内生菌分离筛选及其对甜菜促生增糖效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜菜是世界制糖工业的主要原料之一,内生菌具有增强甜菜光合作用能力,提高其抗逆性,延缓植株衰老,防治甜菜主要病害,可促进甜菜增产,改进品质等特点。因此,利用甜菜内生菌筛选促生、防病、增产菌株的潜力巨大。内生菌对于提高甜菜栽培水平,增强甜菜代谢的调控能力,以及对农业的可持续发展,都具有十分重要的意义。本论文从甜菜内生菌中筛选出对甜菜具有促进生长、防治病害、增加产量的菌株,并利用表形与16S rDNA分子特征进行鉴定,同时从激素水平、拮抗作用、营养元素吸收、光合作用、氮糖代谢方面,研究了甜菜内生菌的增产机理。其结果如下:
     采用选择性培养基,从来自新疆南北甜菜样品中分离到406株内生菌。对分离到的380株细菌和放线菌进行了菌落形态和培养特征观察、生理生化特性测定和16S rDNA序列分析;对26株真菌进行了菌落形态、培养特征观察和ITS序列分析。结果显示甜菜内生菌共分为12个类群,细菌7个属,放线菌2个属,真菌3个属。本研究所选择的分离方法获得的内生菌,细菌占绝对优势。
     通过种子发芽试验、麦芽鞘切断伸长测定,从甜菜内生菌筛选到3株甜菜促生菌株PG-1 (Bacillus flexus)、PG-2 (Pseudomonas plecoglossicida)、PG-3 (Chryseobacterium indologenes)。盆栽试验表明三株内生菌对甜菜有很好的促生作用。对3株促生菌从激素水平、溶磷能力、营养元素吸收、定殖等探索了促生机理,结果表明三株促生菌定殖于甜菜,提高其激素水平与营养元素吸收。三株促生菌不同处理促进甜菜产量的增长,其中菌株PG-3作用较好。PG-3处理后,与对照相比,甜菜体内四种植物激素(IAA、GA、ZR和ABA)含量分别增加了1.60、23.05、0.54和1.03倍;营养元素N、P、K、Mg和蛋白质含量分别提高了0.18、0.51、0.08、0.33和0.60倍。内生菌定殖过程是-个由进入——繁殖—稳定组成的内生菌与宿主和谐发展的过程。
     通过甜菜病原菌分离鉴定,初步查明甜菜根腐病、褐斑病、立枯病、蛇眼病病原菌分别为尖孢镰孢(Forsur oxysporum)、立枯丝核菌(Rhizoctonia solani)、甜菜生尾孢(Cercospora beticola)、甜菜茎点霉(Phoma betae)。通过平板对峙试验,筛选出甜菜主要病害拮抗内生菌45株,其中菌株AT-1、AT-2和AT-3对甜菜主要病原菌抑菌圈半径较大。定殖试验表明,3株拮抗内生菌能稳定定殖于甜菜根部。通过菌落形态、培养特征、生化特性和16S rDNA序列分析,菌株AT-1鉴定为多粘芽孢杆菌(Paenibacillus polymyxa (EU563233)),AT-2为弯曲芽孢杆菌(Bacillus flexus (EU594560)),AT-3为寡养单孢菌(Stenotrophomonas sp. (EU594562))。田间防病试验表明;3株拮抗内生菌对甜菜主要病害均有很好的防治效果。
     研究了内生菌PG-1、PG-2、PG-3对甜菜叶片光合特性及产量形成的影响。结果表明:接种内生菌能显著促进甜菜光合作用,其中PG-3处理促进光合作用能力较强,其叶片净光合速率(Pn)、气孔限制值(Ls)、蒸腾速率(Tr)的平均值分别提高了33.33%、21.43%和12.31%;叶片胞间CO2浓度(Ci)平均值降低了7.21%;最大光化学效率(Fv/Fm)、实际光化学效率(φPSⅡ)降低,而光化学猝灭系数(qp)、非光化学猝灭系数(qN)升高。各处理Pn随着光照强度(PAR)的增加呈先升后降。生物学产量和含糖率分别提高25.63%和17.46%。表明内生菌不仅影响甜菜光合参数,而且对于甜菜产量和品质的提高具有明显的促进作用。
     采用内生菌PG-1、PG-2、PG-3浸种、喷叶及灌根处理方法,调查其对甜菜栽培品种KWS2409的主要农艺性状及对甜菜氮、糖代谢关键酶即硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、蔗糖合酶(SS)和蔗糖磷酸合酶(SPS)活性的影响。结果表明,内生菌对甜菜的含糖量有明显的提高作用,其中以PG-3灌根处理效果最好,其叶鲜重、叶绿素含量、单根重、含糖率和产糖量的平均值分别提高了16.7%、55.3%、11.8%、22.1%和27.9%。在整个生育期,内生菌显著提高了氮糖代谢酶活性,其中NR和GS活力分别呈双峰值和单峰值变化,而SS和GS活力呈单峰值变化,后期根部SS合成活力明显高于分解方向活力,生育前期SPS活力高于后期。叶丛形成期达到最高值,说明NR、GS、SS和SPS活性的增强是甜菜含糖量升高的主要生理原因。
Sugar beet is a main raw material for the sugar industry in the world. Endophyte can be in favor of the enhancement of leaf photosynthetic capacity, increasing stress resistance, delaying sugar beet senescence, prevention and control of main diseases of sugar beet, increasing yield and improving quality of the beet plants. Isolated endophytic bacteria has great potential for growth promotion, disease prevention and yield increasing of sugar beet, and is very significant in enhancing the management of beet cultivation, regulation of beet metablism and sustainable development of agriculture in Xinjiang.
     Endophytes, having characteristics of growth promotion, disease prevention and yield increasing, were isolated from sugar beet and identify by morphological and 16SrDNA sequence analysis. Endophytic bacteria yield-increasing mechanism involved in phytohormone levels, antagonism, nutrient absorption, photosynthesis, nitrogen and glucose metabolisms were investigated. The results were as follows:
     Using different separation medium and isolation methods,406 strains of endophytes were isolated from sugar beet materials in Xinjiang by surface disinfection using ethanol and mercuric chloride.380 bacteria and actinomycetes were identified by colony morphology, cultural characteristics, physiological and biochemical characteristics,16S ribosomal DNA sequence analysis; 26 fungus were identified by colony morphology, cultural characteristics, ITS sequence analysis. The results showed that endophytes in sugar beet were divided into 12 groups, as 7 genus bacteria,2 genus actinomycetes,3 genus fungus, separately. Bacteria were predominate in endophytes isolated from in beet.
     Three endophtic bacteria strain PG-1 (Bacillus flexus)、PG-2 (Pseudomonas plecoglossicida)、PG-3 (Chryseobacterium indologenes) isloated from beet plant has remarkable growth promoting effect. It was test by germination, wheat coleoptile growth, pot experiments experiments. Improving growth metabolisms of three strains were researched from phytohormone levels, phosphorus solubiliziog ability, nutrient absorption and colonization. The results showed that three improving growth endophtic bacteria could colonize within sugar beet, and enhance phytohormone levels and nutrient absorption. Three strains could increase yield and quality of beet, and best one was PG-3 among 3 strains. The quantity of four kinds of phytohormone (IAA、GA、ZR、ABA) in sugar beet were bosted 1.60、23.05、0.54、1.03 times than control after the strain PG-3 inculated sugar beet. The content of N,P,K,Mg elements and protein of in PG-3 increased by 0.18、0.51、0.08、0.33 and 0.60 times compared to CK, respectively. Endophyte colonization was composed of entering, reproduce and stabilization, which was a harmonious development process between endophyte and host
     Based on the characteristics of pathogens identified, the beet root rot, seedling blight, brown patch and snake-eye disease are caused by Fusarium oxysporum, Rhizoctonia solan, Cercospora beticola and Phoma betae separately.45 endophytes strains were screened against the pathogens of beet by plate confrontation test. Three endophytic bacteria strains, AT-1, AT-2 and AT-3, showed relatively strong antagonistic against the pathogens. Three antagonistic strains could colonized into root of sugar beet by colonizing test. Strain AT-1 was identified as Paenibacillus polymyxa, while strains AT-2 and AT-3 were as Bacillus flexus and Stenotrophomonas sp. by their morphological, physiological and biochemical characteristics. Three antagonistic strains showed significantly control effect against the pathogens in field trail.
     The effects of endophytic PG-1, PG-2, PG-3 on photosynthetic parameters and yield of sugar beet were investigated. The results showed that three strains, PG-1, PG-2, PG-3 could obviously promote the photosynthesis of sugar beet, in which the net photosynthetic rate (Pn), stomatal limitation (Ls), transpiration rate (Tr) of sugar beet increased significantly (P<0.05) by 33.33%、21.43% and 12.31%, respectively, while stomatal intercellular CO2 concentration (Ci) decreased significantly (P<0.05) by 7.21%, maximum photochemical capacity (Fv/Fm) and quantum yield of PSⅡ(ΦPSⅡ) increased, while photochemical quenching (qP) and non-photochemical quenching (qN) decreased. It was shown that with the increasing of photo flux density, the net photosynthetic rate (Pn) increased at first and then decreased. The strain PG-3 could also increase the yield and the quality of beet, which biomass and sugar content in beet increased significantly (P<0.05) by 25.63% and 17.46%, respectively. It was concluded that the strain PG-3 not only affected photosynthetic parameters, but also promoted the yield and the quality of beet.
     We investigated the agronomic traits and determined the activity of key enzymes in sugar and nitrogen metabolisms in beet leaf and root with treatments of by using three strains, PG-1, PG-2, PG-3 solution seed soaking, leaf spraying and root watering. The results showed that the strains obviously promoted growth of beet seedlings, the effect with the better in root watering treatment than in others. The leaf fresh weight, content of chlorophyll, fresh weight per root, sugar content and sugar yield of beet increased significantly (P<0.05) by 16.7%, 55.3%,11.8%,22.1% and 27.9%, respectively; the three strains enhanced evidently the activities of key enzymes in sugar and nitrogen metabolisms of beet during whole growth period. The changes of activities of nitrate reductase (NR) and glutamina synthetase (GS) presented the changes of M-shape and parabola shape, respectively. The changes of activities of sucrose synthase (SS) and sucrose phosphate synthase (SPS) in beet displayed the single peak changes. The synthesis activity was much higher than the decomposition activity for SS in roots of beet at late growth stage. The activity of SPS was higher at early growth stage than at late growth stage, and the activity of SPS was the highest during phyllome formation period. It was concluded that the strains not only enhanced activities of key enzymes in sugar and nitrogen metabolisms of beet, but also promoted the growth, yield and sugar accumulation of beet.
引文
[1]李文生,阎品,阿拜都拉,等-新疆塔城盆地甜菜含糖率降低原因及对策-中国糖料,2002,(1):42-44
    [2]Hawksworth D L, Kirk P M, Sutton B C, et al, eds. Ainsworth and Bisby's dictionary of Fungi (8th edition).CAB International. U.K.:Cambridge university Press.1995.
    [3]De Bary A. Morphologie und Physiologic der pilze, Flechten und Myxomyceten. Engelmann Leipzig. 1866,1-316.
    [4]郭良栋-内生真菌研究进展.菌物系统.2001,20(1):148-152.
    [5]Carroll G C. The biology of endophytism in plants with particular reference to woody plants. In: Fokkema N J, van den Heuvel J eds. Microbiology of the phyllosphere. Cambridge U.K.:Cambridge University Press.1986,205-222
    [6]Kleopper J W, Schipper B, Bakker P A H M. Proposed elimination of the term endorhizosphere. Phytopathol,1992,82:726-727.
    [7]Petrini O. Fungal endophytes of tree leaves. In:Andrews J H. Hirano S S.eds. Mierobial Ecology of leaves. NewYork, Springer-Verlag.1991,179-197.
    [8]Wilso D. Endophyte-the evolution of a term, and clarification of its use and definition. Oikos,1995,73: 274-276.
    [9]Vogl A.Mehi und die anderen mehl produkte der cerealien und leguminosen. Zeitschrift Nahrungsmittle untersuchung, Hgg. Warlenkunde,1988,21:25-29.
    [10]Perotti R. On the limits of biological enquiry in soil science. Pro. Intern. Soc, Soil.1926,2:146-161.
    [11]Jacobs M J, William M B, David A G. Enumeration, location, characterization of endophytic bacteria within sugar beet roots. Canadian Journal of Botany-Revue Canadienne de Botanique,1985,63, 1262-1265.
    [12]Sieber T N. Endophytic fungi in twigs of healthy and diseased Norway spruce and white fir. Mycol Res,1989,92:322-326.
    [13]Vujanvic V, St-Amaud M. Leptomelanconium abietis sp.nov. on needles of Abies balsamea. Mycologia,2001,93:212-215.
    [14]Sieber Canavesi F, Petrini O, Sieber T N. Endophytic Leptostroma species on Picea abies, Abies alba and Abies balsamea:a cultural, biochemical, and numerical study. Mycologia,1991,83:89-96.
    [15]Kowalski T, Kehr R D. Endophytic fungal colonization of branch bases in several forest tree species. Sydowia,1992,44:137-168.
    [16]Bruehl G W, Klein R E. An endophyte of achnatherum inebrians, an intoxicating grass of northwest China. Mycologia,1994,86:773-776.
    [17]White Jr J F, Chambless D A. Endophyte- host associations in forage grasses: Ⅹ Ⅴ. Clustering of stromata- bearing individuals of Agrostis hiemalis in fected by EpichloAtyphina. Amer J Bot,1991, 78:527-533.
    [18]White Jr J F. Endophyte- host associations in forage grasses:Ⅹ Ⅹ . Structural and reproductive studies of EpichloAamarillans sp. nov. and comparis onto E. typhina. Mycologia,1994,86:571-580.
    [19]White Jr J F, Halisky P H, Sun S, et al. Endophyte-host ass ociations in grasses:Ⅹ Ⅵ. Patterns of endophyte distribution in species of the tribe Agrostideae. Amer J Bot,1992,79:472-477.
    [20]Sieber T N, Sieber-Canavesi F, Petrini O, et al. Characterization of canadian and European melanconium from some alnus species by morphological, cultural, and biochemical studies. Can J Bot, 1991,69:2170-2176.
    [21]Sieber T N, Sieber-Canavesi F, Dorworth C E. Endophytic fungi of red alder(Alnus rubra) leaves and twigs in British Columbia (Canada). Can J Bot,1991,69:407-411.
    [22]Fisher P J, Petrini O, Webster J. Aquatic hyphomycetes and other fungi in living aquatic and terrestrial roots of Alnus glutinosa. Mycol Res,1991,95:543-547.
    [23]Rizzo I, Varsavky E, Haidukowski M, et al. Macrocyclic trichothecenes in Baccharis coridi folia plants and endophytes aod Baccharis artemisioides plants. Toxicon,1997,35:753-757.
    [24]Helander M L, Neuv onon S, Sieber T N, et al. Simulated acid rain affected birch leaf endophyte populations. Microbial Ecol,1993,26:227-234.
    [25]Kowalski T, Holdenrieder O. Prosthemium asterosporum sp.nov., a coelomycete on twigs of Betula pendula. Mycol Res,1996,100:1243-1246.
    [26]Bareng O N, Sieber T N, Holdenrieder O. Diversity of endophytic mycobiota in leaves and twigs of pubescent birch (Betula pubescens). Sydowia,2000,52:305-320.
    [27]Bissegger M, Sieber T N. Assemblages of endophytic fungi in coppice shoots of Castanea sativa. Mycologia,1994,86:648-655.
    [28]Bills G F, Polishook J D. A new species of Mycoleptodiscus from living foliage of Chamaecyparis thyoides. Mycotaxoo,1992,43:453-460.
    [29]Wright J G, Johnson G I, Hyde K D. Studies on the endophytic mycota of Citrus spp. ACIAR Proceedings Series,1998,80:167-173.
    [30]Raviraja N S, Sridhar K R, Barlocher F. Endophytic aquatic hyphomycetes of roots of plantation crops and ferns fromlndia. Sydowia,1996,48:152-160.
    [31]Freeman S, Rodriguez R J, Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist.Science,1993,260:75-78.
    [32]Absar A, Janardhanan K K, Verma H N, et al. In vitro growth of Balansia sclerotica (Pat.) Hohn., an endophyte causing grassy-shoot disease of lemongrass. Kavaka,1994,19:48-52.
    [33]Vujanovic V, St-Amaud M, Barabe D. Phialocephala viclorinii sp. nov., endophyte of Cypripedium parvi florum. Mycologia,2000,92:571-576.
    [34]Morgan-Jones G, White J F Jr, Piontelli E L. Endophyte-host associations in forage grasses:Ⅲ. Acremonium chilense new species, an undescribed endophyte occurring in Dactylis glomerata in Chile. Mycotaxon,1990,39:441-454.
    [35]Smith H, Wingfield M J, Petrini O. Botryosphaeria dothidea endophytic in Eucalyptus grandis and Eucalyptus nitens in South Africa. Forest Ecol Management,1996,89:189-195.
    [36]Rodrigues K F, Leuchtmann A, Petrini O. Endophytic species of Xylaria:cultural and is ozymic studies. Sydowia,1993,45:116-138.
    [37]Rodrigues K F, Samuels G J. Letendraeopsis palmarum, a new genus and species of loculoascomycetes. Mycologia,1994,86:254-258.
    [38]Rodrigues K. F. The foliar fungal endophytes of the Amazonian palm Euterpe oleracea. Mycologia, 1994,86:376-385.
    [39]Viret O, Scheideggar C, Petrini O. In fection of beech leaves (Fagus sylvatica) by the endophyte Discula umbrinella (teleomorph:Agiognomonia errabunda):low-temperature scanning electron microscopy studies. Can J Bot,1993,71:1520-1527.
    [40]Strobel G A, Li J Y, Ford E. Pestalotiopsis jesteri sp.nov., an endophyte from Fragraea bodenii, a common plant in the southern highlands of Papua New Guinea. Mycotaxon,2000,76:257-266.
    [41]Griffith G S, Boddy L. Fungal decomposition of attached angiosperm twigs:Ⅰ. Decay community development in ash, beech and oak. New Phytol,1990,116:407-416.
    [42]Christensen M J, Latch G C M. Variation within is olations of Acremonium endophytes (Acremonium coenophialum andpossibly Acremonium typhinum) from tall fescue (Festuca arundinaceae). Mycol Res,1991,95:918-923.
    [43]White J F Jr, Marrow A C, Morgan-Jones G. Endophyte-host ass ociations in forage grasses Ⅹ Ⅱ. A fungal endophyte or Trichachne insularis belonging to Pseudocercosporella. Mycologia,1990,82: 218-226.
    [44]White J F Jr, Owens J R. Stromal development and mating system of Balansia epichloe, a leaf-colonizing endophyte of warm-seas on grasses. Appl Environ Microbiol,1992,58:513-519.
    [45]White J F Jr, Sharp LT, Martin T I, et al. Endophyte-host associations in grasses. Ⅹ Ⅹ Ⅰ. Studies on the structure and development of Balansia obtecta. Mycologia,1995,87:172-181.
    [46]White J F Jr, Drake T E, Martin T I. Endophyte- host ass ociations in grasses. Ⅹ Ⅹ Ⅲ. A study of two species of Balansia that form stromata on nodes of grasses. Mycologia,1996,88:89-97.
    [47]Wilson A D, Clement S L, Kaiser W J, et al. First report of clavicipitaceous anamorphic endophytes in Hordeum species. Plant Dis,1991,75:215.
    [48]Wilson A D, Clement S L, Kaiser W J. Survey and detection of endophytic fungi in Lolium germ plasm by direct staining and aphid assay. Plant Dis,1991,75:169-173.
    [49]Bargmann C, Schonbeck F. Acremonium kiliense as inducer of resistance to wilt diseases on tomatoes. J Plant Dis Prot,1992,99:266-272.
    [50]Rist D L, Rosenberger D A. A storage decay of apple fruit caused by Aureobasidium pullulans. Plant Dis,1995,79:425.
    [51]Johnson G I, Mead A J, Cooke A W, et al. Stem-end rot diseases of tropical fruit- mode of in fection in mango, and prospects for control. ACIAR proceedings,1994, (58):72-76.
    [52]Lodge D J, Fisher P J, Sutton B C. Endophytic fungi of Manilkara bidentata leaves in Puerto Rico. Mycologia,1996,88:733-738.
    [53]Stanley S J. Observations on the seasonal occurrence of marine endophytic and parasitic fungi. Can J Bot,1992,70:2089-2096.
    [54]Smith C S, Chand T, Harris R F, Andrews J H. Colonization of a submersed aquatic plant, Eurasian water mil foil Myriophyllum spicatum, by fungi under controlled conditions. Appl Environ Microbiol, 1989,55:2326-2332.
    [55]Fisher P J, Petrini O. Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.). New Phytol,1992,122:137-143.
    [56]Suske J, Acker G. Identification of endophytic hyphae of Lophodermium piceae in tissues of green, symptomless Norway spruce needles by immunoelectron microscopy. Can J Bot,1989,67: 1768-1774.
    [57]Barklund P, Kowalski T. Endophytic fungi in branches of Norway spruce with particular reference to Tryblidiopsis pinastri. Can J Bot,1996,74:673-678.
    [58]Solheim H, Capretti P. Occurrence of the Norway spruce needle endophytes Lophodermium piceae and Tiarosporella parca at the permanent plots of the Norwegian monitoring programme for forest damage. Proceedings of a Joint Meeting of the IUFRO Working Parties S2.06.02 and S2.06.04, Vallombrosa, Italy,1995.17-22.
    [59]Sridhar K R, Barlocher F. Endophytic aquatic hyphomycetes of roots of spruce, birch and maple. Mycol Res,1992,96:305-308.
    [60]Johns on J A, Whitney N J. Isolation of fungal endophytes from black spruce (Picea mariana) dormant buds and needles from New Brunswick, Canada. Can J Bot,1992,70:1754-1757.
    [61]Magan N, Smith M K. Isolation of the endophytes Lophodermium piceae and Rhizosphaera kalkhoffii from sitka spruce needles in poor and good growth sites and in vitro effects of environmental factors. Phyton,1996,36:103-110.
    [62]Stanosz G R, Smith D R, Guthmiller M A, et al. Persistence of sphaeropsis sapinea on or in asymptomatic shoots of red and Jack pine. Mycologia,1997,89:525-530.
    [63]Smith H, Wingfield M J, Crous P W, et al. Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa. South Afric J Bot,1996,62:86-88.
    [64]Wu W, Sutton B C, Gange A C. Dactylaria endophytica sp. nov., an endophyte from leaves of Prunus lusitanica. Mycol Res,1996,100:524-526.
    [65]Gabel A, Studt R, Metz S. Effect of Cryptomycina pteridis on Pteridium aquilinum. Mycologia,1996, 88:635-641.
    [66]Petrini O, Fisher P J, Petrini L E. Fungal endophytes of bracken (Pteridium aquilinum) with some reflections on their use in biological control. Sydowia,1992,44:282-293.
    [67]Wilson D, Barr M E, Faeth S H. Ecology and description of a new species of ophiognomonia endophytic in the leaves of quercus emoryi. Mycologia,1997,89:537-546.
    [66]Wilson D, Carroll G C. In fection studies of Discula quercina, an endophyte of quercus garryana. Mycologia,1994,86:635-647.
    [68]Halmschlager E, Butin H, Donaubauer E. Endophytic fungi in leaves and twigs of quercus petraea. Eur J For Pathol,1993,23:51-63.
    [69]Warcup J H. The rhizoctonia endophytes of rhizanthella (Orchidaceae). Mycol Res,1991,95: 656-659.
    [70]Okane I, Nakagiri A, Ito T. Discostroma tricellulare, a new endophytic ascomycete with a Sematosporium anamorph isolated from Rhododendron. Can J Bot,1996,74:1338-1344.
    [71]Petrini O, Fisher P J. Occurrence of fungal endophytes in twigs of salix fragilis and quercus robur. Mycol Res,1990,94:1077-1080.
    [72]Fernando A A, Currah R S. A comparative study of the effects of the root endophytes leptodontidium orchidicola and phialocephala fortinii (Fungi Imper fecti) on the growth of some subalpine plants in culture. Can J Bot,1996,74:1071-1078.
    [73]Espinosa-Garcia F J, Langenheim J H. The endophytic fungal community in leaves of a coastal redwood population:Diversity and spatial patterns. New Pfytol,1990,116:89-98.
    [74]Rollinger J L, Langenheim J H. Geographic survey of fungal endophyte community composition in leaves of coastal redwood. Mycologia,1993,85:149-156.
    [75]Kaiser W J, Bruehl G W, Davitt C M, et al Acremonium is olates from stiparobusta. Mycologia,1996, 88:539-547.
    [76]Li J Y, Strobel G, Sidhu R, el al. Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiology,1996,142:2223-2226.
    [77]Pulici M, Sugawara F, Koshino H, el al. Metabolites of Pestalotiopsis spp., Endophytic fungi of Taxus brevifolia. Phytochemistry,1997,46:313-319.
    [78]Strobel G A, Stierle A, Stierle D, et al. Taxomyces andreanae new genus new species, a proposed new tax on for a bulbilli ferous hyphomycete associated with pacific yew(Taxus trevi folia). Mycotaxon, 1993,47:71-80.
    [79]Wang J, Li G, Lu H, et al. Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol Lett,2000,193:249-253.
    [80]Yang X S, Strobel G, Stierle A, et al. A fungal endophyte- tree relationship:Phoma sp. In Taxus wallachiana. Plant Sci,1994,102:1-9.
    [81]Bashyal B, Li J Y, Strobel G, et al. Seimatoantlerium nepalense, an endophytic taxol producing coelomycete from Himalayan yew (Taxus wallachiana). Mycotaxon,1999,72:33-42.
    [82]Li J Y, Sidhu R S, Ford E J, et al. The induction of taxol production in the endophytic fungus-Periconia sp. from Torreya grandi folia. J Ind Micribiol Biotechnol,1998,20:259-264.
    [83]Lee J C, Yang X S, Schwartz M, el al. The relationship between an endangered north American tree and an endophytic fungus. Chem Biol,1995,2:721-727.
    [84]Mauseth J D. Morphogenesis in a highly reduced plant:the endophyte of Tristerix aphyllus (Loranthaceae). Bot Gaz,1990,151:348-353.
    [85]Bishop D L, Levine H G, Kropp B R, et al. Seedbome fungal contamination:consequences in space-grown wheat. Phytopathology,1997,87:1125-1133.
    [86]Bayman P, Lebron L L, Tremblay R L, et al. Variation in endophytic fungi from roots and leaves of Lepanthes(Orchidaceae). New Phytol,1997,135:143-149.
    [87]Dalpe Y, Litten W, Sigler L. Scytalidium vaccinii sp. nov., an ericoid endophyte of Vaccinium angusti folium roots. Mycotaxon,1989,35:371-378.
    [88]Patil S D, Memane S A, Kondle B K. Occurrence of seed-bome fungi of green gram. J Maharashtra Agric Univ,1990,15:44-45.
    [89]Mostert L, Crous P W, Petrini O. Endophytic fungi ass ociated with shoots and leaves of Vitis vini fera, with speci fic reference to the Phomopsis viticola complex. Sydowia,2000,52:46-58.
    [90]Strobel G A, Hess W M, Li J Y, et al. Pestalotiopsis guepinii, a taxol-producing endophyte of the Wollemi pine, Wollemia nobilis. Aust J Bot,1997,45:1073-1082.
    [91]Verma S, Varma A, Rexer K H, et al. Piriforospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia,1998,90:896-903.
    [92]Fisher P J, Petrini O, Scott H M L. The distribution of s ome fungal and bacterial endophytes in maize (Zea mays L.). New Phytol,1992,122:299-305.
    [93]Yates I E, Bacon C W, Hinton D M. Effects of endophytic in fection by Fusarium monili forme on com growth and cellular morphology. Plant Dis,1997,81:723-728.
    [94]Gardner J M, Feldman A W, Zablotowicz R M. Identity and behavior of xylem- residing bacteria in rough lemon of Florida citrus trees. Appl Environ Microbiol,43:1335-1342.
    [95]Jimenez S T, Fuentes R L E, Tapia H A, et al. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria. Appl Environ Microbiol,1997,63: 3676-3683.
    [96]Samish Z, Etinger-Tulczynska R, Bick M. The microflora within the tissue of fruits and vegetables. J Food Sci,1963,28:259-266.
    [97]Misaghi I J, Donndelinger C R. Endophytic bacteria in symptom-free cotton plants. Phytopathology, 1990,80:808-811.
    [98]Mclnroy J A, Kloepper J W. Survey of indigenous bacteria endophytes from cotton and sweet com. Plant Soil,1995,173:337-342.
    [99]Gagne S, Richard C, Rousseau H, et al. Xylem-residing bacteria in alfalfa roots. Can J Microbiol, 1987,33:996-1000.
    [100]Dong Z, Canny M J, Mccully M E, et al. A nitrogen-fixing endophyte of sugarcane stems. Plant Physiol,1994,105:1139-1147.
    [101]Baldani J I, Pot B, Kirchhof G, et al. Emended description of Herbaspirillum, inclusion of Pseudomooas rubrisubalbicans, a milk plant pathogen, as herbaspirillum rubrisubalbicans comb. nov.,and classi fication of a group of clinical isolates (EF group 1) as Herbaspirillum species. Int J Syst Bacteriol,1996,46:802-810.
    [102]Pleban S, Ingel F, Chet 1. Control of Rhizoctonia solani and Sclerotium rol fol in the greenhouse using endophytic Bacillus spp. European J Plant Pathol,1995,101:665-672.
    [103]De Boer S H, Copeman R J. Endophytic bacterial flora in Solanum tuberosum and its significance in bacterial ring rot diagnosis. Can J Plant Sci,1974,54:115-122.
    [104]Hollis J P. Bacteria in healthy potato tissue. Phytopathology,1951,41:350-366.
    [105J Lalande R, Bissonnette N, Coutlee D, et al. Identification of rhizobactria from maize and determination of their plant-growth promoting potential. Plant Soil,1989,115:7-11.
    [106]Uratani B B, Alcorn S C, Tsang B H, et al. Construction of secretion vectors and use of heterologous signal sequences for protein secretion in Clavibacter xyli sub sp. cynodontis. Mol Plant Microbe Interact,1995,8:892-898.
    [107]Chelius M K, Triplett E W. Dyadobacler fermentans gen. nov., sp. nov., a novel gramnegative bacterium isolated from surface sterilized Zea mays stem. Int J Syst Evol Microciol,2000,50: 751-758.
    [108]Hinton D M, Bacon C W. Enterobacter cloacae is an endophytic symbiont of com. Mycopathologia, 1995,129:117-125.
    [109]Bell C R, Dickie G A, Harvey W L G, et al. Endophytic bacteria in grapevine. Can J Microbiol, 1995,41:46-53.
    [110]Mundt J O, Hinkle J O. Bacteria within ovules and seeds. Appl Environ Microbiol,1976,32: 694-698.
    [111]Lodewyekx C, J Vangronsveld, Porteous F, et al. Endophytic bacteria and their potential applications, Crit Rev Plant Sci,2002a,21(6):583-606.
    [112]Stuzr A V, Christie B R, Nowak J. Bacterial endophytes:Potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sci.,2000,19(1):1-30.
    [113]Leuchtmann A. Systematics, distribution, and host specificity of grass endophytes. Nat Toxins, 1992,1(3):150-162.
    [114]Zou W X, Tan R X. Biological and chemical diversity of endophytes and their potential applications. Li C S. Advances in Plant Sciences. Beijing:China Higher Education Press,1999.183-190.
    [115]Stone J K, Bacon C W, White Jr J F. An overview of endophytic microbes:endophytism defined. Bacon C W, White Jr J F. Microbial Endophytes. New York:Marcel Dekker,2000,3-29.
    [116]Anorld A E, Maynard Z, Gilbert G S, et al. Are tropical fungal endophytes hyperdiverse? Ecol Lett, 2000,3:267-274.
    [117]Mccutcheon T L, Carroll G C, Schwab S. Genotypic diversity in populations of a fungal endophyte from douglas fir.Mycologia,1993,85:180-186.
    [118]Hallmann J, Quadt-Hallmann A, Mahaffee W F, et al. Bacterial endophytes in agricultural crops. Can. J. Microbiol.1997b,43(10):895-914.
    [119]Brooks D S, Gonzalez C F, Appel D N, et al. Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biological Control,1994,4(4):373-381.
    [120]Zinniel D K, Pat Lambreeht, Harris N B, et al. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Environ.microbiol.,2002,68(5): 2198-2208.
    [121]Gutierrez-Zamora M L, Martinez R E, Kaser Fetal. Natural endophytic association between rhizobium etli and maize(Z. mays L.). J. Biotech,2001(91):117-126.
    [122]Turner J, Lample J S, Stearman R S, et al. Stability of the δ-endotoxin from Bacillus thuringiensis subsp kurstaki in a recombinant strain of Clavibacter xyli subsp cynodontis, Appl. Environ. Microbiol.,1991,57:3522-3528.
    [123]Dowing K J, Thomson J A. Introduction of the Serratia marcescens chiA gene into an entophytic Pseudomonas fluorescens for the biocontrol of phytopathgenic fungi. Can. J. Microbiol,2000,46 (4): 363-369.
    [124]Gindrat D, Pezet R. Paraquat. A tool for the quick development of latent fungal infections and endophytic fungi. Journal of Phytopathology (Berlin),1994,141 (1):86-98.
    [125]Justin T C, Christopher M M Fr. Isolation and Identification of actinobacteria from Surface-Sterilized Wheat Roots. Appl. Environ Microbiol.,2003,69:5603-5608.
    [126]Rivas P, Willems A, Palomo J L, et al. Bradyrhizobium betae sp. Nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. International Journal of Systematic and Evolutionary Microbiology,2004,54 (4):1271-1275.
    [127]Mengoni A, Mocali Si Surico G, et al. Fluctuation of endoPhytic bacteria and PhytoPlasmosis in elm trees. Microbiological Research,2003,158 (4):363-369.
    [128]Reiter B, Pfeifer U, Schwab H, et al. Response of Endophytic Bacterial Communities in Potato Plants to Infection with Erwinia carotovora sub sp. Atroseptica. Appl.Environ.Microb,2002,68(5): 2261-2268.
    [129]Araujo W L, Maccheroni W, Aguilar-Vildosa C I, et al. Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can. J. microbial.2001, (47):229-236.
    [130]Kloepper J W. Plant growth Promoting rhizobacteria as biological control agents. In:soil Microbial Ecology:Application in Agricultural and Environmental management, Metting F B, Dekker M, Inc, New York, USA,1992,255-274.
    [131]Weisburg W G.16S ribosomal DNA amplification for phylogenetic study. J. bacterial.,1991,173: 697-703.
    [132]Sessitsch A, Reiter B, Pfeifer U, et al. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microb Ecol,2002(39):23-32.
    [133]GarbevaP, Van Overbeek L S, Van Vuurde JWL, et al. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments 2001, (41):369-383.
    [134]Araujo W L, Maccheroni W, Aguilar-Vildosa C I, et al. Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can. J. microbial,2001, (47):229-236.
    [135]Smalla K, wieland G, Buchner A, et al. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis:plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol.,2001, (67):4742-4751.
    [136]Quadt-Hallmann A, Kloepper J W. Immunological detection and localization of the cotton endophyte Enterobacter asbnriae JM22 indifferent plant species. Can. J. Microbiol., 1996,42(11):1144-1154.
    [137]Sturz A V, Christie B R, Matheson B G. Association of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can. J. Microbiol.1998,44:162-167.
    [138]Frommel M I, Pazos G S, Nowak J. Plant-growth stimulation and biocontrol of tomato seeds with Serratia Plymuthica and Pseudomonas sp. Fitopatologia.1991,26:66-73.
    [139]Sprent J I, Defaria S M. Mechanisms of infection of plants by nitrogen fixing organisms. Plant and Soil,1998,110:157-165.
    [140]Benhamou N. Elicitor induced plant defense path way. Treds plant sci.1996a, (1):233-240.
    [141]Benhamou N, Kloepper J W, Tuzun S. Induction of resistance against rusarium wilt of tomato by combination of chintosan with an endophytic bacterial strain:ultrastructure and cytochemistry of the host response. Planta,1998,204:153-168.
    [142]Gagne S, Richard C, Rousseau H, et al. Xylem-residing bacteria in alfalfa roots. Can J microbial, 1987,33:996-1000.
    [143]Quadt-Hallmann A, Benhamou N, Kloepper J W. Bacterial endophytes in cotton:mechanisms of entering the plant. Can J Microbiol,1997a,43(6):577-582.
    [144]Quadt-Hallmann A,Hallmann J, Kloepper J W. Bacterial endophytes in cotton:location and interaction with other plant-associated bacteria. Can J Microbiol,1997b,43(3):254-259.
    [145]Hurek T, Reinhold-Hurek B, Van Montagu M, et al. Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol,1994,176:1913-1923.
    [146]Sharrock K R, Parkes S L, Jack H K, et al. Involvement of bacteria endophytes in storage rots of buttercup squash cucurbita-maxima hybriddelica. New Zealand Journal of Crop and Horticultural Science.1991,19(2):157-166.
    [147]Kristina Ulrichl, Andreas Ulrich, Dietrich Ewald. Diversity of endophytic bacterial communities in poplar grown under cold conditions. FEMS Microbiology Ecology,63:169-180.
    [148]You C B, Song W, Wang H X, et al. Association of Alcaligenes faecalis with wet land rice. Plant soil, 1991,137: 81-85.
    [149]Andrews J H. Biological control in the phyllospnere. Ann Rev Phytopathol,1992,30:630-635.
    [150]Dowing K J, Thomson J A. Introduction of the Serratia marcescens chiA gene into an entophytic Pseudomonas fluorescens for the biocontrol of phytopathgenic fungi. Can J Microbiol,2000,46 (4): 363-369.
    [151]Turner J, Lample J S, Stermnan R S, et al. Stability of the 5-endotoxin from Bacillus thuringiensis subsp kurstaki in a recombinant strain of Clavibacter xyli subsp cynodontis, Appl Environ Microbiol, 1991,57:3522-3528.
    [152]Mahaffee W F, Moar W J, Kloepper J W. Bacteria endophytes genetically engineered to express the cryllA δ-endotoxin from Bacillus thringiensis subsp kurstaki. In:Ryder M H, eds. Improving Plant Productivity with rhizosphere Bacteria, Australia:CSIRO,1994,245-246.
    [153]McInroy J A, KIoepper J W. Survey of indigenous bacterial endophytes from cotton and sweet com. Plant Soil,1995,173:337-342.
    [154]Mcinroy J A, Musson G, Wei G, et al. Masking of antibiotic-resistance upon recovery of endophytic bacteria. Plant and Soil.1996,186 (2): 213-218.
    [155]Gudmestad N C, Henningson P J, Bugbee W M. Cellular fatty acid comparison of strains of Corynebacterium michiganense subsp. sepedonicum from potato and sugar beet. Can J Microbiol, 1998,34(6):716-722.
    [156]Van Denende W, DE Coninck B, Clerens S, et al. Unexpected presence of fructan 6-exohydrolases (6-FEHs) in non-fructan plants:characterization, cloning, mass mapping and functional analysis of a novel cell-wall invertase-like specific 6-FEH from sugar beet(Beta vulgaris L.). Plant J,2003,36 (5): 697-710.
    [157]Taeechowisan T, Peberdy J F, Lumyyong S. Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotech.2003,19:381-385.
    [158]Lazarovitsg, Nowak J. Rhizobateria for improvement of plant growth and establishment. Hortscience,1997,32:188-192.
    [159]吕泽勋,宋未-产酸克雷伯氏菌SG-11生物合成吲哚-3-乙酸的检测-分析测试学报,1999,18(5):42-44.
    [160]蔡学清,何红,胡方平.内生菌BS-2对辣椒苗的促生作用及对内源激素的影响.亚热带农业研究.2005,1(4):49-52.
    [161]冯永君,宋未.植物内生细菌.自然杂志,2001,(5):249-252.
    [162]张集慧,王春兰,郭顺星,等.兰科药用植物的5种内生菌产生的植物激素.中国医学科学院学报,1999,21(6):460-465.
    [163]李桂玲,王建锋,黄耀坚,等.植物内生真菌抗肿瘤活性菌株的筛选.菌物系统,2001,20(3):387-391-
    [164]李桂玲,王建锋,黄耀坚,等,几种药用植物内生真菌抗真菌活性的初步研究.微生物学通报,2001,28(6):64-68.
    [165]Lyons P C, Evans J J, Bacon C W. Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue. Plant Physiology,1990,92:726-732.
    [166]Brooks D S, Gonzalez C F, Apple D N, et al. Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biological Control,1994,4 (4):373-381.
    [167]袁军,孙福在,田宏先,等-防治马铃薯环腐病有益内生细菌的分离和筛选.微生物学报,2002,42(3):270-274.
    [168]陈丽梅,樊妙姬,李玲.甘蔗固氮内生菌.重氮营养醋杆菌的研究进展.微生物学通报,2000,27(1):63-66.
    [169]Cavaleante V, Dobereiner J. A new acid tolreant nitrogen fixing bacterium associated with sugar cane. Plant and Soil,1988,108:23-31.
    [170]Reinhold-hurek B, hurek T. Life in grasses:diazotrophic endophyte. Trends in Micrbiol,1986,6: 139-144.
    [171]安千里,李久蒂.植物内生固氮菌.植物生理学通讯,1999,35(4):265-272.
    [172]孙羲-植物营养原理.北京:中国农业出版社,1990.
    [173]宋建民,田纪春,赵世杰.植物光合碳和氮代谢之间的关系及其调节,植物生理学通讯,1998,34(3):230-237.
    [174]Raven J A. The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytology,1988,109:279-287.
    [175]Haynes R J, Goh K M. Ammonium and nitrate of plants.Biological Review,1978,53:465-510
    [176]Salsac L, Chaillou S. Nitrate and ammonium nut rition in plants. Plant Physiol Biochem,1987,25: 805-809.
    [177]Raab K T, Terry N. Nitrogen source regulation of growth and Photosynthesis in Beta vulgaris L. Plant Physiol,1994(105):1159-1166.
    [178]Cox W J, Reisenauer H M. Growth and ion uptake by wheat spplied nitrogen as nitrate, or ammonium or both. Plant and Soil,1973,38:363-380.
    [179]Lewis O A M, Chadwick S. An 15N investigation into nitrogen assimilation in hydroponically-grown barley (Hordeum vulgale L. cv, Clipper) in response to nitrate, ammonium and mixed nitrate and ammonium nutrition. New Phytologist,1983,95:635-646.
    [180]Magalhaes J R, Huber D M. Response of ammonium assimilation enzymes to nitrogen form treatments in different plant species.Plant Nutr,1991,14(2):175-185.
    [181]戴廷波,曹卫星,李存东,作物增钱营养豹生理效应.植物生理学通讯,1998,34(6):488493.
    [182]Schrader L E, Pomska D, Jung Jr P E, Peterson L E. Uptake and assimilation of ammonium-N and nitrate-N and their influence on the growth of corn (Zea mays L.). Agronomy Journal,1972,64, 690-695.
    [183]Cao W, Ttbbitts T W. Study of various NH4+/NO3- mixtures for enhancing growth of potatoes J Plant Nutr,1994,16,16:1691-1704.
    [184]Green D E, Stickland L H, Tarr H L A. CCXL. Studies on reverstble dehydrogenase systems. Ⅲ. Carrier-linked reactions between isolated dehydrogenases. Bioehem J,1934, 28,1812.
    [185]Vans Harold J, Alvin Son. Pyridine nucleotide-nitrate reductase from extracts of higher plants. Plant Physiology,1953,28:233-254.
    [186]吴相钰,汤佩松.植物呼吸及代谢的研究Ⅱ.水稻幼苗中硝酸还原酶的适应形成.植物学报,1958,7:135-148.
    [187]Hocking. Nitrogen nutrition of mone guminous crop:A Review, Part Ⅰ. Field crop Abstract.1984, 37:626-636.
    [188]Naik M S, Abrol Y P, Nair T V R, et al. Nitrate assimilation-its regulation and relationship to reduced nitrogen in higher plants. Phytochemistry,1982,21,495-504.
    [189]林振武,陈敬祥,汤玉玮,等.硝酸还原酶活力与作物耐肥性的研究:Ⅰ.不同耐肥性豹水稻、玉米、小麦硝酸还原酶活力.中国农业科学杂志,1983,16(3):37-43.
    [190]于海彬,蔡葆.甜菜硝酸还原酶活性研究,中国甜菜,1993(3):18-23.
    [191]刘颖,金振华.利用PCR技术鉴别转化根癌农杆菌中外7源和内源的GUS基因,生物工程进展,1995,15(2):46-47.
    [192]汤玉玮,林振武,陈敬祥.硝酸还原酶活力与作物耐性的相关及其在系列化育种上应用的探讨.中国农业科学,1985,18(6):11-15.
    [193]宋建民,田纪春,赵世杰.植物光合碳和氮代谢之间的关系及其调节,植物生理学通讯,1998,34(3):230-237.
    [194]Lyons P C, Plattner R D, Bacon C W. Occurrence of peptide and davine ergot alkaloids in tall fescue. Science,1986,232:487-489.
    [195]陈世苹,高玉葆.内生真菌与禾本科植物之间的关系及其生态学意义.生态学杂志,2000,19(5:52-57.
    [196]Alejandro U, Stefan N. Glutamine synthetase from Acetobacter diazotrophicus:properties and regulation. FEMS Microbiology Letters,2006,202:177-178.
    [197]Zelmer I, Guenther G. Activities of Glutamate Dehydrogenase Gdh Glutamine Synthetase Gs and Glutamate Synthase Gogat in Suspension Cultures of Beta-Vulgaris Sugar Beet and Chenopodium-Album Goosefoot. Biochemie und Physiologie der Pflanzen (BPP),1988,183, 397-405.
    [198]Zelmer I, Guenther G. Influence of Various Herbicides on the Activity Dynamic of Glutamate Dehydrogenase Gdh Glutamine Synthetase Gs and Glutamate Synthase Gogat Obtained from Suspension Cultures of Beta-Vulgaris Sugar Beet and Chenopodium-Album Goosefoot. Biochemie und Physiologic der Pflanzen (BPP),1988,183,407-415.
    [199]Lee R B, Purves J B, Ratcliffe R G, et al. Nitrogen assimilation and the control of ammonium and nitrate absorption by maize roots, J Exp Bot.1992, (43):1385-1396.
    [200]阎桂平,马凤鸣,李文华.不同供氮水平甜菜氮同化酶活性动态的研究,东北农业大学农业学报,1995,2(1);17-24.
    [201]Leloir L F, Cardini C E. The Biosynthesis of Sucrose. Journal of the American Chemical Society,1953,75:6084.
    [202]Giaquinta R T.Phloem loading of sucrose. Plant Physiol,1979,63:744-748.
    [203]Koch K E. Carbohydrate-modulated gene expression in plants. A nnnu Rev Plant Physiol Plant Mol Biol,1996,47:509-540
    [204]Smeekens S, Rook F. Suger sensing and sugar-mediated signal transduction in plants. Plant Physiol, 1997,115:7-13
    [205]Pavlinova O A, Balakhontsev E N, Prasolova M F, et al. Sucrose-phosphate synthase, sucrose synthase, and invertase in sugar beet leaves. Russian Journal of Plant Physiology,2002,49(1):68-73.
    [206]Larrana S, Monaco C, Alippi H E. Endophytic fungi in beet (Beta vulgaris var. esculenta L.) leaves. Advances in horticultural science,2004, (4):193-196.
    [207]史树德,贺学勤,张子义,等.甜菜蔗糖代谢两种相关酶的活性变化及其相互关系.华北农学报,2008,23(3):120-124
    [208]刘娜.甜莱与蔗糖代谢相关的酶.中国糖料,2004(4):51-53
    [209]刘娜,周芹,于海彬,不同氮、磷施用量对甜菜叶片中蔗糖代谢有关酶活性的影响.中国糖科,2006(1):30-33
    [210]赵越,马凤鸣,王丽艳,等.不同氮源对甜菜蔗糖合成酶的影响.黑龙江农业科学,2001(2):11-11
    [211]李海弱,马凤鸣,朱延鸣,等.甜菜氮糖代谢酶活力与蔗糖代谢的关系.东北农业大学学报,2002,33(1):72-76
    [212]崔杰,曲文章.甜菜硝酸还原酶活性的研究.甜菜糖业,1990(1):6-9,5
    [213]张宏纪,史淑芝,栾浩文,等.不同形态氮素对甜菜蔗糖合成酶分解活性的影响.中国甜菜糖业,2003(1):15-18
    [214]赵越,魏自民,马凤鸣,等.不同水平硝态氮对甜菜蔗糖合成酶的影响.东北农业大学学报,2003,34(2):189-191
    [215]赵越,魏自民,马凤鸣.铵态氮对甜菜蔗糖合成酶和蔗糖磷酸合成酶的影响.中国糖料,2003(3):1-5
    [216]曾宪彬,曹显祖.蔗糖酶活力与甜菜块根贮藏质量的关系.植物生理学报,1991,17(3):239-244
    [217]曾宪彬,曹显祖.甜菜块根中蔗糖酶的若干动力学性质.江苏农学院学报,1993,14(1):21-25
    [218]于海彬,王桂岚.甜菜氮营养对蔗糖积累转化及有关酶活性的调节.中国甜菜糖业,1995(6):-6-11,45
    [219]朱建华,李秋菊.甜菜幼苗叶片蔗糖磷酸合成酶的一些特性.中国甜菜糖业,1998(6):7-8,18
    [220]Fieuw S, Willen B J. Sugar transport and sugar-metabiolizing enzymes in sugarbeet storage root(beta vulgaris.ssp.altissima). Journal of plant physiology,1990,137(2):216-223.
    [221]Berghall S, Briggs S. The role of sugar beet invertase and relateal enzymes during growth storage and processing. Zuckerindustie,1997,122:520-530,
    [222]刘娜,周芹,于海彬.不同氮、磷施用量对甜甜菜叶片中蔗糖代谢有关酶活性的影响.中国糖料,2006(1):30-33
    [223]李彩凤,马凤鸣,赵越,等.氮素形态对甜菜氮糖代谢关键酶活性及相关产物的影响.作物学报,2003,29(1)128-122
    [224]周仁喜.论甜菜氮代谢及其与糖代谢的关系—甜菜合理施用氮肥的依据.中国甜菜糖业,1986,(4):12-16.
    [225]Bunce J A. Light, temperature and nutrients as factors in photosynthetic adjustment to an elevated concentration of carbon dioxide. Physiologia Plantarum,1992,86 (1):173-179.
    [226]Luciana Santos R C P, Joao L A, Jose O P, et al. Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytologist,2000,14(3):609-615.
    [227]Belesky D P, Devine O J, Pallas Jr J E, et al. Photosynthetic activity of tall fescue as influenced by a fungal endophyte. Photosynthetica 1987,21:82-87.
    [228]Clay K. Fungal endophytes of grasses Annual Review of Ecology and Systematics,1990,21: 275-297.
    [229]Richardson M D, Hoveland C S, Bacon C W. Photosynthesis and stomatal conductance of symbiotic and nonsymbiotic tall fescue. Crop Sciences,1993,33:145-149.
    [230]Sutton J C, Liu W, Ma J, et al. Evaluation of the fungal endopbyte Clonostachys rosea as an inoculant to enhance growth, fitness and productivity of crop plants. Acta Horticulturae,2008,782: 279-286,
    [231]Sturz A V, Christie B R, Nowak J. Baterial endophytes:Potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences,2000,19(1):1-30.
    [232]Siciliano S D, Germida J J. Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B.napus cv. excel and B.napus cv. Parkland. FEMS Microbiology Ecology,1999,,29 (3):263-272.
    [233]Clay K, Holah J, Fungal endophyte symbiosis and plant diversity in successional fields. Science, 1999,285:1742-1745.
    [234]Peters S, Draeger S, Aust H J, et al. Interactions in dual cultures of endophytic fungi with host and nonhost plant calli. Mycologia,1998,90:360-367.
    [235]Larran S, Monaco C, Alippi H E. Endophytic fungi in beet (Beta vulgaris var. esculenta L.) leaves. Advances in horticultural science,2004, (4):193-196.
    [236]Morse L J, Day T A, Faeth S H. Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes. Environmental and experimental botany,2002,48 (3):257-268.
    [237]Franz H, Gunther F K. Plant root carbohydrates affect growth behaviour of endophytic microfungi. Fems Microbiology Ecology.2002,41 (2):161-170.
    [238]Schulz B, Wanke U, Draeger S. Endophytes from herbaceous and shrubs:effectiveness of surface sterilization methods. Mycological Research,1993,97:1447-1450.
    [239]Gomez-Vidal S, Lopez-Llorca L V, Jansson H B, et al. Endophytic colonization of date palm (Phoenix dactylifera L.) leaves by entomopathogenic fungi. Micron,2006,37:624-632.
    [240]Nejad P, Johnson P A. Endophytic Bacteria Induce Growth Promotion and Wilt Disease Suppression in Oilseed Rape and Tomato. Biological Control,2000,18,208-215.
    [241]Kleiss T, Deberghes P, Durrer M, et al.Identification of environmental staphylococci and coliforms by Vitek Auto Micro-bic System. Food Microbiology,1995,12:199-202.
    [242]杨毓环,陈伟伟.VITEK全自动微生物检测系统原理及其应用.海峡预防医学杂志,2000,6(3):38-39.
    [243]中国科学院微生物研究所放线菌分类组.链霉菌鉴定手册.北京:科学出版,1975,13-15.
    [244]何玉梅,张仁陟,张丽华,等.不同耕作措施对土壤真菌群落结构与生态特征的影响.生态学报,2007,27(1):113-119.
    [245]阎逊初.放线菌的分类和鉴定.北京:科学出版社,1992,296-306.
    [246]何叶喧,王世英,李兵,等.一种快速提取丝状真菌产黄青霉DNA的方法.中国抗生素杂志,2005,30(8)503-504.
    [2447]张欣,李熠,魏宁昆,等.内蒙古中东部草原羽茅EpichloA属内生真菌的分布及rDNA-ITS序列系统发育.生态学报,2007,27(7):2904-2910.
    [248]Minamiyamat H. Shimizu M, Kunoh H,et al. Mutiplication of isolates R25 of Streptomyces galbus on rhododendron leaves and its production of cell wall-degrading enzymes. Journal of General Plant Pathology,2003,69:65-70.
    [249]姜成林.放线菌分类学研究进展.微生物学通报,1996,23(1);51-55.
    [250]陈文新.细菌系统发育.微生物学报,1998,38(3);240-243.
    [251]李湘民,许志刚,Mew T W,等.稻株上拮抗细菌的定殖及其对土著细菌的影响.生态学报,2008,28(8);3868-3874.
    [252]谢凤行,任安芝,王银华,等.内生真菌对草坪植物病原真菌抑制作用的比较.生态学报,2008,28(8):3913-3920.
    [253]宋子红,丁立孝,马伯军,等.花生内生菌的种群及动态分析.植物保护学报,1999,26(4):309-314.
    [254]Boehm M J, Wu T, Stone A G, et al. Cross-polarized magic-angle spinning (supl3)C nuclear magnetic resonance spectroscopic characterization of soil organic matter relative to culturable bacterial species composition and sustained bio logical control of Pythium root rot. Applied and Environmental Microbiology,1997,63:162-168.
    [255]Tiquia S M, L loyd J, Hems D A, et al. Effects of mulching and fertilization soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes. Applied Soil Ecology,2002,21:31-48.
    [256]钟文辉,蔡祖聪.土壤管理措施及环境因素对土壤微生物多样性影响研究进展.生物多样性,2004,12(4):456-465.
    [257]张丹,李登煜,何毓蓉,等.不同气候条件下紫色土的微生物数量比较.山地学报,2001,19,sup:71-74.
    [258]Papatheodorou E M, Argyropoulou M D, Stamou G P. The effects of large- and small-scale differences in soil temperature and moisture on bacterial functional diversity and the community of bacterivorous nematodes. Applied Soil Ecology,2004,25 (1):37-49.
    [259]孔庆科,丁爱云.内生细菌作为生防因子的研究进展.山东农业大学学报(自然科学版),2001,32(2):256-260.
    [260]何红.辣椒内生枯草芽抱杆菌(Bacillus sublilis)防病促生作用的研究.博士论文.福州:福建农林大学,2003.
    [261]Sturz A V, Christie B R. Endophytic bacterial systems governing red clover growth and development Ann Appl Biol,1995,26:285-290.
    [262]杨海莲,孙晓璐,宋未.植物内生细菌的研究.微生物学通报,1998,25(4):224-227.
    [263]叶小海,常志州,季国军,等.番茄拮抗内生细菌102菌株豹分离及其防病促生作用.江苏农业学报,2005,12(4):294-297.
    [264]马利平,乔雄梧,高芬,等.防病促生枯萎病拈抗菌98-1对4种枯萎病防治效果研究.中国生态农业学报,2005,13(11):91-95.
    [265]陶晶,李晖,赵思峰,等.协同增效型拮抗细菌组合CL27和CL28的稳定性及其对加工番茄的促生防病效果.中国生物防治,2006,22(4):290-295.
    [266]杜立新,冯书亮,王容弱.拮抗BS 2208菌株对番茄灰霉病诱导抗性的初步研究.华北农学报,2005,20(6):84-87.
    [267]张宪政,作物生理学研究方法.北京:中国农业出版社,1992,142.
    [268]Von Aderkasa P, Lelub M A, Labelb P. Plant growth regulator levels during maturation of larch somatic embryos. Plant Physiol Biochem,2001,39:495-502.
    [269]吴颂如,陈婉芬,周燮.酶联免疫法E(LISA)测定内源植物激素.植物生理学通讯,1988,(5):53-57.
    [270]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976,72:248-254.
    [271]邵金旺,蔡葆,张家骅.甜菜生理学.北京:中国农业出版社,1991:181-196.
    [272]Adhikari T B, Joseph C M,et al. Evaluation of bacteria isolated from rice for plnat growth promotion and biological contro lof seedling disease of rice. Can J Micorbiol,2001,47:916-924.
    [273]Brown M. Seed and root baeterization. Annu Rev Phytpoathol,1974,12:181-197.
    [274]Barbieri P, Galli E. Eeffct on wheat root development of inoculation with an Azosprillum brasielnse mutant with altered indole-3-acetic acid production. Res. Miocrbiol.,1993,144:69-75.
    [275]Holland MA. Occams razor applied to hormonology (Are cytokinins produced by plants?). Plant Physiol,1997,115:865-868.
    [276]Nassar A H, EI-Tarabily K A, Sivasithamparam K. Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fertil Soils, 2005,42:97-108.
    [277]Dvaison J. Plant benefical bacteria. Biotech.,1988, (6):282-286.
    [278]Xn H, Griffith M, et al. Isolation of an antirfeeze protein with ice nucleation activity form the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Micorbiol.1998,44:64-73.
    [279]Kowalski T, Holdenrieder O. Prosthemiun asterosponum sp. nov., a coelomycete on twigs of Betula pendula. Mycol Res,1996,100:1243-1246.
    [280]张立新,刘慧平,韩巨才,等.番茄内生真菌的分离和拮抗生防菌的筛选.山西农业大学学报,2005,25(1):30-33.
    [281]Verma S C, Ladha J K, Tripathi A K. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnoi.2001,91:127-141.
    [282]Basile D V, Basile M R, Li Q Y, et al. Vitamin B12-stimulated growth and development of Jungermannia leiantha Grolle and Gymnocolea inflata (Huds.) Dum. (Hepaticae). Bryologist,1985, 88:77-81.
    [283]Holland M A, Polacco J C. Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol,1992,98:942-948.
    [284]Holland M A, Polacco J C. PPFMs and other covert contamination:is there more to plant physiology than just plant? Annu Rev Plant Phys Plant Mol Biol,1994,45:197-209.
    [285]沈德龙,冯永军,宋未.内生成团泛菌YS19对水稻乳熟期光合产物在旗叶、穗分配中的影响.自然科学进展,2002,12(8):863-865.
    [286]Paul N B, Sundararao W V B. Phosphate-dissolving bacteria in the rhizosphere of some cultivated legumes. Plant Soil,1971,35:127-132.
    [287]Promod K C, Dhevendaran K. Studies on phosphobacteria in Cochin backwater. J Mar Biol Ass India, 1987,29:297-305.
    [288]Craven P A, Hayasaka S S. Inorganic Phosphate Solubilization by Rhizosphere Bacteria in a Zosterai Marina Community. Canadian Journal of Microbiology,1982,28(6):605-610.
    [289]赵小蓉,李保国.微生物溶解磷矿粉能力与pH及分泌有机酸的关系.微生物学杂志,2003,23(3)5-7.
    [290]范丙全.北方石灰性土壤中青霉菌P8活化难溶磷的作用和机理研究.博士论文.北京:中国农业科学院,2001.
    [291]Wakelin S, Warren R, Harvey P, el al. Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Bio Pert Soils,2004,40:36-43.
    [292]Chabot R, Antoun H, Cescas M P. Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarium biovar phaseoli. Plant and Soil,1996,184:311-321.
    [293]姚拓,蒲小鹏,张德罡,等.高寒地区燕麦根际联合固氮菌研究—Ⅲ固氮菌对燕麦生长的影响及其固氮量测定.草业学报,2004,13(5):85-90.
    [294]Click B R, Karaturovic D M, Newell P C. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Canadian Journal of Microbiology,1995,41:533-536.
    [295]Rajkumar M, Nagendran R, Lee K J, et al. Influence of plant growth promoting bacteria and Cr6(?) on the growth of Indian mustard. Chemosphere,2006,62:741-748.
    [296]Sturz A V, Nowak J. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Applied Soil Ecology,2000,15:183-190.
    [297]Ji X L, Lu G B, Gai Y P, et al. Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiology Ecology,2008,65:565-573.
    [298]Soo J C, Woo J L, Su H, et al. Endophytic colonization of ballon flower by antifungal strain bacillus sp. Cy22. Biosci Biotechnol Biochem,2003,67(10):2132-2138.
    [299]Barraquio W L, Revilla L, Ladha J K. Isolation of endophytic bacteria diazotrophic bacteria from wetland rice. Plant and Soil,1997,194:15-24.
    [300]石晶盈,陈维信,刘爱媛.植物内生菌及其防治植物病害的研究进展.生态学报,2006,26(7):2395-2400.
    [301]谭小艳,黄思良,任建国,等.柑桔溃疡病内生拮抗细菌Bc51的研究.植物病理学报,2007,7(1):9-17.
    [302]John A M, Joseph W K. Survey of indigenous bacterial endo-phytes from cotton and sweet com. Plant and soil,1995,173:337-342.
    [304J Chen C, Bauske E, Musson G, et al. Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biological Control,1995,5:83-91.
    [305]何红,邱思鑫,蔡学清,等.辣椒内生菌BS 21和BS 22在植物体内的定殖及鉴定.微生物学报,2004,44(1):13-181.
    [306]彭细桥,周国生,邓正平,等.烟草青枯病内生拮抗菌的筛选、鉴定及其防效测定.植物病理学报,2007,37(6):670-674
    [307]Buchenauer H. Biological control of soil-borne disease by rhizobacteris. Plant Disease and Protection, 1995,44:40-50.
    [308]姜广策,林永成,周世宁,等.中国南海红树内生真菌No.1403次级代谢物的研究.中山大学学报(自然科学版),2000,39(6):68-72.
    [309]Velazhahaan R, Samiyappan R, Vidhyasekaran P. Relationship between antagonistic activities of Pseudomonas fluorescens isolates against Rhizoctonia solani and their production of lytic enzymes. J.Plant Dasease and Protection,1999,106:244-250.
    [310]Cook R J. Making Greater Use of Introduced Microorganisms for Biological Control of Plant Pathogens. Annual Review of Phytopathology,1993,31:53-80.
    [311]方中达.植病研究方法.北京:农业出版社,1998.
    [312]魏景超.真菌鉴定手册.上海:上海科学技术出版社,1979.
    [313]Booth(布斯)C.陈其译.镰刀菌属.北京:农业出版社,1988.
    [314]周德庆.微生物学实验手册.上海:上海科学技术出版社,1986,65-70,178-180.
    [315]东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001,267-295.
    [316]Ausubel F M, Brent R, Kingston R E, et al.精编分子生物学实验指南.颜子颖,王海林,译.北京:科学技术出版社,2001,36-39.
    [317]Katayama-Fujimura Y, Tsuzaki N, Kuraishi H. Ubiquinone, fatty acids and DNA base composition determination as a guide to taxonomy of the genus Thiobacillus J Gen Microbiol,1982,128: 1599-1611.
    [318]Bai Y M, D Aoust F, Smith D L, et al. Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol,2002,48:230-238.
    [319]黎起秦,罗宽,林纬,等.内生菌1347的定殖能力及其对番茄青枯病的防治作用.植物保护学报,2006,33(4):462467.
    [320]Mikolajczak J, Podkowka L, Podkowka Z, et at. Effects of endophyte infection of grasses on the chemical composition, quality and stability of silage. Folia Biologica,2005,53:67-72.
    [321]Weber A, Sarsa M L, Sundman V. Frankia-Alnus incana symbiosis:Effect of endophyte on nitrogen fixation and biomass production. Plant and Soil,1989,120:291-297
    [322]Jacobs M J. Enumeration, location, characterization of endophytic bacteria within sugar beetroots. Canadian Journal of Botany,1985,63:1262-1265
    [323]Berry J A, Dowmon W J S. Development, Carbon Metabolism and Plant productivity. Govindjee, ed Photosynthesis, New York:Academic Press.1982,2:263-343
    [324]柯世省,金则新,李钧敏.浙江天台山茶树光合日变化及光响应.应用与环境生物学报,2002,8(2):159-164.
    [325]鲍士旦.土壤农化分析.北京;农业出版社.2002,25-114.
    [326]温国胜,田海涛,张明如,等.叶绿素荧光分析技术在林木培育中的应用.应用生态学报,2006,17(10):1973-1977.
    [327]Bjorkman O, Demmig B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 1987; 170:489-504.
    [328]张其德,刘合芹,张建华,等.限水灌溉对冬小麦旗叶某些光合特性的影响.作物学报,2000,26(6):869-873.
    [329]Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta,1989, 990:87-92.
    [330]Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluoremeter. Photosynthesis Research,1986,10:51-62.
    [331]江木兰,赵瑞,胡小加,等.油菜内生生防菌BY-2在油菜体内的定殖与对油菜菌核病的防治作用.植物病理学报,2007,37(2):192-196.
    [332]Lappalainen J H, Yli-Mattila T. Genetic diversity in Finland of the birch endophyte Gnomonia setacea as determined by RAPD-PCR markers. Mycol Res,1999,103:328-332.
    [333]Reddy P V, Bergen M S, Patel R, et al. An examination of molecular phylogeny and morphology of the grass endophyte Balansia cleviceps and similar species. Mycologia,1998,90:108-117.
    [334]赵宏伟,曲文章,邹德堂.关于光合特性的研究.中国糖科.1996,(4):18-21.
    [335]丁伟,曲文章.钾营养对甜菜光合速率及同化产物运转的影响转明影啊.东北农业大学学报,1999,30(3):214-220.
    [336]Watson D J, Hayashi K I. Photosynthetic and respiratory components of the net assimilation rates of sugar beet and barley New Phytologist,1965,64:38-47
    [337]周建朝.甜菜不同品种光合生产能力的研究.中国糖料,2001,(3):14-18.
    [338]Vila Aiub M M, Gundel P E, Ghersa C M. Fungal endophyte infection changes growth attributes in Lolium multiflorumLam. Austral Ecol,2005,30(1):49-57
    [339]Essaid A B, Sabine G. Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biologl Control,2002,24(2):135-142
    [340]Miflin B J, Lea P J. Aminoacid metabolism. Annu Rev Plant Physiol,1977,28:299-329
    [341]刘强,彭建伟,荣湘民,等.不同浓度羧甲基壳聚糖对水稻氮代谢影响研究.植物营养与肥料学报,2007,13(4):597-601.
    [342]赵越,魏自民,李成,等.甜菜氮代谢关键酶与其产质量的关系.东北农业大学学报,2003,34(4):368-371.
    [343]Gisela Mack. Glufamine synthetase isoenzymes, oligomers and subunits from hairy roots of Beta vulgaris L. var. lutea. Planta 1998,205:113-120.
    [344]Pavlinova O A. Sucrose synthesizing enzymes of the sugar beet roots. Fiziol Rast,1970,17: 295-301.
    [345]徐亲民,高杰,金智俐,等.微生物产生的糖料作物增糖剂:CN1256080,1998-11-04.