改善伺服系统低速性能的自适应鲁棒控制设计及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的迅猛发展,伺服系统的指标要求越来越高,其中低速跟踪性能是评价伺服系统优劣的指标之一,研究如何改善伺服系统的低速跟踪性能具有重要的实际意义。
     本论文以高精度直线定位系统和电动仿真转台系统为背景,以改善伺服系统的低速跟踪性能为目的,研究了影响高精度直线定位系统和电动仿真转台系统低速性能的主要因素,建立了上述两种系统被控对象的模型,并分别设计了自适应鲁棒控制器,最后在实际系统中对自适应鲁棒控制器的性能进行了验证。本文的主要内容如下:
     1.介绍了目前伺服系统的研究现状,其中重点介绍了改善伺服系统低速性能涉及的研究领域和内容,阐述了摩擦补偿方法的研究现状。
     2.介绍了伺服系统的组成,分析了影响伺服系统低速性能的主要因素,针对摩擦建立了被控对象的模型。
     3.研究了自适应鲁棒控制方法,给出了考虑参数不确定性和非参数不确定性作用时被控对象的控制器设计方法。
     4.针对高精度直线定位系统和电动仿真转台系统分别设计了自适应鲁棒控制器,并与PID控制方法进行比较,实验表明自适应鲁棒控制方法能够明显改善伺服系统的低速性能。
With the rapid development of science and technology, the high performance indices of servo system are required more and more. The low-speed tracking performance is a important index of servo system’s indices, so how to improve low-speed tracking performance has important practical significance.
     Taking the background of high precision linear-servo position systems and turntable system, the thesis focused on improving servo-system low-speed tracking performance. Furthermore the factors affecting low-speed tracking performance of high precision linear-servo position systems and turntable system are analyzed, and developed the model of both systems based friction. At last, the adaptive robust controller was designed and the performance of adaptive robust control was verified by experiments. The main content of the paper is as follows.
     1. The current main research fields of servo system were introduced, which focused on the content of improving low-speed tracking performance, and described current main research of friction compensation.
     2. The configuration of servo system was introduced, and analyzed the most important factors affecting low-speed tracking performance. At last, the model of controlled plant was developed based on friction.
     3. The adaptive robust control was introduced, and also the controller design method of controller plant which considering parameter uncertainties and non-parameter uncertainties.
     4. The adaptive robust controllers of high precision linear-servo position systems and turntable system was designed respectively and comparative experiments between adaptive robust and PID were obtained. Experimental results showed that adaptive robust control can improving low-speed performance effectively.
引文
1杜坤梅,李铁才.电机控制技术.哈尔滨工业大学出版社.第二版. 2002:1~6
    2李尚义,赵克定,吴盛林等.三轴飞行仿真转台总体设计及其关键技术.宇航学报. 1995, 16(2):63~66
    3钟于义.超低速转台控制方法的研究与实现.哈尔滨工业大学硕士学位论文. 2007:4~5
    4 G. Liu. On Velocity Estimation Using Position Measurements. Proceedings of the American Control Conference, Anchorage, 2002:1115~1118
    5 A. Damiano, G. Gatto, I. Marongiu, A. Pisano, E. Usai. Rotor Speed Estimation in Electrical Drives via Digital Second Order Sliding Differentiator. European Control Conference, 1999, Kalrsruhe, Germany
    6 Shen-Ming Yang. Performance Evaluation of a Velocity Observer for Accurate Velocity Estimation of Servo Motor Drives. IEEE Transactions on Industry Applications. 2000, 36(1):98~99
    7 R. Brown, S. Schneider, M. Mulligan. Analysis of Alogithms for Velocity Estimation from Discrete Position vesus Time Data. IEEE Transactions on Industrial Electronics. 1992, 39:11~19
    8 R. Brown, S. Schneider. Velocity Observations from Discrete Position Encoder. Proceedings of IEEE IECON. 1987:1111~1118
    9 R. D. Lorenz, K. W. Van Patten. High-resolution Velocity Estimation for All-digital, AC Servo Drives. IEEE Transactions on Industry Application. 1991, 27(4):701~705
    10 M. Bodson, J. Chiasson, R. T. Novotnak. Nonlinear Speed Observer for High-performance Induction Motor Control. IEEE Transactions on Industrial Electronics. 1995, 42(4):337~343
    11 Armstrong, Dupont P, Canudas de Wit C. A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction[J]. Automation, 1994, 30(7):1083~1138
    12刘强,尔联洁,刘金琨.摩擦非线性环节的特性、建模与控制补偿综述.系统工程与电子技术. 2002, 24(11):45~52
    13翟百臣.直流PWM伺服系统低速平稳性研究.中国科学院研究生院博士学位论文. 2005:2~30
    14王忠山.高精度机械轴承转台摩擦补偿研究.哈尔滨工业大学工学博士学位论文. 2007:3~16
    15张国柱、陈杰,李志平:直线电机伺服系统的自适应模糊摩擦补偿:电机与控制学报: 2009, 13(1): 154~158
    16 D. Kostic, B. de Jager, M. Steinbuch, R. Hensen. Modeling and Identification for High-PerformanceRobot Control: An RRR-robotic Arm Case Study. IEEE Trans. on Control Systems Technology. 2004, 12(6): 904~919
    17 D. Putra, L. Moreau, H. Nijmeijer. Observer-Based Compensation of Discontinuous Friction. 43rd IEEE Conference on Decision and Control. 2004:4940~4945
    18 N. Mallon, N.V.D.Wouw, D. Putra, H. Nijmeijer. Friction Compensation in a Controlled One-Link Robot Using a Reduced-Order Observer. IEEE Trans. on Control System Technology. 2006, 14(2):374~383
    19 S.M. Philips, K.R. Ballou. Friction Modeling and Compensation for an Industrial Robot. Journal of Robotic Systems, 1993,10(7):947~971
    20 K.M. Misover, A.M. Annaswamy. Friction Compensation Using Adaptive Nonlinear Control with Persistent Excitation. International Journal of Control, 1997, 72(5): 457~479
    21 B. Friedland and Y.J. Park. On Adaptive Friction Compensation. IEEE Transactions on Automation Control. 1992, 37(10): 1609~1612
    22 T. Liao, T. Chien. An Exponentially Stable Adaptive Friction Compensator. IEEE Trans. on Automatic Control. 2000, 45(5): 977~980
    23 P E Dupont. Avoiding Stick-Slip through PD Control. IEEE Transactions on Automatic Control. 1994, 399(5):1094~1097
    24 B Armstrong-Helouvry, D Neevel, T Kusik. New Result in NPID Control:Tracking, Integral Control, Friction Compensation and Experimental Result. Proceedings of the 1999 IEEE International Conference on Robotics&Automation. 1999:837~842
    25 C.N. Shen, H. Wang. Nonlinear Compensation of a Second- and third-order System with Dry Friction. IEEE Trans. on Application and Industry,1964,83(71):128~136
    26 G. Brandenburg, U. Schafer. Influence and Compensation of coulomb Friction in Industrial Pointing and Tracking Systems. Proc. of the Indus. App. Soc. Annual Meeting, IEEE, Dearborn, MI,1991:1407~1413
    27王晓东,华清,夏宗夏,王少萍.负载模拟器中的摩擦力及其补偿控制.中国机械工程. 2003, 14(6):511~516
    28程代展等.应用非线性控制.机械工业出版社. 2006.186~264
    29 W.H. Chen, D.J. Balance, P.J. Gawthrop, J. O’Reilly. A Nonlinear Distrubance Observer for Robotic Manipulators. IEEE Trans. on Industrial Electronics.2000,47(4):932~938
    30 S C Southward, C J Radcliffe, C R MacCluer. Robust Nonlinear Stick-Slip Friction Compensation. ASME Journal of Dynamic System, Measurement and Control. 1991, 113:639~645
    31 T. Eisaka, Y. Zhong. Evaluation of Robust Model Matching for the Control of a DC Servo Motor. Int. J. Control,1989,50(2):479~493
    32 T. Eisaka, Y. Yanagita, R. Tagawa. Design of a Robust Electrical Position Servo Based on Dual Model Matching. Int. J. Control,1991,54(3):479~515
    33陈永生.重复控制方法在伺服系统中的应用研究.北京航空航天大学,1999
    34贾亮.具有重复控制的高精度系统跟踪控制系统的研究和应用.北京航空航天大学,1997
    35柳俊成.飞行仿真转台低速性能分析与研究.南京航空航天大学硕士学位论文. 2004:23~27
    36林哲,姚郁,马克茂,富小薇.位置伺服系统滑模补偿器设计.电机与控制学报. 2007, 11(1):83~87
    37周擎坤,范大鹏,张智永.摩擦对稳定跟踪平台低速性能影响的研究.机械与电子. 2005(12):21~23
    38彭吉.转台伺服系统低速性能分析及改善方法研究.哈尔滨工业大学硕士学位论文. 2009:3~5
    39 B. Armstrong-Helouvry, P. Dupont, C. C. de Wit. A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction. Automatica. 1994, 30(7):1083~1138
    40 D. A. Haessing, B. Friedland. On the Modeling and Simulation of Friction. Journal of Dynamic Systems, Measurement and Control. 1991, 113(3):354~362
    41 Wit C C,Olsson H,Astrom K J. A New Model for Control of Systems with Friction. IEEE Transactions on Automatic Control. 1995,40(3):419~424
    42 Awrejcewicz J, Olejnik P. Analysis of dynamic systems with various friction laws. ASME Appl Mech Rev,2005,58:389~410
    43王英,熊振华,丁汉.基于状态观测的自适应摩擦力补偿的高精度控制.自然科学进展. 2005, 15(9):1100~1105
    44刘丽兰,刘宏昭,吴子英,王忠民.机械系统中摩擦模型的研究进展.力学进展.2008,38(2):201~213
    45 Morin A J. New friction experients carried out at Metz in 1831~1833. In: Proceedings of the French Royal Academy of Science, Paris,1833:1~128
    46 Bo, L C, Pavelescu D. The friction-speed relation and its influence on the critical velocity of the stick-slip motion. Wear,1982,82(3):277~289
    47 Armstrong B. Control of Machines with Friction. Boson: Kluwer AcademicPublishers,1991:24~26
    48 Canudas de Wit C, Carillo J. A modified EW-RLS algorithm for system with bounded disturbance. Automation,1990,26(3):599~606
    49刘洪玉.转台伺服系统低速性能分析与摩擦补偿研究.哈尔滨工业大学硕士学位论文. 2006: 4~25
    50 G. Liu. On Velocity Estimation Using Position Measurements. Proceedings of the American Control Conference, Anchorage, May 8~10,2002:1115~1118
    51 K. S. Narendra and A. M. Annaswamy. Robust adaptive control in the presence of bounded disturbance. IEEE Trans. on Automation Control,31:306~316,1986
    52 J. J. E. Slotine and Weiping Li. Applied nonlinear control. Prentice Hall, Englewood Cliffs, New Jersey, 1991
    53 Bin Yao and M. Tomizuka. Smooth robust adaptive sliding mode control of robot of Dynamic Systems, Measurement and Control,118(4):765~775
    54 K. S. Narendra and A. M. Annaswamy. A new adaptive law for robust adaptive control without persistent excitation. IEEE Trans. on Automatic Control, 1987,32:134~145
    55 V.I. Utkin. Variable structure systems with sliding modes. IEEE Trans. on Automatic and Control,1997,22(2):212~222
    56 A.S. Zinober. Destreministic control of uncertain control system. Peter Peregrinus Ltd., London, United Kingdom,1990
    57 M. Krstic. I. Kanellakopoulos. P. V. Kokotovic. Nonlinear and adaptive control design. Wiley, 1995,New York,22~84
    58 Z. Qu. J. F. Dorsey. Robust control of generalized dynamic system without matching conditions. ASME J. Dynamic Systems, Measurement, and Control.1991,113:582~589
    59 C. Rohrs. L. Valavani. M. Athans. G. Stein. Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics. IEEE Trans. on Automatic Control,1985,31:881~889
    60 A. Isidori. Nonlinear control systems: An introduction. Springer Verlag,1989
    61 K. J. Astrom, B. Wittenmark. Adaptive control. Addison-wesley Publishing Company, (second edition),1995:200~585
    62 P. V. Kokotovic. Joy of feedback: Nonlinear and adaptive. Bode Prize Lecture,1991
    63 K.S. Narendra, A.M. Annaswamy. Robust adaptive control in the presence of bounded disturbance. IEEE Trans. on Automation Control,1986,31:216~306
    64 Bin Yao, M. Tomizuka. Smooth robust adaptive sliding mode control of robot manipulators with guaranteed transient performance. Trans. of ASME, Journal of Dynamic Systems, Measurement and Control,1996,118(4):764~775
    65 Bin Yao, M. Tomizuka. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica,1997,33(5):893~900
    66 Bin Yao, M. Tomizuka. Adaptive robust control of MIMO nonlinear systems in a semi-strict feedback form. Automatica,2001,37(9):1305~1321
    67 Li Xu, Bin Yao. Adaptive robust precision motion control of linear motors with negligible electrical dynamics: theory and experiments. IEEE/ASME Transactions on Mechatronics,2001,6(4):444~452
    68 Yao Bin, M. Tomizuka. Comparative experiments of robust and adaptive robust control with new robust adaptive controllers for robust manipulators. In. IEEE Conf. on Decision and Control,1994:1290~1295