PZT-PMS-PZN基大功率压电陶瓷的低温烧结及掺杂改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于压电作动器和变压器的大规模使用,大功率压电陶瓷材料引起了广泛的研究和关注。为获得高的功率密度,多层叠片式压电陶瓷元器件也逐渐成为近期的研究热点。日前实现叠层结构更倾向采用Ag-Pd贵金属作内电极多层叠合一次烧成。若PZT压电陶瓷能在900°C以下烧成,则可采用Ag作内电极,这样不仅可以降低成本也可以抑制PbO的挥发。
     目前,人们通过添加钙钛矿型弛豫铁电体发展了许多三元系、四元系的PZT基大功率压电陶瓷。PZT–PMS–PZN由于具备优异的电学性能:d_(33) = 369 pC/N, Qm = 1381, k_p = 64%, tanδ= 0.44%,ε_(33)~T = 1600,而被认为是大功率的候选材料之一。然而针对该材料的研究局限于熔盐合成法,且烧结温度偏高。为此,本课题选择PZT–PMS–PZN材料为研究对象,从成分设计、低温烧结特性、掺杂改性对材料的显微结构与电学性能的影响进行系统的研究。
     采用普通固相法制备四元系0.90Pb(Zr_xTi_(1-x))O3-0.05Pb(Mn1/3Sb2/3)O3-0.05Pb(Zn1/3Nb2/3)O3陶瓷,进一步添加CuO烧结助剂降低烧结温度。研究不同Zr:Ti比和CuO添加量对陶瓷微结构、电学性能的影响规律。结果表明,Zr:Ti比对陶瓷电学性能影响显著,当Zr:Ti=48:52时,1100°C烧结后的陶瓷具有优异的电学性能:d_(33) = 355 pC/N, Qm = 1550, k_p = 60%, tanδ= 0.33%,ε_(33)~T = 1308。该配方在添加1.0 wt% CuO后,烧结温度下降到900°C,并且保持较好的电学性能:d_(33) = 306 pC/N, Qm = 997, k_p = 53.6%, tanδ= 0.50%,ε_(33)~T = 1351。通过对0.90PZT-0.05PMS-0.05PZN + 1.0 wt% CuO陶瓷原始粉体进行了差热-热失重分析,930°C左右出现的吸热峰证实了烧结过程中液相的存在。
     为进一步优化0.90PZT-0.05PMS-0.05PZN + 1.0 wt% CuO陶瓷的压电性能,选择La_2O_3和Nb_2O_5分别作为A-/B-位的施主掺杂物。研究结果表明,La_2O_3掺杂可以显著提高d_(33)和k_p值,且几乎不降低Qm。当掺杂0.5 wt% La_2O_3时,陶瓷的电学性能最佳:d_(33) = 355 pC/N, Qm = 936, k_p = 58.4%, tanδ= 0.32%,ε_(33)~T= 1590。另一方面,Nb_2O_5掺杂对陶瓷压电性能的影响相对复杂,当Nb_2O_5掺杂量为0.5 wt%时,陶瓷也具有良好的电学性能:d_(33) = 300 pC/N, Qm = 971, k_p = 58.4%, tanδ= 0.36%,ε_(33)~T = 1332.。
Nowadays, high-power piezoelectric ceramics have received extensive attention and study due to their increasing applications in piezoelectric actuators and transformers. Particularly, the multilayer layer piezoelectric devices become a popular topic for their high power density. In general, co-firing process is preferred for multilayer devices. If the piezoelectric ceramics could be sintered below 900°C, pure Ag internal electrodes can be used instead of Ag-Pd alloy and the volatilization of PbO can be suppressed as well.
     These days, some ternary or quaternary high-power piezoelectric ceramics were obtained by adding perovskite structure relaxors into PZT system. Among them, PZT–PMS–PZN quaternary system is a most qualified candidate for high-power applications with good electrical properties: d33 = 369 pC/N, Qm = 1381, k_p = 64%, tanδ= 0.44%, andε_(33)~T = 1600. However, previous studies used the molten salt synthesis method and the sintering temperature was as high as 1100°C. Therefore, PZT-PMS-PZN quaternary system was selected in this study, the composition design, low temperature sintering behavior and doping effects were discussed with respect to the crystal structure, micro-morphology and electrical performance.
     0.90Pb(Zr_xTi_(1-x_)O_3-0.05Pb(Mn_(1/3_Sb_(2/3))O_3-0.05Pb(Zn1/3Nb_(2/3))O_3 quaternary high power piezoelectric ceramics were synthesized by using conventional solid-state sintering; to decrease the sintering temperature CuO was added as a sintering agent. The crystal structure, micro-morphology and electrical properties were studied in terms of Zr:Ti ratio and CuO content. These results indicate that the Zr:Ti ratio has a significant influence on the electrical properties; 0.90PZT-0.05PMS-0.05PZN (Zr:Ti=48:52) ceramics sintered at 1100°C with maximum tetragonality exhibit the optimal electrical properties: d33 = 355 pC/N, Qm = 1550, k_p = 60%, tanδ= 0.33%, andε_(33)~T = 1308. Moreover, 1.0 wt% CuO additive has a significant improvement in the sinterability of 0.90PZT-0.05PMS-0.05PZN ceramics, lowering the sintering temperature to 900°C and maintaining moderate electrical properties: d33 = 306 pC/N, Qm = 997, k_p = 53.6%, tanδ= 0.50%, andε_(33)~T = 1351. The low temperature sintering behavior could be explained with the formation of a transient liquid phase by CuO during sintering. Moreover, the endothermic peak at about 930°C in the differential thermal analysis (DTA) curve of the raw ceramic powder provides further evidence for amorphous phase.
     To obtain more optimum piezoelectric properties, La_2O_3 and Nb_2O_5 were selected as donor doping to 0.90PZT-0.05PMS-0.05PZN + 1.0 wt% CuO system. Our study demonstrates that La_2O_3 is very effective on piezoelectric properties, remarkably increasing the d_(33) and k_p value without degrading the Qm value. Finally, 0.5 wt% La_2O_3 added 0.90PZT-0.05PMS-0.05PZN + 1.0 wt% CuO ceramics show excellent electrical properties: d_(33) = 355 pC/N, Qm = 936, k_p = 58.4%, tanδ= 0.32%, andε_(33)~T= 1590. On the other hand, the effect of Nb_2O_5 on piezoelectric properties is much complicated, 0.50 wt% Nb_2O_5 doped 0.90PZT-0.05PMS-0.05PZN + 1.0 wt% CuO ceramics have a remarkable improvement in k_p value and maintain good electrical properties: d_(33) = 300 pC/N, Qm = 971, k_p = 58.4%, tanδ= 0.36%, andε_(33)~T = 1332.
引文
[1]许煜寰.铁电与压电材料[M].北京:科学出版社, 1978.
    [2]贾菲(美).压电陶瓷(林声和译)[M].第1版,北京:科学出版社, 1979.
    [3] Haertling G H. Ferroelectric Ceramics: History and Technology[J]. J. Am. Ceram. Soc., 1999, 82(4): 797~818.
    [4]刘冬梅.压电铁电材料与器材[M].第1版,武汉:华中理工大学出版社, 1990.
    [5]赵淳生.超声电机技术与应用[M].第1版,北京:科学出版社, 2007.
    [6]晏伯武.大功率铅基压电陶瓷材料的研究进展[J].佛山陶瓷, 2007, 17(5): 34~39.
    [7] Masafumi K, Yoshiaki F, Mitsuo T. High-Power Ceramic Materials for Piezoelectric Transformers[J]. Electronics and Communications in Japan, 1999, 82(11): 1682~1687.
    [8] Li B S, Li G. R, Zhao S C,et al. Characterization of the high-power piezoelectric properties of PMnN–PZT ceramics using constant voltage and pulse drive methods[J]. Journal of Physics D: Applied Physics, 2005, 38: 2265~2270.
    [9]朱志刚. xPMS-(1-x)PZT材料的制备与性能研究[D].上海:中国科学院上海硅酸盐所, 2005.
    [10] Gao Y K, Chen Y H, Ryu J, et al. Eu and Yb Substituent Effects on the Properties of Pb(Zr0.52Ti0.48)O3–Pb(Mn1/3 Sb2/3)O3 Ceramics: Development of a New High-Power Piezoelectric with Enhanced Vibrational Velocity[J]. Japanese Journal of Applied Physics, 2001, 40: 687~693.
    [11] Gao Y K, Uchino K, Viehland D. Effects of rare earth metal substituent on the piezoelectric and polarization properties of Pb(Zr, Ti)O3–Pb(Mn, Sb)O3 Ceramics[J]. Journal of Applied Physic., 2002, 92: 2094~2099.
    [12] Zhu Z G, Li G. R, Li B S, et al. The influence of Yb and Nd substituents on high-power piezoelectric properties of PMS–PZT ceramics[J]. Ceramics International, 2008, 34: 2067~2072.
    [13] Zhu Z G., Li B S, Li G. R, et al. Microstructure and piezoelectric properties of PMS–PZT ceramics[J]. Materials Science and Engineering B, 2005, 117: 216~220.
    [14] Ryu J, Kim H W, Uchino k, et al. Effect of Yb Addition on the Sintering Behavior and High Power Piezoelectric Properties of Pb(Zr,Ti)O3–Pb(Mn,Nb)O3[J]. Japanese Journal of Applied Physics, 2003, 42: 1307~1310.
    [15] Li B S, Li G R, Yin Q R, et al. Pinning and depinning mechanism of defect dipoles in PMnN–PZT ceramics[J]. Journal of Physics D: Applied Physics, 2005, 38:1107~1111.
    [16]李慧,杨祖培,宗喜梅,等. PZN含量变化对PZT-PZN-PMS压电陶瓷相结构及性能的影响[J].陕西师范大学学报(自然科学版), 2005, 33(2): 74~77.
    [17]张邦劳,常云飞.锆钛比变化对PZT-PZN-PMS压电陶瓷相结构及电学性能的影响[J].陕西师范大学学报(自然科学版), 2007, 35(1): 74~76.
    [18] Yang Z P, Chang, Y F, Zong X M, et al. Preparation and properties of PZT–PMN–PMS ceramics by molten salt synthesis[J]. Materials Letters, 2005, 59(22): 2790~2793.
    [19] Yang Z P, Li H, Zong X M, et al. Structure and electrical properties of PZT–PMS–PZN piezoelectric ceramics[J]. Journal of the European Ceramic Society, 2006, 26: 3197~3202.
    [20] Yang Z P. Zhang R, Yang L L, et al. Effects of Cr2O3 doping on the electrical properties and the temperature stabilities of PNW–PMN–PZT ceramics[J]. Materials Research Bulletin, 2007, 42: 2156~2162.
    [21] Gao F, Cheng L H, Hong R Z, et al. Crystal structure and piezoelectric properties of xPb(Mn1/3Nb2/3)O3–(0.2 ? x)Pb(Zn1/3Nb2/3)O3–0.8Pb(Zr0.52Ti0.48)O3 ceramics[J]. Ceramics International, 2009, 35: 1719~1723.
    [22] Park S H, Ural S, Ahn C W, et al. Piezoelectric Properties of Sb-, Li-, and Mn-substituted Pb(ZrxTi1-x)O3- Pb(Zn1/3Nb2/3)O3–Pb(Ni1/3Nb2/3)O3 Ceramics for High-Power Applications[J]. Japanese Journal of Applied Physics, 2006, 45: 2667~2673.
    [23]赵申苓.液晶显示器背光源驱动优化的探讨[J].液晶与显示, 2006, 21(02): 165~168.
    [24]朱奕蔓,张光斌,贺西平,等.压电变压器的原理、研究及应用[J].物理, 2008, 37(8): 606~610.
    [25]傅剑,李承恩,赵梅瑜,等.低温烧结PZT压电陶瓷研究进展[J].材料导报, 2000, 14(01): 38~39.
    [26]柴京鹤,李龙土,张孝文.低温烧结PZT压电陶瓷的研究[J].清华大学学报(自然科学版), 1988, 28(03): 1~8.
    [27]周桃生,彭炜,苗军,等.低温烧结压电陶瓷材料及应用[J].湖北大学学报(自然科学版), 2000, 22(01): 49~53.
    [28] Li L T, Zhang N X, Bai C Y, et al. Multilayer piezoelectric ceramic transformer with low temperature sintering[J]. Journal of Materials Science, 2006, 41: 155~161.
    [29] Schoenecker A, Gesemann H J, Seffner L. Low-sintering PZT-ceramics for advanced actuators[A]. In: Kulwicki B M, Amin A, Safari A ed. ISAF’96. Proc. of the Tenth IEEE International Symposium on Applications of Ferroelectrics[C], 1996, 1: 263~266.
    [30] Randall C A, Kelnberger A., Yang G. Y, et al. High Strain Piezoelectric Multilayer Actuators—A Material Science and Engineering Challenge[J]. Journal of Electroceramics, 2005, 14: 177~191.
    [31]李朝林,庄海军.低温烧结多层叠片式压电陶瓷变压器[J].电子工程师, 2003, 29(12): 52~55.
    [32]严联莹.多层压电陶瓷变压器及其应用技术[J].电子元器件应用, 2002, 4(5): 21~23.
    [33]马元,沈建兴,闫春蕾. PZT压电陶瓷液相低温烧结技术的研究进展[J].山东轻工业学院学报, 2008, 22(4): 15~18.
    [34] Corker D L, Whatmore R W, Ringgaard E, et al. Liquid-phase sintering of PZT ceramics[J]. Journal of the European Ceramic Society, 2000, 20: 2039~2045.
    [35] Nielsena E R, Ringgaarda E, Kosec M. Liquid-phase sintering of Pb(Zr,Ti)O3 using PbO–WO3 additive[J]. Journal of the European Ceramic Society, 2002, 22: 1847~1855.
    [36] Lu P X, Zhu M K, Xu D H, et al. Low-temperature sintering of PNW-PMN-PZT piezoelectric ceramics[J]. Journal of Materials Research, 2007, 22(9): 2410~2415.
    [37] Ahn C W, Song H C, Nahm S, et al. Effect of ZnO and CuO on the Sintering Temperature and Piezoelectric Properties of a Hard Piezoelectric Ceramic[J]. Journal of the American Ceramic Society, 2006, 89(3): 921~925.
    [38] Hou Y D, Zhu M K, Wang H, et al. Effects of CuO addition on the structure and electrical properties of low temperature sintered Pb((Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80)O3 ceramics[J]. Materials Science and Engineering B, 2004, 110: 27~31.
    [39] Yeong Y H, Yoo J H, Lee S H, et al. Piezoelectric characteristics of low temperature sintering Pb(Mn1/3Nb2/3)O3–Pb(Ni1/3Nb2/3)O3–Pb(Zr0.50Ti0.50)O3 according to the addition of CuO and Fe2O3[J]. Sensors and Actuators, A, 2007, 135: 215~219.
    [40] Chung K H, Lee D C, Yoo J H, et al. Piezoelectric properties of low-temperature sintering Pb(Co1/2W1/2)O3–Pb(Mn1/3Nb2/3)O3–Pb(Zr0.48Ti0.52)O3 ceramics with the sintering temperature and the amount of CuO addition[J]. Sensors and Actuators, A, 2005, 121: 142~147.
    [41] Chu S Y, Hsieh C S. Doping effects on the piezoelectric properties of low-temperature sintered PNN-PZT-based ceramics[J]. Journal of Materials Science Letters, 2000, 19: 609~612.
    [42] Dong D, Murakami K, Mabuchi N, et al. Behavior of morphotropic phase boundary and microstructure of low-temperature sintered PZT ceramics with BiFeO3 and Ba(Cu,W)O3[J]. Japanese Journal of Applied Physics, 1994, 33: 5529~5532.
    [43] Murakami K, Mabuchi D, Okada T, et al. Effects of adding various metal oxides on low-temperature sintered Pb(Zr,Ti)O3 ceramics[J]. Japanese Journal of Applied Physics, 1996, 35: 5188~5191.
    [44] Kong L B, Maa J, Zhu W, et al. Highly enhanced sinterability of commercial PZT powders by high-energy ball milling[J]. Materials Letters, 2000, 46: 274~280.
    [45] Zeng X, Ding A L, Deng G C. Effects of lanthanum doping on the dielectric, piezoelectricproperties and defect mechanism of PZN–PZT ceramics prepared by hot pressing[J]. Physical Status Solidi (a), 2005, 202(9): 1854~1861.
    [46]李远,秦自楷,周志刚,等.压电与铁电材料的测量[M].第1版,北京:科学出版社, 1984.
    [47]张端明,严文生,钟志成,等. PZT四方相区介电常数εr与晶格畸变关系的研究[J].物理学报, 2003, 53(5): 1316~1320.
    [48] Zhu M K, Lu P X, Hou Y D, et al. Effects of Fe2O3 addition on microstructure and piezoelectric properties of 0.2PZN-0.8PZT ceramics[J]. Journal of Materials Research, 2005, 20(10): 2670~2675.
    [49] Zhu M K, Lu P X, Hou Y D, et al. Analysis of Phase Coexistence in Fe2O3-Doped 0.2PZN–0.8PZT Ferroelectric Ceramics by Raman Scattering Spectra[J]. Journal of the American Ceramic Society, 2006, 89(12): 3739~3744.
    [50] Frayssignesa H, Gabbaya M, Fantozzia G, et al. Internal friction in hard and soft PZT-based ceramics [J]. Journal of the European Ceramic Society, 2004, 24: 2989~2994.
    [51] Carl K, Hardtl K H. Electrical after-effects in Pb(Ti, Zr)O3 ceramics[J]. Ferroelectrics, 1978, 17(1): 473~486.
    [52] Takahashi S. Effects of impurity doping in lead zirconate-titanate ceramics[J]. Ferroelectrics, 1982, 41(1): 143~156.
    [53] Cao Z P, Ding A L, Zhang Y, et al. Double-hysteresis-like loops in Mn-doped (Pb,La)(Zr,Ti)O3 ceramics[J]. Solid State Communications, 2004, 131(1): 57~60.
    [54]朱志刚,李宝山,李国荣,等.烧结温度对PMS-PZT系陶瓷显微结构和压电性能的研究[J].无机材料学报, 2005, 20(4): 1000~1006.
    [55] Zeng X, Ding A L, Liu T, et al. Excess ZnO Addition in Pure and La-Doped PZN–PZT Ceramics[J]. Journal of the American Ceramic Society, 2006, 89(2): 728~730.
    [56] Randall C A, Kim N, Kucera J P, et al.? Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics[J]. Journal of the American Ceramic Society, 1998, 81(3); 677~688.
    [57] Ashis B, Amit B, Susmita B. Influence of La2O3, SrO, and ZnO Addition on PZT[J]. Journal of the American Ceramic Society, 2006, 89(5); 1594~1600.
    [58] Zeng X, He X Y, Cheng W X, et al.?Dielectric and ferroelectric properties of PZN–PZT ceramics with lanthanum doping[J]. Journal of Alloys and Compounds, 2009, 485: 843~847.
    [59] Zeng X, Ding A L, Zheng X S, et al. Effects of Lanthanum Modification on the Structure and Electrical Properties of PZN-PZT Ceramics[J]. Key Engineering Materials, 2005, 280-283:227~230.
    [60] Deng G C, Ding A L, Li G. R, et al. Martensitelike spontaneous relaxor-normal ferroelectric transformation in Pb(Zn1/3Nb2/3)O3–PbLa(ZrTi)O3 system[J]. Journal of Applied Physics, 2005, 98: 094103.
    [61] Chen B H, Huang C L, Wu L. Promotion of piezoelectric properties of lead zirconate titanate ceramics with (Zr,Ti) partially replaced by Nb2O5[J]. Solid-State Electron., 2004, 48: 2293~2297.
    [62] Chu S Y, Chen T Y, Tsai I T, et al. Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device[J]. Sensors and Actuators, A, 2004, 113: 198~203.
    [63] Pereira M, Peixoto A G, Gomes M J M. Effect of Nb doping on the microstructural and electrical properties of the PZT ceramics[J]. Journal of the European Ceramic Society, 2001, 21: 1353~1356.
    [64] Tanasoiu C, Dimitriu E, Micles C. Effect of Nb, Li Doping on Structure and Piezoelectric Properties of PZT Type Ceramics[J]. Journal of the European Ceramic Society, 1999, 19: 1187~1190.
    [65]崔斌,侯育冬,杨祖培,等.制备铅系弛豫铁电陶瓷的反应机理研究进展[J].材料导报, 2002, 16(9): 29~32.