性Al、Fe和K的含量均明显高于接灭活菌未发酵和发酵14天的两个对照,其中比接灭活菌未发酵的对照分别高23.08%、123.19%和30.99%,比接接灭活菌发酵的对照分别高45.45%、52.48%和9.13%。上述结果说明该菌可以促进含钾矿物的风化。由于该链霉菌不但解钾,而且还耐高温,因此可以做为堆肥化处理含钾矿物制备钾肥的有效菌种。
     为探讨含钾矿石的生物转化工艺及转化过程中的微生物多样性,我们采用先堆肥发酵再用蚯蚓处理的方法处理低品位含钾矿粉,然后用DGGE技术研究了该工艺过程中细菌群落结构的动态变化。堆肥有效钾含量的测定结果表明堆肥发酵和蚯蚓处理均能提高低品位含钾岩石粉的释钾量,其中经过堆肥发酵处理,有效钾含量提高了37.36%;经过蚯蚓处理,有效钾含量提高了9.77%;DGGE指纹图谱显示钾矿粉堆肥化处理过程中微生物群落结构变化很大。其中,堆肥固态发酵前期样品之间细菌群落结构差异较大,而堆肥固态发酵后期及加蚯蚓处理阶段样品之间细菌群落结构差异则相对较小;固态发酵前期堆肥中优势细菌种类变动较大,而后期优势细菌种类则比较稳定;在整个固态发酵阶段一直占据优势地位的细菌仅见条带12(可能属于交替单胞菌属Alteromonas)和14(壁厚菌门Firmicutes的一种细菌)所代表的细菌:加蚯蚓处理堆肥后,并未出现特殊的优势细菌。16SrRNA基因序列相似性和系统发育树聚类结果表明:DGGE指纹图上13个主要条带代表的细菌全部属于变形杆菌门(Proteobacteria)和壁厚菌门(Firmicutes),说明这两大类细菌在堆肥化处理过程中发挥主要作用。
     含钾矿粉有机肥不仅含有丰富的活性钟,而且还有N、P等其他营养元素,将其作为底肥施用到农田后,不但会影响植物生长,而且也会影响植物根部内生细菌的组成和多样性。植物根部内生菌在帮助植物分解土壤矿物、摄取营养、抗病抑病及促进植物生长等方面发挥重要作用。苋菜(Amaranthus mangostanus L.)是一种富钾植物,其内生菌可能在协助苋菜风化土壤中的含钾矿物方面发挥重要作用。为探讨施含钾矿粉有机肥对苋菜内生细菌多样性的影响,我们用非培养的分子方法研究了在施含钾矿粉有机肥和不施肥苋菜根部内生细菌的群落结构。虽然两个文库挑选出的阳性克隆数差别不大,但不施肥苋菜根16S rRNA基因克隆文库内生细菌的OTUs数量和克隆数量远远大于施含钾矿粉有机肥苋菜根文库,说明不施肥苋菜根文库中代表内生细菌的克隆无论是种类和数量都远远大于施含钾矿粉有机肥的苋菜。与施含钾矿粉有机肥的苋菜根部内生细菌群落相比,γ-变形菌纲(Gammaproteobacteria)肠杆菌目(Enterobacteriales)和假单胞菌目(Pseudomonadales)的细菌在不施肥苋菜根部内生细菌群落占有绝对的优势,其中OTUs和克隆数量较大的主要有肠杆菌属(Enterobacter)、泛菌属(Pantoea)和假单胞属(Pseudomonas)。这些类群的细菌可能通过协助植物风化土壤矿物、固氮以及产生植物生长激素等途径在促进苋菜生长过程中扮演着重要角色。
     上述研究不但解析了与蚯蚓促进含钾矿石风化相关的细菌群落结构,探明了堆肥固态发酵与加蚯蚓处理低品位含钾矿粉过程细菌群落的动态变化,还揭示了施用含钾矿粉有机肥后对苋菜生长及其根部内生菌多样性的影响,为进一步改进含钾岩石生物转化工艺,挖掘钾矿物溶解细菌资源,优化生物转化菌剂以及开发更高效的微生物钾肥奠定了理论基础。
Potassium is the third major macro nutrient for plant growth, but China is deficient in potassium fertilizer resources. China is fortunate to have rich deposit of potassium-bearing rock (PBR). If PBR could be converted into potassium fertilizer, it will provide enough potassium resource for China's agriculture. Microorganism play a key role during releasing potassium from PBR by bioconversion technology, so studying the bacterial diversities during bioconversion of PBR and understanding bio-weathering mechanism of PBR will be of benefit to improve bioconversion technology.
     Feeding experiments were conducted to examine the accelerated degradation of potassium-bearing rock powders (PBRP) induced by earthworm. Results indicated some elements such as K, Al, Fe and Ca were released from the PBRP upon digestion by earthworm, and the contents of water-soluble K, Al, Fe and Ca in the PBRP weathered by earthworm respectively increased by5.64%,20.25%,27.52%,17.21%and its HNO3-extractable K Al, Fe and Ca respectively increased by6.59%,3.94%,4.36%and8.49%, thereby enhancing the degradation of PBRP. The microbial communities in earthworm's gut and the surrounding substrates including soil and PBRP were analyzed by ARDRA (Amplified Ribosomal DNA Restriction Analysis). The results indicated a higher bacterial diversity in the guts of the earthworms fed with PBRP and the PBRP fed to earthworm. The earthworms'gut and surrounding environment shared some bacteria, but bacterial communities showed very different in different stage. Some members from Gammaproteobacteria dominating in earthworm gut were likely to play an important role during degradation of mineral grains mediated by earthworm. The results also showed that the microbial communities relevant to mineral degradation varied with environmental conditions, but a large number of microorganisms played their role in the degradation process of PBRP.
     Composting is an efficient technique to transform the potassium in PRRP into bioactive forms. To obtain high effective microorganisms which can solubilizing potassium from PBRP in compost, bacteria, tolerating high temperature, were screened. One mineral solubilizing bacterial strain designated EGT, which can be tolerant to high temperature, was isolated from the earthworm fed with PBRP. The sequence similarities and phylogenetic relationships based on16S rRNA gene showed that the strain belonged to the group of the genus Streptomyces. The strain was used as the agent releasing potassium from PBRP under solid state fermentation. Comparing to fresh substrate, the contents of water-soluble Al, Fe and K from the substrate inocubated by the strain respectively increased by23.08%、123.19%and30.99%. Comparing to the substrate inocubated by autoclaved inoculum, their contents respectively increased by45.45%,52.48%and9.13%. The increase of water-soluble elements indicated that the strain could weather PBRP. It may be as an effective inoculum of the compost which comprise PBRP and organic matter such as straw and cotton seed hull to obtain potassium fertilizer by composting.
     The low-grade potassium-bearing rock powder (PBRP) was processed by composting to enhance the weathering of it for K-fertilizer's production. After compost was finished, the compost was treated again with earthworms'feeding to further increase its available potassium. The results revealed that the two processing could effectively accelerate the degradation of PBRP and increase the compost's available potassium. The dynamics of bacterial communities during composting and earthworm's feeding was investigated using DGGE technique. The profile of DGGE showed that the bacterial community of compost had a large difference in the earlier stage, but had a little difference in the latter stage. The dominant species of bacteria largely varied in the earlier stage of composting, but they were stable in the latter stage. Only band12and14, which belonged to Alteromonas and Firmicutes respectively, had been dominant during the whole course of composting. None of special dominant bacteria appeared after the compost was fed to earthworm. Selected bands were cut from the DGGE gel and then were sequenced after recycling and purifying. The similarities and phylogeny of the16S rRNA sequences indicated that the bacteria which the thirteen dominant bands represented were attributed only to Proteobacteria and Firmicutes. Therefore, the two phyla of bacteria may play an important role during composting of the material enriched by potassium-bearing rock powder.
     The compost enriched by PBRP is abundant not only in bioactive potassium but also in nitrogen and phosphorus. Therefore, it would promote the growth of plants and affect its endophytic bacterial communities in root. The endophytic bacteria in plant root contributes to plant growth by dissolving soil mineral, providing nutrients for plant, protecting plant from disease and produing plant growth promoting molecules or substances. Amaranth (Amaranthus mangostanus L.) is a plant of rich potassium and might be effective in solubilizing mineral K of soil. Its endophytic bacteria in root may play an important role during amaranth releasing potassium from soil mineral. The compost enriched by PBRP was used as base fertilizer to amaranth which is a plant of rich potassium and might be effective in solubilizing mineral K of soil. The endophytic bacteria in amaranth root may play an important role during amaranth releasing potassium from soil mineral. The endophytic bacterial communities of amaranth's root fertilized by the compost and its control to which no fertilizer was applied were investigated through16S rRNA gene cloning library technology and and ARDRA. The number of clones in two libraries were similar, but the number of endophytic bacteria from library of the amaranth without fertilizer were much higher than those of the amaranth fertilized by the compost enriched by PBRP. The result showed that the former's endophytic bacteria were much richer than the latter's. Comparing to those of the amaranth fertilized by compost, some bacteria from Gammaproteobacteria were dominant in the root of the amaranth no fertilizer was applied. Among these bacteria of Gammaproteobacteria, main members were from the genera Enterobacter, Pantoea and Pseudomonas. These bacteria may play an important role in promoting amaranth's growth by releasing elements from soil, fixing nitrogen and producing growth hormones.
     These studies not only revealed the bacterial communities associated with weathering of PBRP and the dynamics of bacterial communities in the compost enriched by PBRP during composting and feeding earthworms, but also showed the changes of amaranth's growth and its endophytic bacteria in root after providing the compost enriched by PBRP as a base fertilizer to it. The results will be useful in helping us improve the technology of bioconversion of PBRP, find new the resources of mineral potassium-solubilizing bacteria and produce more effective potassium bio-fertilizer for agriculture.
引文
1. Amtmann, A., and P. Armengaud.2007. The role of calcium sensor-interacting protein kinases in plant adaptation to potassium-deficiency:new answers to old questions. Cell Res 17:483-485.
    2. Baker, W. W., and J. F. Banfield.1996. Biologically versus inorganically-mediated weathering reactions:relationships between minerals and extracellular microbial polymers in lithobiontic communities. Chem. Geol.132:55-69.
    3. Banfield, J. F., W. W. Barker, S. A. Welch, and A. Taunton.1999. Biological impact on mineral dissolution:Application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences of the United States of America 96:3404-3411.
    4. Barker, W. W., S. A. Welch, S. Chu, and J. F. Banfield.1998. Experimental observations of the effects of bacteria on aluminosilicate weathering. American Mineralogist 83:1551-1563.
    5. Basak, B. B., and D. R. Biswas.2010. Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fert Soils 46:641-648.
    6. Basak, B. B., and D. R. Biswas.2009. Influence of potassium solubilizing microorganism(Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass(Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235-255.
    7. Buss, H. L., A. Luttge, and S. L. Brantley.2007. Etch pit formation on iron silicate surfaces during siderophore-promoted dissolution. Chemical Geology 240:326-342.
    8. Calvaruso, C., M.-P. Turpault, and P. Frey-Klett.2006. Root-Associated Bacteria Contribute to Mineral Weathering and to Mineral Nutrition in Trees:a Budgeting Analysis. Appl. Environ. Microbiol.72:1258-1266.
    9. Gadd, G. M.2007. Geomycology:biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research 111:3-49.
    10. Hall, K., J. M. Arocena, J. Boelhouwers, and Z. Liping.2005. The influence of aspect on the biological weathering of granites:observations from the Kunlun Mountains, China. Geomorphology 67:171-188.
    11. Hameeda, B., G. Harini, O. P. Rupela, S. P. Wani, and G. Reddy.2008. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiological Research 163:234-242.
    12. Hoffland, E., R. Giesler, T. Jongmans, and N. v. Breemen.2002. Increasing Feldspar Tunneling by Fungi across a North Sweden Podzol Chronosequence. Ecosystems 5:11-22.
    13. Hu, X.-F., S.-X. Li, J.-G. Wu, J.-F. Wang, Q.-L. Fang, and J.-S. Chen.2010. Transfer of Bacillus mucilaginosus and Bacillus edaphicus to the genus Paenibacillus as Paenibacillus mucilaginosus comb. nov. and Paenibacillus edaphicus comb. nov. Int J Syst Evol Microbiol 60:8-14.
    14. Hu, X., and G. Boyer.1996. Siderophore-Mediated Aluminum Uptake by Bacillus megaterium ATCC 19213. Appl. Environ. Microbiol.62:4044-4048.
    15. Huntingtona, T. G., R. P. Hooperb, C. E. Johnsonc, B. T. Aulenbacha, R. Cappellatod, and A. E. Blume.2000. Calcium depletion in a southeastern United States forest ecosystem Soil Science Society of America Journal 64:1845-1858.
    16. Kim, J., H. Dong, J. Seabaugh, S. W. Newell, and D. D. Eberl.2004. Role of Microbes in the Smectite-to-Illite Reaction. Science 303:830-832.
    17. Lu, C. Q., and H. B. Ling.2010. Isolation and characterization of Azotobacteria from pine rhizosphere. African Journal of Microbiology Research 4:1299-1306.
    18. Lasaga, A. C., J. M. Soler, J. Ganor, T. E. Burch, and K. L. Nagy.1994. Chemical weathering rate laws and global geochemical cycles. Geochimica et Cosmochimica Acta 58:2361-2386.
    19. Liermann, L. J., B. E. Kalinowski, S. L. Brantley, and J. G. Ferry.2000. Role of bacterial siderophores in dissolution of hornblende. Geochimica et Cosmochimica Acta 64:587-602.
    20. Liu, W., X. Xu, X. Wu, Q. Yang, Y. Luo, and P. Christie.2006. Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Health 28:133-140.
    21. Mol, G., S. P. Vriend, and P. F. M. van Gaans.2003. Feldspar weathering as the key to understanding soil acidification monitoring data; a study of acid sandy soils in the Netherlands. Chemical Geology 202:417-441.
    22. Shelobolina, E. S., Z. A. Avakyan, E. E. Boulygina, T. P. Turova, A. M. Lysenko, G. A. Osipov, and G I. Karavaiko.1997. Description of a new species of mucilaginosus bacteria, Bacillus edaphicus sp. nov. and confirmation the taxonomic status of Bacillus mucilaginosus. Mikrobiologiya 66:813-822.
    23. Sheng, X. F.2005. Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biology and Biochemistry 37:1918-1922.
    24. Sheng, X. F., and L. Y. He.2006. Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can. J. Microbiol.52:66-72.
    25. Sugumaran, P., and B. Janarthanam.2007. Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J Agr Sci 3:350-355.
    26. Taylor, A. S., J. D. Blum, A. C. Lasaga, and I. N. MacInnis.2000. Kinetics of dissolution and Sr release during biotite and phlogopite weathering. Geochimica et Cosmochimica Acta 64:1191-1208.
    27. Uroz, S., C. Calvaruso, M.-P. Turpault, and P. Frey-Klett.2009. Mineral weathering by bacteria:ecology, actors and mechanisms. Trends in Microbiology 17:378-387.
    28. Welch, S. A., and W. J. Ullman.1996. Feldspar dissolution in acidic and organic solutions:Compositional and pH dependence of dissolution rate. Geochimica et Cosmochimica Acta 60:2939-2948.
    29. White, A. F.2002. Determining mineral weathering rates based on solid and solute weathering gradients and velocities:application to biotite weathering in saprolites. Chemical Geology 190:69-89.
    30. Zhou, Y. F., R. C. Wang, X. C. Lu, and J. J. Lu.2007. influence of microbe-mineral contact model on mineral dissolution:a primary study on. microperthite dissolution by Paenibacillus polymyxa Geological Journal of China Universities 13:657-661.
    31.白由路.2009.高价格下我国钾肥的应变策略.中国土壤与肥料:1-4.
    32.江长胜,杨剑虹,魏朝富,谢德体,屈明.2002.低分子量有机酸对紫色母岩中钾释放的影响.植物营养与肥料学报8:441-446.
    33.李定旭.2003.硅酸盐细菌在苹果上的应用效果.果树学报20:64-66.
    34.李莎,李福春,程良娟.2006.生物风化作用研究进展.矿产与地质20:577-582.
    35.李福春,李莎,杨用钊,程良娟.2006.原生硅酸盐矿物风化产物的研究进展——以云母和长石为例.岩石矿物学杂志25:440-448.
    36.周俊,朱江,储国正,胡礼军.1999.钾资源的地球化学背景及其开发利用.矿产综合利用:36-40.
    37.盛下放,黄为一.2002.硅酸盐细菌NBT菌株解钾机理初探.土壤学报139:863-871.
    38.盛下放,黄为一.2002.硅酸盐细菌NBT菌株释钾条件的研究.中国农业科学35:673-677.
    39.张胜,张翠石,张石,李政红,张明.2005.地质微生物地球化学作用的意义与展望.地质通报24:1027-1031.
    40.谢建昌.1998.世界肥料使用的现状与前景.植物营养与肥料学报4:321-330.
    41.赵飞,盛下放,黄智,何琳燕.2008.山东地区钾矿物分解细菌的分离及生物学特性.生物多样性16:593-600.
    42.赵飞,黄智,何琳燕,王鹏,盛下放.2010.不同风化程度钾长石表面矿物分解细菌的筛选及遗传多样性.微生物学报50:647-653.
    43.连宾,傅平秋,莫德明,刘丛强.2002.硅酸盐细菌解钾作用机理的综合效应.矿物学报22:179-183.
    44.连宾,陈烨,朱立军,杨瑞东.2008.微生物对碳酸盐岩的风化作用.地学前 缘15:90-99.
    45.陈廷伟.2002.胶质芽胞杆菌分类名称及特性研究(综述).土壤肥料:5-10.
    46.陈静.2000.含钾岩石资源开发利用及前景预测.化工矿产地质22:58-64.
    47.鲁安怀.2005.无机界矿物天然自净化功能之矿物超微孔道效应.岩石矿物学杂志24:503-510.
    48.龙健,李娟,龙明兰,钱晓刚,曹文藻.2000.硅酸盐细菌对含钾矿粉和土壤的解钾作用研究进展.贵州师范大学学报(自然科学版)18:77-81.
    1. Basker, A., J. H. Kirkman, and A. N. Macgregor.1994. Changes in potassium availability and other soil properties due to soil ingestion by earthworms. Biol Fert Soils 17:154-158.
    2. Basker, A., A. N. Macgregor, and J. H. Kirkman.1992. Influence of soil ingestion by earthworms on the availability of potassium in soil:An incubation experiment Biol Fert Soils 14:300-303.
    3. Bhadauria, T., and K. G. Saxena.2010. Role of Earthworms in Soil FertilityMaintenance through the Production of Biogenic Structures. Applied and Environmental Soil Science 2010:1-7.
    4. Carpenter, D., M. E. Hodson, P. Eggleton, and C. Kirk.2007. Earthworm induced mineral weathering:Preliminary results. Eur J Soil Biol 43:S176-S183.
    5. Carpenter, D., M. E. Hodson, P. Eggleton, and C. Kirk.2008. The role of earthworm communities in soil mineral weathering:a field experiment. Mineral Mag 72:33-36.
    6. Cole, J. R., B. Chai, R. J. Farris, Q. Wang, S. A. Kulam, D. M. McGarrell, G. M. Garrity, and J. M. Tiedje.2005. The Ribosomal Database Project (RDP-Ⅱ): Sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294-296.
    7. Edwards, C. A., and P. J. Bohlen.1996. Biology and Ecology of Earthworm. Chapman & Hall, London.
    8. Hill, T. C. J., K. A. Walsh, J. A. Harris, and B. F. Moffett.2003. Using ecological diversity measures with bacterial communities FEMS Microbiology Ecology 43:1-11.
    9. Knapp, B. A., J. Seeber, S. M. Podmirseg, E. Meyer, and H. Insam.2008. Application of denaturing gradient gel electrophoresis for analysing the gut microflora of Lumbricus rubellus Hoffmeister under different feeding conditions. BEntomol Res 98:271-279.
    10.Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. Me William, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, and D. G. Higgins.2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-2948.
    11. Needham, S. J., R. H. Worden, and D. Mcllroy.2004. Animal-sediment interactions:the effect of ingestion and excretion by worms on mineralogy. Biogeosciences 1:113-121.
    12. Suzuki, Y., T. Matsubara, and M. Hoshino.2003. Breakdown of mineral grains by earthworms and beetle larvae. Geoderma 112:131-142.
    13. Syers, J., and J. Springett.1984. Earthworms and soil fertility. Plant and Soil 76:93-104.
    14. Tamura, K., J. Dudley, M. Nei, and S. Kumar.2007. MEGA 4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599.
    15. Tian, G., J. A. Olimah, G. O. Adeoye, and B. T. Kang.2000. Regeneration of earthworm populations in a degraded soil by natural,planted fallows under humid tropical conditions. Soil Sci Soc Am J 64:222-228.
    16. Tomati, U., and E. Galli.1995. Earthworms, soil fertility and plant productivity. Acta Zoologica Fennica 196:11-14.
    17. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane.1991.16S Ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697-703.
    18.刘玮琦,茆振川,杨宇红,谢丙炎.2008.应用16SrRNA基因文库技术分析土 壤细菌群落的多样性.微生物学报48:1344-1350.
    19.张卫信,陈迪马,赵灿灿.2007.蚯蚓在生态系统中的作用.生物多样性15:142-153.
    20.张宝贵,李贵桐,申天寿.2000.威廉环毛蚯蚓对土壤微生物量及活性的影响.生态学报20:168-172.
    21.许玫英,孙国萍,郭俊.2010.微生物生态系统代谢网络研究进展.微生物学报50:438-443.
    1. Abdulla, H.2009. Bio weathering and Biotransformation of Granitic Rock Minerals by Actinomycetes. Microbial Ecology 58:753-761.
    2. Banfield, J. F., W. W. Barker, S. A. Welch, and A. Taunton.1999. Biological impact on mineral dissolution:Application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences of the United States of America 96:3404-3411.
    3. Basak, B. B., and D. R. Biswas.2010. Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fert Soils 46:641-648.
    4. Basak, B. B., and D. R. Biswas.2009. Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235-255.
    5. Basker, A., J. H. Kirkman, and A. N. Macgregor.1994. Changes in potassium availability and other soil properties due to soil ingestion by earthworms. Biol Fert Soils 17:154-158.
    6. Biswas, D. R.2010. Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato-soybean cropping sequence in an Inceptisol of Indo-Gangetic Plains of India. Nutrient Cycling in Agroecosystems:1-16.
    7. Carpenter, D., M. E. Hodson, P. Eggleton, and C. Kirk.2007. Earthworm induced mineral weathering:Preliminary results. Eur J Soil Biol 43:S176-S183.
    8. Clarridge, J. E.2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews 17:840-862.
    9. Embley, T. M., and E. Stackebrandt.1994. The molecular phylogency and systematics of the Actinomycetes. Annual Review of Microbiology 48:257-289.
    10. Goodfellow, M., E. V. Ferguson, and J.-J. Sanglier.1992. Numerical classification and identification of Streptomyces species-- a review. Gene 115:225-233.
    11. Hall, K., J. M. Arocena, J. Boelhouwers, and Z. Liping.2005. The influence of aspect on the biological weathering of granites:observations from the Kunlun Mountains, China. Geomorphology 67:171-188.
    12. Kampfer, P., B. Huber, S. Buczolits, K. Thummes, I. Grun-Wollny, and H.-J. Busse.2008. Streptomyces specialis sp. nov. Int J Syst Evol Microbiol 58:2602-2606.
    13. Kim, J., H. Dong, J. Seabaugh, S. W. Newell, and D. D. Eberl.2004. Role of Microbes in the Smectite-to-Illite Reaction. Science 303:830-832.
    14. Knight, A., and D. P. Mindell.1993. Substitution Bias, Weighting of DNA Sequence Evolution, and the Phylogenetic Position of Fea's Viper. Systematic Biology 42:18-31.
    15. Labeda, D. P.1993. DNA Relatedness among Strains of the Streptomyces lavendulae Phenotypic Cluster Group. Int J Syst Bacteriol 43:822-825.
    16. MACGregor, S. T., F. C. Miller, K. M. Psarianos, and M. S. Finstein.1981. Composting Process Control Based on Interaction Between Microbial Heat Output and Temperature. Appl. Environ. Microbiol.41:1321-1330.
    17. Nishanth, D., and D. R. Biswas.2008. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum) Bioresource Technology 99:3342-3353.
    18. Oskay, M.2009. Comparison of Streptomyces diversity between agricultural and non-agricultural soils by using various culture media. Scientific Research and Essay 4:997-1005.
    19. Posada, D., and K. A. Crandall.1998. MODELTEST:Testing the model of DNA substitution. Bioinformatics 14:817-818.
    20. Ribbe, M., D. Gadkari, and O. Meyer.1997. N2 fixation by Streptomyces thermoautotrophicus Involves a molybdenum-dinitrogenase and amanganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-Co dehydrogenase. Journal of Biological Chemistry 272:26627-26633.
    21. Sheng, X. F.2005. Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biology and Biochemistry 37:1918-1922.
    22. Simonet, P., M. C. Grosjean, A. K. Misra, S. Nazaret, B. Cournoyer, and P. Normand.1991. Frankia genus-specific characterization by polymerase chain reaction. Appl. Environ. Microbiol.57:3278-3286.
    23. Srivibool, R., K. Jaidee, M. Sukchotiratana, S. Tokuyama, and W. Pathom-aree.2010. Taxonomic characterization of Streptomyces strain CH54-4 isolated from mangrove sediment Annals of Microbiology 60:299-305.
    24. Suzuki, Y., T. Matsubara, and M. Hoshino.2003. Breakdown of mineral grains by earthworms and beetle larvae. Geoderma 112:131-142.
    25. Swofford, D. L.2002. PAUP* Phylogenetic Analysis Using Parsimony (* and other methods), Version 410b 10. Sunderland, MA:Sinauer Associates.
    26. Syed, D., D. Agasar, C.-J. Kim, W.-J. Li, J.-C. Lee, D.-J. Park, L.-H. Xu, X.-P. Tian, and C.-L. Jiang.2007. Streptomyces tritolerans sp. nov., a novel actinomycete isolated from soil in Karnataka, India. Antonie van Leeuwenhoek 92:391-397.
    27. Tamura, K., J. Dudley, M. Nei, and S. Kumar.2007. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24:1596-1599.
    28.Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The Clustal X windows interface:Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, (24)::25:4876-4882.
    29. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and L. D.J.1991.16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol.173:697-703.
    30. Youssef, G. H., W. M. A. Seddik, and M. A. Osman.2010. Efficiency of Natural Minerals in Presence of Different Nitrogen Forms and Potassium Dissolving Bacteria on Peanut and Sesame Yields. Journal of American Science 6:647-660.
    31. Zhou, X. Y., Y. Du, and B. Lian.2010. Effect of different culture conditions on carbonic anhydrase from Bacillus mucilaginosus inducing calcium carbonate crystal formation. Acta Microbiologica Sinica 50:956-962.
    32.王康林,韩效钊,张雪琴,张愿成.2005.硅酸盐细菌的选育与解钾性能研究.化工矿物与加工34:25-27.
    33.李定旭.2003.硅酸盐细菌在苹果上的应用效果.果树学报20:64-66.
    34.李振高,骆永明,滕应.2008.土壤与环境微生物研究法[M].北京:科学出版社.
    35.李莎,李福春,程良娟.2006.生物风化作用研究进展.矿产与地质20:577-582.
    36.徐平,张利平,余利岩.2001.应用16S rRNA基因V-2序列高变区序列进行链霉菌分子分类.生物多样性9:129-137.
    37.刘殿锋,蒋国芳.2005.基于18S rDNA的蝗总科分子系统发育关系研究及分类系统探讨.昆虫学报48232-241.
    38.张胜,张翠石,张石,李政红,张明.2005.地质微生物地球化学作用的意义与展望.地质通报24:1027-1031.
    39.赵飞,盛下放,黄智,何琳燕.2008.山东地区钾矿物溶解细菌的分离及生物学特性.生物多样性16:593-600.
    40.连宾,傅平秋,莫德明,刘丛强.2002.硅酸盐细菌解钾作用机理的综合效应.矿物学报22:179-183.
    41.陈静.2000.含钾岩石资源开发利用及前景预测.化工矿产地质22:58-64.
    1. Basak, B. B., and D. R. Biswas.2009. Influence of potassium solubilizing microorganism(Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235-255.
    2. Beheral, S. K., and R. K. Panda.2009. Judicious management of irrigation water and chemical fertilizer for potato crop in subhumid subtropical region. Assam University Journal of Science & Technology:Physical Sciences and Technology 4:22-28.
    3. Biswas, D. R.2010. Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato-soybean cropping sequence in an Inceptisol of Indo-Gangetic Plains of India. Nutrient Cycling in Agroecosystems:1-16.
    4. Carpenter, D., M. E. Hodson, P. Eggleton, and C. Kirk.2007. Earthworm induced mineral weathering:Preliminary results. Eur J Soil Biol 43:S176-S183.
    5. Carpenter, D., M. E. Hodson, P. Eggleton, and C. Kirk.2008. The role of earthworm communities in soil mineral weathering:a field experiment. Mineral Mag 72:33-36.
    6. Chen, H. C., S. Y. Wang, and M. J. Chen.2008. Microbiological study of lactic acid bacteria in kefir grains by culture-dependent and culture-independent methods. Food Microbiology 25:492-501.
    7. Cole, J. R., B. Chai, R. J. Farris, Q. Wang, S. A. Kulam, D. M. McGarrell, G. M. Garrity, and J. M. Tiedje.2005. The Ribosomal Database Project (RDP-II): Sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294-296.
    8. Datta, J. K., A. Banerjee, M. S. Sikdar, S. Gupta, and N. K. Mondal.2009. Impact of combined exposure of chemical, fertilizer, bio-fertilizer and compost on growth, physiology and productivity of Brassica campestries in old alluvial soil. Journal of environmental biology 31:797-800.
    9. Edwards, C. A., and P. J. Bohlen.1996. Biology and Ecology of Earthworm. Chapman & Hall, London.
    10. Ghiri, M. N., A. Abtahi, F. Jaberian, and H. R. Owliaie.2010. Relationship between soil potassium forms and mineralogy in highly calcareous soils of southern Iran. Australian Journal of Basic and Applied Sciences 4:434-441.
    11. Hill, T. C. J., K. A. Walsh, J. A. Harris, and B. F. Moffett.2003. Using ecological diversity measures with bacterial communities FEMS Microbiology Ecology 43:1-11.
    12. Hosseinifard, S. J., H. Khademi, and M. Kalbasi.2010. Different forms of soil potassium as affected by the age of pistachio (Pistacia vera L.) trees in Rafsanjan, Iran. Geoderma 155:289-297.
    13. Hu, C., and Y. C. Qi.2010. Abundance and diversity of soil nematodes as influenced by different types of organic manure. Helminthologia 47:58-66.
    14. Hultman, J., J. Ritari, M. Romantschuk, L. Paulin, and A. P.2008. Universal ligation-detection-reaction microarray applied for compost microbes. BMC Microbiology 8:237.
    15. Khalil, A. I., M. S. Beheary, and E. M. Salem.2001. Monitoring of microbial populations and their cellulolytic activities during the composting of municipal solid wastes World Journal of Microbiology and Biotechnology 17:155-161.
    16. Konstantinov, S. R., A. Awati, H. Smidt, B. Williams, Akkermans AD, and W. M. de Vos.2004. Specific response of a novel and abundant Lactobacillus amylovorus-like phylotype to dietary prebiotics in the guts of weaning piglets. Applied and Environmental Microbiology 70:3821-3830.
    17. Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, and D. G Higgins.2007. ClustalW and ClustalX version 2. Bioinformatics 23:2947-2948.
    18. Lin, Y. H.2010. Effects of potassium behaviour in soils on crop absorption. African Journal of Biotechnology 9:4638-4643.
    19. Mathur, J., R. W. Bizzoco, and D. G. Ellis.2007. Effects of abiotic factors on the phylogenetic diversity of bacterial communities in acidic thermal springs. Applied and Environmental Microbiology 73:2612-2623.
    20. Muyzer, G., and K. Smalla.1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127-141.
    21. Muyzer, G., E. C. Waal, and A. G. Uitterlinden.1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA59(3):695-700. Applied and Environmental Microbiology 59:695-700.
    22. Needham, S. J., R. H. Worden, and D. Mcllroy.2004. Animal-sediment interactions:the effect of ingestion and excretion by worms on mineralogy. Biogeosciences 1:113-121.
    23. Nishanth, D., and D. R. Biswas.2008. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum) Bioresource Technology 99:3342-3353.
    24. Peterburgsky, A. V., and F. V. Yanishevsky.1961. Transformation of forms of potassium in soil during long-term potassium fertilization. Plant and Soil 15:199-210.
    25. Sheng, X. F., and L. Y. He.2006. Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by Wheat. Can J Microbiol 52:66-72.
    26. Sugumaran, P., and B. Janarthanam.2007. Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J Agr Sci 3:350-355.
    27. Suzuki, Y., T. Matsubara, and M. Hoshino.2003. Breakdown of mineral grains by earthworms and beetle larvae. Geoderma 112:131-142.
    28. Tamura, K., J. Dudley, M. Nei, and S. Kumar.2007. MEGA 4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599.
    29. Tuomela, M., M. Vikman, A. Hatakka, and M. Itavaara.2000. Biodegradation of lignin in a compost environment:a review Bioresource Technology 72:169-183.
    30. Van der Gucht, K., K. Cottenie, K. Muylaert, N. Vloemans, S. Cousin, S. Declerck, E. Jeppesen, J. M. Conde-Porcuna, K. Schwenk, G. Zwart, H. Degans, W. Vyverman, and L. De Meester.2007. The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proceedings of the National Academy of Sciences of the United States of America 104.
    31.Vassilev, N., and M. Vassileva.2003. Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes. Applied Microbiology and Biotechnology 61:435-440.
    32. Zhang, S. K., X. L. Huo, H. Xu, and Z. J. M.2001. Comparison between several determination methods of available potassium in soils. Journal of Agricultural University of Hebei 24:16-20.
    33.王伟东,刘建斌,牛俊玲,吕育财,崔宗均.2006.堆肥化过程中微生物群落的动态及接菌剂的应用效果.农业工程学报22:148-152.
    34.陈静.2000.含钾岩石资源开发利用及前景预测.化工矿产地质22:58-64.
    1. Azevedo, J. L., W. J. R. Maccheroni, J. O. Pereira, and W. L. Ara.2000. Endophytic microorganisms:a review on insect control and recent advances on tropical plants. Electron. J. Biotechnol.3:15-16.
    2. Bell, C. R., G. A. Dickie, W. L. G. Harvey, and J. W. y. F. Chan,1995, Endophytic bacteria in grapevine. Can. J. Microbiol.41:46-53.
    3. Biswas, D. R.2010. Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato-soybean cropping sequence in an Inceptisol of Indo-Gangetic Plains of India. Nutrient Cycling in Agroecosystems:1-16.
    4. Buss, H. L., A. Liittge, and S. L. Brantley.2007. Etch pit formation on iron silicate surfaces during siderophore-promoted dissolution. Chemical Geology 240:326-342.
    5. Calvaruso, C., M.-P. Turpault, and P. Frey-Klett.2006. Root-Associated Bacteria Contribute to Mineral Weathering and to Mineral Nutrition in Trees:a Budgeting Analysis. Appl. Environ. Microbiol.72:1258-1266.
    6. Caris, C., W. Hordt, H.-J. Hawkins, V. Romheld, and E. George.1998. Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza 8:35-39.
    7. Chen, Y., E. Jurkevitch, E. Bar-Ness, and Y. Hadar.1994. Stability constants of pseudobactin complexes with transition metals. Soil Science Society of America journal 58:390-396.
    8. Cole, J. R., B. Chai, R. J. Farris, Q. Wang, S. A. Kulam, D. M. McGarrell, G M. Garrity, and J. M. Tiedje.2005. The Ribosomal Database Project (RDP-Ⅱ): Sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294-296.
    9. Drever, J. I., and L. L. Stillings.1997. The role of organic acids in mineral weathering. Colloids and Surfaces A:Physicochemical and Engineering Aspects 120:167-181.
    10. Hofte, M., and P. A. H. M. Bakker.2007. Competition for Iron and Induced Systemic Resistance by Siderophores of Plant Growth Promoting Rhizobacteria, p.121-133. In A. Varma and S. B. Chincholkar (ed.), Microbial Siderophores, vol.12. Springer Berlin Heidelberg.
    11. Hallmann, J., A. Quadt-Hallmann, W. F. Mahaffee, and J. W. Kloepper. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol.43:895-914.
    12. Hallmann, J., A. Quadt-Hallmann, R. RodrIguez-Kabana, and J. W. Kloepper.1998. Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biology and Biochemistry 30:925-937.
    13. Hill, T. C. J., K. A. Walsh, J. A. Harris, and B. F. Moffett.2003. Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol 43:1-11.
    14. Hoffland, E., T. W. Kuyper, H. Wallander, C. Plassard, A. A. Gorbushina, K. Haselwandter, S. Holmstrom, R. Landeweert, U. S. Lundstrom, A. Rosling, R. Sen, M. M. Smits, P. A. van Hees, and N. van Breemen.2004. The role of fungi in weathering. Frontiers in Ecology and the Environment 2:258-264.
    15. Hu, X., and G. Boyer.1996. Siderophore-Mediated Aluminum Uptake by Bacillus megaterium ATCC 19213. Appl. Environ. Microbiol.62:4044-4048.
    16. Kloepper, J., J. Leong, M. Teintze, and M. Schroth.1980. Pseudomonas siderophores:A mechanism explaining disease-suppressive soils Current Microbiology 4:317-320.
    17. Kloepper, J. W., J. Leong, M. Teintze, and M. N. Schroth.1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885-886.
    18. Krechel, A., A. Faupel, J. Hallmann, A. Ulrich, and G. Berg.2002. Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can. J. Microbiol.48:772-786.
    19. Kuklinsky-Sobral, J., W. L. Araujo, R. Mendes, I. O. Geraldi, A. A. Pizzirani-Kleiner, and J. L. Azevedo.2004. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology 6:1244-1251.
    20. Lalande, R., N. Bissonnette, D. Coutlee, and H. Antoun.1989. Identification of rhizobacteria from maize and determination of their plant-growth promoting potential. Plant and Soil 115:7-11.
    21. Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, and D. G Higgins.2007. ClustalW and ClustalX version 2. Bioinformatics 23:2947-2948.
    22. Liermann, L. J., B. E. Kalinowski, S. L. Brantley, and J. G. Ferry.2000. Role of bacterial siderophores in dissolution of hornblende. Geochimica et Cosmochimica Acta 64:587-602.
    23. Mahaffee, W. F., and J. W. Kloepper.1997. Temporal Changes in the Bacterial Communities of Soil, Rhizosphere, and Endorhiza Associated with Field-Grown Cucumber (Cucumis sativus L.). Microbial Ecology 34:210-223.
    24. McInroy, J. A., and J. W. Kloepper.1995. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant and Soil 173:337-342.
    25. Nishanth, D., and D. R. Biswas.2008. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum). Bioresource Technology 99:3342-3353.
    26. O'Sullivan, D. J., and F. O'Gara.1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Mol. Biol. Rev. 56:662-676.
    27. Perner, H., P. Schwarz, and E. George.2006. Effect of mycorrhizal inoculation and compost supply on growth and nutrient uptake of young leek plants grown on peat-based substrates. Hortscience 41:628-632.
    28. Pirttila, A. M., H. Pospiech, H. Laukkanen, R. Myllyla, and A. Hohtola. 2005. Seasonal variations in location and population structure of endophytes in buds of Scots pine. Tree Physiology 25:289-297.
    29. Puente, M. E., Y. Bashan, C. Y. Li, and V. K. Lebsky.2004. Microbial Populations and Activities in the Rhizoplane of Rock-Weathering Desert Plants. Ⅰ. Root Colonization and Weathering of Igneous Rocks. Plant Biol.(Stuttg) 6:629-642.
    30. Puente, M. E., C. Y. Li, and Y. Bashan.2004. Microbial Populations and Activities in the Rhizoplane of Rock-Weathering Desert Plants. Ⅱ. Growth Promotion of Cactus Seedlings. Plant Biology 6:643-650.
    31. Rosenblueth, M., and E. Martinez-Romero.2006. Bacterial Endophytes and Their Interactions with Hosts. Molecular Plant-Microbe Interactions 19:827-837.
    32. Ryan, R. P., K. Germaine, A. Franks, D. J. Ryan, and D. N. Dowling.2008. Bacterial endophytes:recent developments and applications. FEMS Microbiology Letters 278:1-9.
    33. Strobel, G., B. Daisy, U. Castillo, and J. Harper.2004. Natural Products from Endophytic Microorganisms ⊥. Journal of Natural Products 67:257-268.
    34. Sturz, A. V.1995. The role of endophytic bacteria during seed piece decay and potato tuberization. Plant and Soil 175:257-263.
    35. Sturz, A. V., and J. Kimpinski.2004. Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant and Soil 262:241-249.
    36. Surette, M. A., A. V. Sturz, R. R. Lada, and J. Nowak.2003. Bacterial endophytes in processing carrots (Daucus carota L. var. sativus):their localization, population density, biodiversity and their effects on plant growth. Plant and Soil 253:381-390.
    37. Taghavi, S., D. van der Lelie, A. Hoffman, Y.-B. Zhang, M. D. Walla, J. Vangronsveld, L. Newman, and S. Monchy.2010. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp.638. PLoS Genet 6:e 1000943.
    38. Tamura, K., J. Dudley, M. Nei, and S. Kumar.2007. MEGA 4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599.
    39. Ulbricht, C., T. Abrams, J. Conquer, D. Costa, J. M. Grimes Serrano, S. Taylor, and M. Varghese.2009. An Evidence-Based Systematic Review of Amaranth (Amaranthus spp.) by the Natural Standard Research Collaboration. Journal of Dietary Supplements 6:390-417.
    40. Wang, S. Y., and S. S. Lin.2002. Composts as soil supplement enhanced plant growth and fruit quality of strawberry. Journal of Plant Nutrition 25:2243-2259.
    41. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane.1991.16S Ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697-703.
    42.王静,盛下放,曹建芳,张树奎,张垠,何琳燕.2009.南京小龙山钾矿区植物根际可培养细菌的遗传多样性分析.微生物学报49:867-873.
    43.沈德龙,冯永君,宋未.2002.内生成团泛菌YS19对水稻乳熟期光合产物在旗叶、穗分配中的影响.自然科学进展12:863-865.
    44.周明,涂书新,孙锦荷,郭智芬.2005.富钾植物籽粒苋(Amaranthus spp.)对土壤矿物钾的吸收利用研究.核农学报19:291-296.
    45.周跃飞,王汝成,陆现彩.2008.玄武岩微生物分解过程中的矿物表面效应.岩石矿物学杂志27:59-66.
    46.徐晓燕,马毅杰.2001.土壤矿物钾的释放及其在植物营养中的意义.土壤通报32:173-176.
    47.刘玮琦,茆振川,杨宇红,谢丙炎.2008.应用16S rRNA基因文库技术分析土壤细菌群落的多样性.微生物学报48:1344-1350.
    48.杨海君,谭周进,肖启明,何可佳.2004.假单胞菌的生物防治作用研究.中国生态农业学报12:158-161.
    49.杨海莲,孙晓璐,王云山.1999.植物促生细菌诱导水稻对白叶枯病抗性的初步研究.植物病理学报29:286-287.
    50.杨海莲,孙晓璐,宋未,王云山.2001.水稻内生阴沟肠杆菌MR12的鉴定及其固氮和防病作用研究.植物病理学报31:92-93.
    51.赵翔,陈绍兴,谢志雄,沈萍.2006.高产铁载体荧光假单胞菌Pseudomonas fluorescens sp-f的筛选鉴定及其铁载体特性研究.微生物学报46:691-695.
    52.赵飞,黄智,何琳燕,王鹏,盛下放.2010.不同风化程度钾长石表面矿物分解细菌的筛选及遗传多样性.微生物学报50:647-653.
    53.邹文欣,谭仁祥.2001.植物内生菌研究新进展.植物学报43:881-892.
    54.韩继刚,宋未.2004.植物内生细菌研究进展及其应用潜力.自然科学进展14:374-379.
    1. Amann, R., W. Ludwig, and K. Schleifer.1995. Phylogenctic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143-169.
    2. Banfield, J. F., W. W. Barker, S. A. Welch, and A. Taunton.1999. Biological impact on mineral dissolution:Application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences of the United States of America 96:3404-3411.
    3. Basker, A., J. H. Kirkman, and A. N. Macgregor.1994. Changes in potassium availability and other soil properties due to soil ingestion by earthworms. Biol Fert Soils 17:154-158.
    4. Basker, A., A. N. Macgregor, and J. H. Kirkman.1992. Influence of soil ingestion by earthworms on the availability of potassium in soil:An incubation experiment Biol Fert Soils 14:300-303.
    5. Biswas, D. R.2010. Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato-soybean cropping sequence in an Inceptisol of Indo-Gangetic Plains of India. Nutrient Cycling in Agroecosystems:1-16.
    6. Blow, N.2008. Metagenomics:Exploring unseen communities. Nature 453:687-690.
    7. Buss, H. L., A. Luttge, and S. L. Brantley.2007. Etch pit formation on iron silicate surfaces during siderophore-promoted dissolution. Chemical Geology 240:326-342.
    8. Calvaruso, C., M.-P. Turpault, and P. Frey-Klett.2006. Root-Associated Bacteria Contribute to Mineral Weathering and to Mineral Nutrition in Trees:a Budgeting Analysis. Appl. Environ. Microbiol.72:1258-1266.
    9. Carpenter, D., M. E. Hodson, P. Eggleton, and C. Kirk.2007. Earthworm induced mineral weathering:Preliminary results. Eur J Soil Biol 43:S176-S183.
    10. Carpenter, D., M. E. Hodson, P. Eggleton, and C. Kirk.2008. The role of earthworm communities in soil mineral weathering:a field experiment. Mineral Mag 72:33-36.
    11.Dahllof, I., H. Baillie, and S. Kjelleberg.2000. rpoB-Based Microbial Community Analysis Avoids Limitations Inherent in 16S rRNA Gene Intraspecies Heterogeneity. Appl. Environ. Microbiol.66:3376-3380.
    12. Edwards, C. A., and P. J. Bohlen.1996. Biology and Ecology of Earthworm. Chapman & Hall, London.
    13. Ercolini, D.2004. PCR-DGGE fingerprinting:novel strategies for detection of microbes in food. Journal of Microbiological Methods 56:297-314.
    14. Hall, K., J. M. Arocena, J. Boelhouwers, and Z. Liping.2005. The influence of aspect on the biological weathering of granites:observations from the Kunlun Mountains, China. Geomorphology 67:171-188.
    15. Hameeda, B., G Harini, O. P. Rupela, S. P. Wani, and G. Reddy.2008. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macro fauna. Microbiological Research 163:234-242.
    16. Head, I. M., J. R. Saunders, and R. W. Pickup.1998. Microbial Evolution, Diversity, and Ecology:A Decade of Ribosomal RNA Analysis of Uncultivated Microorganisms. Microbial Ecology 35:1-21.
    17. Hu, X., and G. Boyer.1996. Siderophore-Mediated Aluminum Uptake by Bacillus megaterium ATCC 19213. Appl. Environ. Microbiol.62:4044-4048.
    18. Kim, J., H. Dong, J. Seabaugh, S. W. Newell, and D. D. Eberl.2004. Role of Microbes in the Smectite-to-Illite Reaction. Science 303:830-832.
    19. Lee, D.-G, J. Jeon, M. Jang, N. Kim, J. Lee, J.-H. Lee, S.-J. Kim, G-D. Kim, and S.-H. Lee.2007. Screening and characterization of a novel fibrinolytic metalloprotease from a metagenomic library. Biotechnology Letters 29:465-472.
    20. MACGregor, S. T., F. C. Miller, K. M. Psarianos, and M. S. Finstein.1981. Composting Process Control Based on Interaction Between Microbial Heat Output and Temperature. Appl. Environ. Microbiol.41:1321-1330.
    21.Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology 2:317-322.
    22. Muyzer, G, E. C. Waal, and A. G Uitterlinden.1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59:695-700.
    23. Needham, S. J., R. H. Worden, and D. Mcllroy.2004. Animal-sediment interactions:the effect of ingestion and excretion by worms on mineralogy. Biogeosciences 1:113-121.
    24. Nishanth, D., and D. R. Biswas.2008. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum). Bioresource Technology 99:3342-3353.
    25. Qin, J., R. Li, J. Raes, M. Arumugam, K. S. Burgdorf, C. Manichanh, T. Nielsen, N. Pons, F. Levenez, T. Yamada, D. R. Mende, J. Li, J. Xu, S. Li, D. Li, J. Cao, B. Wang, H. Liang, H. Zheng, Y. Xie, J. Tap, P. Lepage, M. Bertalan, J.-M. Batto, T. Hansen, D. Le Paslier, A. Linneberg, H. B. Nielsen, E. Pelletier, P. Renault, T. Sicheritz-Ponten, K. Turner, H. Zhu, C. Yu, S. Li, M. Jian, Y. Zhou, Y. Li, X. Zhang, S. Li, N. Qin, H. Yang, J. Wang, S. Brunak, J. Dore, F. Guarner, K. Kristiansen, O. Pedersen, J. Parkhill, J. Weissenbach, P. Bork, S. D. Ehrlich, and J. Wang.2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59-65.
    26. Raes, J., K. U. Foerstner, and P. Bork.2007. Get the most out of your metagenome:computational analysis of environmental sequence data. Current Opinion in Microbiology 10:490-498.
    27. Rogers, J. R., and P. C. Bennett.2004. Mineral stimulation of subsurface microorganisms:release of limiting nutrients from silicates. Chemical Geology 203:91-108.
    28. Schmeisser, C., H. Steele, and W. Streit.2007. Metagenomics, biotechnology with non-culturable microbes. Applied Microbiology and Biotechnology 75:955-962.
    29. Sheng, X. F.2005. Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biology and Biochemistry 37:1918-1922.
    30. Sheng, X. F., and Huang W. Y.2002. Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedologica Sinica 139:863-871.
    31. Tirawongsaroj, P., R. Sriprang, P. Harnpicharnchai, T. Thongaram, V. Charapreda, S. Tanapongpipat, K. Pootanakit, and L. Eurwilaichitr.2008. Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. Journal of Biotechnology 133:42-49.
    32. Tringe, S. G., and E. M. Rubin.2005. Metagenomics:DNA sequencing of environmental samples. Nat Rev Genet 6:805-814.
    33. Uroz, S., C. Calvaruso, M.-P. Turpault, and P. Frey-Klett.2009. Mineral weathering by bacteria:ecology, actors and mechanisms. Trends in Microbiology 17:378-387.
    34. von Mering, C., P. Hugenholtz, J. Raes, S. G. Tringe, T. Doerks, L. J. Jensen, N. Ward, and P. Bork.2007. Quantitative Phylogenetic Assessment of Microbial Communities in Diverse Environments. Science 315:1126-1130.
    35. Welch, S. A., W. W. Barker, and J. F. Barfield.1999. Microbial extracellular polysaccharides and plagioclase dissolution. Geochimica et Cosmochimica Acta 63:1405-1419.
    36.李定旭.2003.硅酸盐细菌在苹果上的应用效果.果树学报20:64-66.
    37.李莎,李福春,程良娟.2006.生物风化作用研究进展.矿产与地质20:577-582.
    38.张胜,张翠石,张石,李政红,张明.2005.地质微生物地球化学作用的意义 与展望.地质通报24:1027-1031.
    39.许玫英,孙国萍,郭俊.2010.微生物生态系统代谢网络研究进展.微生物学报50:438-443.
    40.赵飞,盛下放,黄智,何琳燕.2008.山东地区钾矿物溶解细菌的分离及生物学特性.生物多样性16:593-600.
    41.连宾,傅平秋,莫德明,刘丛强.2002.硅酸盐细菌解钾作用机理的综合效应.矿物学报22:179-183.
    42.连宾,陈烨,朱立军,杨瑞东.2008.微生物对碳酸盐岩的风化作用.地学前缘15:90-99.