接触热阻对聚合物注塑成型冷却过程影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注射成型的冷却过程对最终成型制品的质量、性能起着至关重要的作用。而温度是注塑冷却过程中最重要的工艺参数,不合理的温度和温度分布会使产品产生缺陷,并影响生产的效率。因此,如何准确地对冷却过程进行分析就显得极为重要。然而以往人们在研究注塑成型的冷却过程时,往往认为模具和制品在冷却过程中完全接触。实际上,高温的聚合物熔体在冷却时会产生收缩,造成注塑件的体积减小,模具型腔表面和注塑件之间就会出现一个间隙,这样在冷却时,模具和注塑件介面处就会形成接触热阻(TCR),如果忽略接触热阻,就会对热传导过程的分析产生影响,造成结果的不准确。本文在处理此问题时,借鉴了材料边界的思想,将注塑件和模具看成是一个整体,假设两者之间完全接触,但是要考虑接触热阻的影响。本文在基于传热学基本知识的情况下,推导了平板塑件一维瞬态热传导方程解析解,得到了冷却时间的表达式,接着将其扩展到简单的二维、三维情况。然后通过对注塑冷却过程的具体分析,推导出了冷却过程的三维热传导温度场数学模型的控制方程,并运用有限元方法进行分析。最后用具体实例进行模拟分析,结果表明:在考虑了接触热阻后,制品的冷却时间明显增加,而且,注塑件越薄,其影响程度越大。
The cooling process plays an important role in the quality and performance of the products in injection molding, The temperature is the most important process parameters in injection cooling process. Temperature and temperature distribution which is unreasonable may cause product defects and influence productivity. Therefore, how to accurately analyze the cooling process becomes extremely important. However, when people research the cooling process of injection molding in the past, they often thought that molds and products were close contact in the cooling process. In fact, polymer melt which was very hot will shrink while it is cooling. Resulting in reduced volume of injection molded part, a gap will be produced between the cavity and the surface of the part. The thermal contact resistance (TCR) will appear in the interface of the mold and the part when they were cooled. It will impact on the analysis results if the thermal contact resistance is ignored. In this paper,,The auther considered the part and mold as a whole while dealing with this issue and presumed that the part and mold was close contact all the time, but the thermal contact resistance was not ignored. In this paper, using the basic knowledge of the heat transfer, one-dimensional analytical solution of transient heat conduction equation was obtained when deal with the cooling question of a flat plastic parts.It also obtained the formula of the cooling time of the problem. Then it was extended to a simple two-dimensional, three-dimensional case. Furthermore, on the analysis of injection molding cooling process, control equation of three-dimensional mathematical model about the cooling process was derived. Finally, examples of simulation analysis shows that, the cooling process in the mold temperature changes while considering the thermal contact resistance. The cooling time was increased when TCR was existed. It also find that it was more serious when the thinner part was cooled.
引文
[1]刘来英.注塑成型工艺[M].北京:机械工业出版社,2005
    [2]张如彦,王荣本,孙鸿宣.塑料注射成型与模具[M].北京:中国铁道出版社,1987
    [3]黄锐,曾邦禄.塑料成型工艺学[M].北京:中国机械工程,1997
    [4]申长雨等.塑料注射模具计算机辅助工程[M].郑州:河南科技出版社,1997
    [5]王兴天.注塑成型技术.北京:化学工业出版社[M],1989
    [6]A. L. Lsayer. Injection and Compression Moding Fundamentals[M]. Marcel Inc. N. Y,1987
    [7]B.B.拉普申著,林师沛译,热塑性塑料注塑原理[M].北京:中国轻工业出版社,1983
    [8]陈志刚.塑料模具设计[M].北京:机械工业出版社,2002
    [9]张沛,陈家庆.注塑模温控系统的设计计算[M].模具工业,2001.(2):37~41
    [10]唐志玉.塑料模现状及发展趋势[M].模具工业,1996.183(5):35~38
    [11]宋天虎.先进制造技术的发展与未来[M].中国机械工程.1998,9(4):2-6
    [12]A. Fiseher, A. Smolin, G. Elber. Mid-surfaces of profile-based free forms for mold design[C]. J. Manufacturing science and Engineering, Transaction of the ASME,1999, 121:202~207
    [13]翟建兴.注塑冷却阶段三维温度场的有限元分析[D]:[硕士学位论文].郑州:郑州大学,2006
    [14]王蕊.注塑成型三维流动模拟[D]:[硕士学位论文).郑州:郑州大学,2004
    [15]王国中.注塑模具CAI)/CAE/CAM技术[M].北京:北京理工大学出版社,1998
    [16]C. A. Hieber, S. F. Shen. A finite element finite difference simulation of the injection molding filling Process[C]. J. of Non-Newtonian Fluid Mech.1980.7 (2):1~32
    [17]H. Takahashi,M.takaki. Computer-aided mold design for injection molding [C]. J.Teehnolog Japan,1986
    [18]Chang, W. H. Yang, D. C, Hsu. Three-dimensional computer-raid mold Cooling design for injection molding[C]. ANTEC 2003 Conference Proceedings.2003:656~660
    [19]Lambert M A, L. S. Fleteher. Thermal Contact Conductance of Spherical Rough Metals[J]. Journal of Heat Transfer, Vol.119, Nov,1997.684~690
    [20]Rhee, B. O. Hieber, C. A., and Wang, K. K,1994, " Experimental Investigation of Thermal Contact Resistance in Injection Molding", Soc. Plastics Eng.-Ann. Tech. Conf.-SPE-ANTEC Technical Papers,40, pp.496~500
    [21]庄俭,于同敏,王敏杰,刘莹.微注塑成型中对流换热系数对熔体充模流动的影响[J].高分子材料科学与程,2007,24(6)
    [22]Kamal, M. R. Mutel, A. T. Salloum, and Garcia-Rejon, A,1991, "Heat Transfer Measure-ment at the Mold Surface During Injection Molding of Thermoplastic Melts, "[C] Soc. Plastics Eng. SPE-ANTEC Technical Papers,36, pp.483~487
    [23]W. B. Young. Analysis of filling distance in cylindrical microfeatures for micro-injection molding[J], Appl. Math. Modell.31 (9) (2007) 1798~1806
    [24]C. J. Yu, J. E. Sunderland, C. Poli, Thermal contact resistance in injection moulding[J], Polym. Eng. Sci.30(24) (1990) 1599~1606
    [25]J. M. Urquhart, C. S. Brown, The effect of uncertainty in heat transfer data on the simulation of polymer processing[N], NPL Report DEPC MPR 001, London, April 2004
    [26]H. Masse, E. Arquis, D. Delaunay. Heat transfer with mechanically driven thermal contact resistance at the polymer-mold interface in injection molding of polymers[J], Int. J. Heat Mass Transfer 47 (2004) 2015~2027
    [27]G. Schmidt, W. Michaeli. High pressure blow moulding-An innovative way for de-creasing cooling time[J], ANTEC Conf. Proc.3 (1998) 770~773
    [28]F. Beilharz, K. Kouba, H. Blokland. Experimental investigation of friction, thermal conductivity and heat transfer and their mathematical description for the thermoforming process simulation[C], in:Polymer Processing Society Conference Proceedings, Goth-enburg,2007
    [29]S. K. Parihar, N. T. Wright, Thermal contact resistance at elastomer to metal interfaces, Int. Commun[J]. Heat Mass Transfer 24 (8) (1997) 1083~1092
    [30]屠传经,沈洛蝉,吴子静,热传导[M].北京:高等教育出版社,1992
    [31]杨世铭.传热学.北京:人民教育出版社[M],1980
    [32]王补宣.工程传热传质学.科学出版社,1988
    [33]K. Himasekhar, C. A. Hieber, K. K. Wang. Computer Aided Design Software for Cooling System in Injection Moulding[C]. Annual Technical Conference-Society of Plastics Engineers,1989, (35):352~363
    [34]C. J. Chen, L Neshart-Naseri, K. S. Ho, Finite analytic numerical simulation of heat transfer in two-dimensional cavity flow[C], Numer Heat transfer.1981.4:179~197
    [35]神谷纪生,边界元素法基础[M].沈阳:东北工学院出版社.1987
    [36]C.诺贝尔著,龙述尧等译.边界单元法的理论和工程应用[M].北京:国防工业出版社,1988
    [37]姚寿广.边界元数值方法及其工程应用[M].北京:国防工业出版社,1995
    [38]刘永志.温度场的有限元数值模拟及其在塑件和模具冷却分析中的应用[D].[硕士学位论文].郑州大学,2003