熏蒸对设施栽培土壤中可溶性氮素和氧化亚氮的影响及其微生物学机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保护地栽培和连作为土传病虫害的发生与发展提供了适宜的环境,目前土传病害和根结线虫已经成为严重制约保护地生产发展的重要因素。土壤熏蒸处理是防治土传病害最直接、最有效的方法。由于熏蒸剂的广谱性,在使用过程的同时也会影响到土壤中的非靶标土壤微生物。土壤中氮素矿化、硝化和反硝化作用是氮素循环过程中最为重要的3个过程,是提供土壤中植物可以吸收利用有效态氮的主要生物学途径,熏蒸对土壤氮素循环功能微生物的影响会直接影响到土壤中有效态氮含量的动态变化。本论文的研究目的之一是要明确不同熏蒸条件下土壤中硝化作用的生物学及动力学特性,包括不同熏蒸剂,不同土壤因素对土壤硝化作用的影响;研究目的之二是要明确熏蒸土壤中氧化亚氮的产生的生物学机制。论文的研究结果能够更加全面了解土壤熏蒸消毒的作用机理,达到从农业生产和生态环境角度综合评价熏蒸剂的经济和环境效益的目的。通过本实验研究得出以下主要结论:
     1、结合室内培养和田间试验定量评价了熏蒸土壤中矿质氮的动态变化,采用典型的土壤硝化作用动力学模型求解了不同熏蒸土壤中硝化作用的动力学参数,从动力学和生物学角度综合评价了熏蒸土壤中硝化作用的特性。室内不同熏蒸剂处理土壤研究结果表明,熏蒸剂延缓了土壤中铵态氮向硝态氮的转化,抑制了土壤中硝化作用过程。氯化苦、1,3-二氯丙烯、二甲基二硫和威百亩4种熏蒸剂处理土壤中,氯化苦处理对土壤中硝化作用抑制效应最持久,t_(max)(最大硝化作用速率发生的时间)为14.37周。通过添加不同浓度氯化苦和1,3-二氯丙烯处理对土壤中硝化作用的影响的数据结果可以看出,两种药剂对土壤硝化作用的抑制程度与处理浓度之间存在一定剂量效应关系,处理浓度与t_(max)值之间均呈显著的正相关(P<0.05)。以熏蒸剂处理浓度对数值为x、硝化作用抑制率机率值为y,建立熏蒸剂处理浓度与抑制率机率值之间的回归方程,求解得出熏蒸剂对硝化作用抑制中浓度,氯化苦和1,3-二氯丙烯IC50分别为65.73mg kg~(-1)和25.74mg kg~(-1)。室内熏蒸培养对土壤中氮素的矿化作用影响不明显。4种熏蒸剂田间试验结果表明,熏蒸处理短期内(1周)显著提高了土壤中铵态氮的含量,同时促进了短期内(1-2周)氮的矿化作用,提高了氮素的矿化速率,此外田间条件下熏蒸土壤中硝化作用的恢复速率要快于室内培养条件。
     2、熏蒸显著增加了土壤中铵态氮以及可溶性氨基酸含量,但不同地区熏蒸土壤中矿质氮的动态变化存在一定的差异。砂壤土熏蒸处理后土壤中铵态氮能较快的恢复至稳定水平,酸性土壤熏蒸处理土壤中铵态氮需要较长的恢复时间。5个不同地区熏蒸土壤中硝化作用强度均受到显著抑制,在后续的培养过程中均有不程度的恢复。5种未熏蒸的土壤中表观硝化率在培养第3周均达到90%以上,而熏蒸土壤中表观硝化率则明显低于未熏蒸处理的土壤,熏蒸处理后第1周5种土壤中硝化抑制率均在70%以上,除广西酸性土壤外其他4种土壤中硝化抑制率在培养第18周后均降至10%以下。4个不同地区土壤中硝化作用动力学结果表明,未熏蒸土壤中最大硝化作用速率均发生在培养过程的第2-3周之间,而在熏蒸土壤中t_(max)均要大于未熏蒸处理的土壤,熏蒸对陕西土壤的硝化作用抑制时间最长,对北京砂壤土硝化作用抑制时间最短。
     3、通过研究了4种不同熏蒸剂(氯化苦,1,3-二氯丙烯,二甲基二硫,棉隆)处理后土壤氧化亚氮的动态变化规律,明确了熏蒸处理对土壤中氧化亚氮的释放的影响。同时采用微生物-乙炔-氧气抑制法研究了熏蒸土壤中氧化亚氮的产生的生物学途径。研究结果表明,棉隆和氯化苦熏蒸处理能显著增加土壤中氧化亚氮的释放量,并且棉隆和氯化苦熏蒸处理后氧化亚氮的累积释放量也显著高于对照以及二甲基二硫和1,3-二氯丙烯熏蒸处理。对熏蒸处理土壤中可溶性氮素组分和硝化反硝化作用的结果看出,4种熏蒸剂都显著抑制了土壤硝化作用,而棉隆和氯化苦显著促进了反硝化作用。此外熏蒸能显著提高土壤中铵氮和可溶性氨基酸含量,减少土壤中微生物量碳氮的含量。微生物-乙炔-氧气抑制培养试验结果表明,氯化苦熏蒸土壤中氧化亚氮的主要贡献为好氧细菌的反硝化作用过程,而棉隆熏蒸土壤中氧化亚氮增加可能主要源于真菌的反硝化作用过程。氯化苦和棉隆在土壤中降解产物作为氮源促进了土壤中反硝化作用过程的进行,导致了熏蒸土壤中氧化亚氮含量的增加。
Greenhouse cultivation and continuous cropping provide a suitable environment for occurrenceand development of soil borne diseases and pest. Soil borne disease and root knot nematodes havebecome a serious restriction upon greenhouse production. Soil fumigation is highly direct and effectivetechnique to control continuous cropping disease. However, fumigants are a class of pesticide withbroad biocidal activity and affect many non-target soil organisms. Soil nitrogen mineralization,nitrification and denitrification are the most important processes in soil nitrogen cycle and these threeprocesses are the main biological pathways which provided soil available nitrogen uptake by plants.Fumigation cause significant impact on soil nitrogen microorganisms would directly affect the dynamicchange of soil available nitrogen. One objective of this study was to quantify the dynamic effects offumigation on nitrogen mineralization and nitrification in laboratory incubation and field studies.Another objective of the study was to identify the soil biotic group responsible for the production ofnitrous oxide following fumigation as well as to investigate the potential mechanisms of this nitrousoxide formation. The main conclusions are as follows:
     1. The dynamics and biological characteristics on soil nitrification process in different fumigatedsoils were evaluated in order to quantify the effects of fumigation on mineral nitrogen in laboratoryincubation and field studies. The results indicated all the fumigation treatments depressed nitrificationtemporarily, although the treatments exhibited significant differences in the duration of nitrificationinhibition. In both studies, for a limited period of time, Pic showed a stronger inhibitory effect onnitrification compared to other fumigant treatments. The time of maximum nitrification (t_(max)) in DMDSand MS treatments were0.97week and1.03week, which is similar to the untreated control (t_(max)=1.02week). While Pic has the longest effect on nitrifying bacteria, nitrification appears to restart at a latertime (t_(max)=14.37week). Dose-response relationship between the inhibition effect of nitrification andPic and1,3-D was observed, fumigant concentration and t_(max)are significantly positive correlated(P<0.05). IC50of Pic and1,3-D were65.73mg kg~(-1)and25.74mg kg~(-1)respectively. No obvious imapcton nitrogen mineralization in laboratory fumigation study was observed. But in field condition, soilfumigation was shown to increase soil ammonium and short-term nitrogen mineralization rates.Nitrification in fumigated soil in field condition has a faster recovery rate compared with laboratoryincubation.
     2. Fumigation was significantly increased soil ammonium nitrogen and dissolved amino acidscontent, but changes of mineral nitrogen in fumigated soil have some differences. Soil ammonium afterfumigation in sandy loam soil recovered much faster, but ammonium in acidic soil needed a longerrecovery time after fumigation. Nitrification was significant inhibited in all5fumigated soils and forlong-term incubation nitrification tended to recover. Nitrification rate reached up to90%in allunfumigated soils at3WAF, which were higher than fumigated soils. Inhibition rates of nitrificationwere all over70%in5different fumigated soils at1WAF. In addition to the acidic soil from Guangxiinhibition rate was decreased below10%after18WAF. The nitrification dynamic results from4 different areas showed t_(max)in all unfumigated soils were all between2-3wk and nitrification appearedto restart at a later time in all fumigated soils. Fumigation caused the longest inhibition effect ofnitrification in soil from Shanxi and shortest in soil from Beijing.
     3. Selective inhibition method was used in order to identify the soil biotic group responsible for theproduction of nitrous oxide (N2O) in fumigated soil as well as to investigate the potential mechanismsof nitrous oxide formation. The results indicated higher N2O productions were found in Pic and DZfumigated soils and the production rates of N2O in Pic and DZ fumigated soils were significant higherthan DMDS and1,3-D treatments. Nitrification potential was significantly suppressed in4fumigatedtreatments, but the significant increase of potential denitrification rate indicated great stimulation on soildenitrification after Pic and DZ fumigation. Besides fumigated soils had drastic increase in ammoniumand DAA content and decrease in MBN and MBC. Based on the results from selective inhibitionincubation studies we hypothesize that the production of N2O following Pic fumigation ispredominantly due to aerobic bacteria denitrification process and fungal denitrification process could bethe potential source contribute to N2O production in DZ fumigation. Degradation products of Pic andDZ in soil as nitrogen source caused a great stimulation on soil denitrification which resulted in asignificant increase of N2O production.
引文
[1]曹坳程,褚世海,郭美霞,段霞瑜,袁会珠,齐淑华.硫酰氟--溴甲烷土壤消毒潜在的替代品.农药学学报,2002,4(3):3.
    [2]曹坳程,郭美霞,段霞瑜,张文吉.溴甲烷在草莓田的替代及减少其散发的技术.植物保护学报,2006,33(3):291-297.
    [3]曹坳程,张文吉,刘建华.溴甲烷土壤消毒替代技术研究进展.植物保护,2007,33(1):6.
    [4]曹坳程.溴甲烷土壤消毒替代产品及使用技术原理[D].2006.
    [5]陈云峰,曹志平,于永莉.甲基溴替代技术对番茄温室土壤养分及微生物量碳的影响.中国生态农业学报,2007,15(5):42-45.
    [6]程新胜,杨建卿.熏蒸处理对土壤微生物及硝化作用的影响.中国生态农业学报,2007,15(6):51-53.
    [7]丁洪,王跃思.除草剂对氮肥反硝化损失与N2O排放的影响.中国环境科学,2004,24(5):596-599.
    [8]范成明,刘建英,吴毅歆,熊国如,何月秋.具有生物熏蒸能力的几种植物材料的筛选.云南农业大学学报,2007,22(5):5.
    [9]郎漫,蔡祖聪.百菌清对土壤氧化亚氮和二氧化碳排放的影响.应用生态学报,2008,(12):2745-2750.
    [10]郎漫,蔡祖聪.厌气条件下百菌清对土壤N2O和CH4排放的影响.环境科学学报,2009,29(10):2110-2117.
    [11]李富根,宋俊华,王以燕.美国土壤熏蒸剂使用风险管理措施.植物保护,2008,34(6):128-130.
    [12]李世东,李明社,缪作清,郭荣君.生物熏蒸用于治理蔬菜根结线虫病的研究.植物保护,2007,33(4):4.
    [13]李香兰,徐华,蔡祖聪.氢醌、双氰胺组合影响稻田甲烷和氧化亚氮排放研究进展.土壤学报,2009,46(5):917-924.
    [14]宋兆欣,王秋霞,郭美霞,赵云,曹坳程.二甲基二硫作为土壤熏蒸剂的效果评价.农药,2008,47(6):4.
    [15]武志杰,史云峰,陈利军.硝化抑制作用机理研究进展.土壤通报,2008,39(4):962-970.
    [16]张树兰,杨学云,吕殿青,同延安.几种土壤剖面的硝化作用及其动力学特征.土壤学报,2000,37(3):8.
    [17]郑平.环境微生物学[M].浙江:浙江大学出版社,2003,
    [18] Ajwa H.A., Klose S., Nelson S.D., Minuto A., Gullino M.L., Lamberti F., Lopez-Aranda J.M.Alternatives to methyl bromide in strawberry production in the United States of America and theMediterranean Region. Phytopathologia Mediterranea,2003,42(3):220-244.
    [19] Amato M., Ladd J.N. Assay for microbial biomass based on ninhydrin-reactive nitrogen in extractsof fumigated soils. Soil Biol Biochem,1988,20(1):107-114.
    [20] Anderson I.C., Poth M., Homstead J., Burdige D. A comparison of NO and N2O production by theautotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis.Appl Environ Microbiol,1993,59(11):3525-3533.
    [21] Arriaga H., Nú ez-Zofio M., Larregla S., Merino P. Gaseous emissions from soil biodisinfestationby animal manure on a greenhouse pepper crop. Crop Prot,2011,30(4):412-419.
    [22] Bar-Eyal M., Sharon E., Spiegel Y. Nematicidal Activity of Chrysanthemum coronarium. Eur JPlant Pathol,2006,114(4):427-433.
    [23] Barth G., von Tucher S., Schmidhalter U. Influence of soil parameters on the effect of3,4-dimethylpyrazole-phosphate as a nitrification inhibitor. Biol Fertil Soils,2001,34(2):98-102.
    [24] BASF. Product information on Basamid-G soil fumigant: Fate of Dazomet soil metabolites2002,http://www.basf.de/en/produkte.
    [25] Bateman E.J., Baggs E.M. Contributions of nitrification and denitrification to N2O emissions fromsoils at different water-filled pore space. Biol Fertil Soils,2005,41(6):379-388.
    [26] Blagodatskaya E., Dannenmann M., Gasche R., Butterbach-Bahl K. Microclimate and forestmanagement alter fungal-to-bacterial ratio and N2O emission during rewetting in the forest floorand mineral soil of mountainous beech forests. Biogeochemistry,2010,97(1):55-70.
    [27] Bletsos F.A. Grafting and calcium cyanamide as alternatives to methyl bromide for greenhouseeggplant production. Scientia Horticulturae,2006,107(4):325-331.
    [28] Bletsos F.A. Use of Grafting and Calcium Cyanamide as Alternatives to Methyl Bromide SoilFumigation and their Effects on Growth, Yield, Quality and Fusarium Wilt Control in Melon.Journal of Phytopathology,2005,153(3):155-161.
    [29] Bliss C.I. The Method of Probits. Science,1934,79(2037):38-39.
    [30] Bollag J.-M., Henninger N.M. Influence of Pesticides on Denitrification in Soil and with anIsolated Bacterium. J Environ Qual,1976,5(1):15-18.
    [31] Bollag J.-M., Kurek E.J. Nitrite and Nitrous Oxide Accumulation During Denitrification in thePresence of Pesticide Derivatives. Appl Environ Microbiol,1980,39(4):845-849.
    [32] Bollmann A., Conrad R. Recovery of nitrification and production of NO and N2O after exposure ofsoil to acetylene. Biol Fertil Soils,1997,25(1):41-46.
    [33] Bremner J. Sources of nitrous oxide in soils. Nutr Cycl Agroecosyst,1997,49(1):7-16.
    [34] Bremner J.M., Blackmer A.M. Nitrous oxide: emission from soils during nitrification of fertilizernitrogen. Science,1978,199(4326):295-296.
    [35] Bremner J.M., Blackmer A.M., Waring S.A. Formation of nitrous oxide and dinitrogen by chemicaldecomposition of hydroxylamine in soils. Soil Biol Biochem,1980,12(3):263-269.
    [36] Bremner J.M., Bundy L.G. Inhibition of nitrification in soils by volatile sulfur compounds. SoilBiol Biochem,1974,6(3):161-165.
    [37] Bremner J.M., Yeomans J.C. Effects of nitrification inhibitors on denitrification of nitrate in soil.Biol Fertil Soils,1986,2(4):173-179.
    [38] Breteler H., Siegerist M. Effect of ammonium on nitrate utilization by roots of dwarf bean. PlantPhysiol,1984,75(4):1099-1103.
    [39] Brookes P.C., Kragt J.F., Powlson D.S., Jenkinson D.S. Chloroform fumigation and the release ofsoil nitrogen: The effects of fumigation time and temperature. Soil Biol Biochem,1985,17(6):831-835.
    [40] Brown P.D., Morra M.J. Brassicaceae Tissues as Inhibitors of Nitrification in Soil. J Agric FoodChem,2009,57(17):7706-7711.
    [41] Burris E., Burns D., McCarter K.S., Overstreet C., Wolcott M., Clawson E. Evaluation of theeffects of Telone II (fumigation) on nitrogen management and yield in Louisiana delta cotton.Precis Agric,2010,11:239-257.
    [42] Cabrera M.L., Beare M.H. Alkaline Persulfate Oxidation for Determining Total Nitrogen inMicrobial Biomass Extracts. Soil Sci Soc Am J,1993,57(4):1007-1012.
    [43] Cao A., Guo M., Yan D., Mao L., Wang Q., Li Y., Duan X., Wang P. Evaluation of sulfuryl fluorideas a soil fumigant in China. Pest Manage Sci,2013: n/a-n/a.
    [44] Castaldi S., Smith K.A. Effect of cycloheximide on N2O and NO3–production in a forest and anagricultural soil. Biol Fertil Soils,1998,27(1):27-34.
    [45] Castignetti D. Bioenergetic examination of the heterotrophic nitrifier-denitrifier Thiosphaerapantotropha. Antonie Leeuwenhoek,1990,58(4):283-289.
    [46] Castro C.E., Wade R.S., Belser N.O. Biodehalogenation. The metabolism of chloropicrin byPseudomonas sp. J Agric Food Chem,1983,31(6):1184-1187.
    [47] Chen D., Suter H.C., Islam A., Edis R. Influence of nitrification inhibitors on nitrification andnitrous oxide (N2O) emission from a clay loam soil fertilized with urea. Soil Biol Biochem,2010,42(4):660-664.
    [48] Cole J.A., Brown C.M. Nitrite reduction to ammonia by fermentative bacteria: a short circuit in thebiological nitrogen cycle. FEMS Microbiol Lett,1980,7(2):65-72.
    [49] Collins H.P., Alva A., Boydston R.A., Cochran R.L., Hamm P.B., McGuire A., Riga E. Soilmicrobial, fungal, and nematode responses to soil fumigation and cover crops under potatoproduction. Biol Fertil Soils,2005,42(3):247-257.
    [50] Csinos A.S., Johnson W.C., Johnson A.W., Sumner D.R., McPherson R.M., Gitaitis R.D.Alternative fumigants for methyl bromide in tobacco and pepper transplant production. Crop Prot,1997,16(6):585-594.
    [51] Csinos A.S., Sumner D.R., Johnson W.C., Johnson A.W., McPherson R.M., Dowler C.C. Methylbromide alternatives in tobacco, tomato and pepper transplant production. Crop Prot,2000,19(1):39-49.
    [52] Das S., Ghosh A., Adhya T.K. Nitrous oxide and methane emission from a flooded rice field asinfluenced by separate and combined application of herbicides bensulfuron methyl and pretilachlor.Chemosphere,2011,84(1):54-62.
    [53] De Neve S., Csitári G., Salomez J., Hofman G. Quantification of the Effect of Fumigation on Short-and Long-Term Nitrogen Mineralization and Nitrification in Different Soils. J Environ Qual,2004,33(5):1647-1652.
    [54] Dendooven L., Anderson J.M. Dynamics of reduction enzymes involved in the denitrificationprocess in pasture soil. Soil Biol Biochem,1994,26(11):1501-1506.
    [55] Ding W., Yu H., Cai Z. Impact of urease and nitrification inhibitors on nitrous oxide emissionsfrom fluvo-aquic soil in the North China Plain. Biol Fertil Soils,2011,47(1):91-99.
    [56] Dubey H.D., Rodriquez R.L. Effect of Dyrene and Maneb on nitrification and ammonification andtheir biodegradation in tropical soils. Soil Sci Soc Am Proc,1970,34(0):435-439.
    [57] Dugravot S., Grolleau F., Macherel D., Rochetaing A., Hue B., Stankiewicz M., Huignard J.,Lapied B. Dimethyl disulfide exerts insecticidal neurotoxicity through mitochondrial dysfunctionand activation of insect K(ATP) channels. J Neurophysiol,2003,90(1):259-270.
    [58] Dungan R., Gan J., Yates S. Accelerated Degradation of Methyl Isothiocyanate in Soil. Water, Air,Soil Pollut,2003,142(1-4):299-310.
    [59] Dungan R.S., Yates S.R. Degradation of Fumigant Pesticides:1,3-Dichloropropene, MethylIsothiocyanate, Chloropicrin, and Methyl Bromide. Vadose Zone Journal,2003,2(3):279-286.
    [60] Duniway J.M. Status of Chemical Alternatives to Methyl Bromide for Pre-Plant Fumigation of Soil.Phytopathology,2002,92(12):1337-1343.
    [61] Elsgaard L. Dynamics of mineral nitrogen, water-soluble carbon and potential nitrification inband-steamed arable soil. Biol Fertil Soils,2010,46(8):883-889.
    [62] Ensign S.A., Hyman M.R., Arp D.J. In vitro activation of ammonia monooxygenase fromNitrosomonas europaea by copper. J Bacteriol,1993,175(7):1971-1980.
    [63] Eshel D., Gamliel A., Katan J., Grinstein A. Evaluation of soil fumigants on soilborne fungalpathogens in a controlled-environment system and in soil. Crop Prot,1999,18(7):437-443.
    [64] Fernandes S.O., Bharathi P.A.L., Bonin P.C., Michotey V.D. Denitrification: an important pathwayfor nitrous oxide production in tropical mangrove sediments (Goa, India). J Environ Qual,2010,39:1507-1516.
    [65] Gan J., Yates S.R., Ernst F.F., Jury W.A. Degradation and Volatilization of the FumigantChloropicrin after Soil Treatment. J Environ Qual,2000,29(5):1391-1397.
    [66] Gan J., Yates S.R., Wang D., Spencer W.F. Effect of Soil Factors on Methyl Bromide Volatilizationafter Soil Application. Environ Sci Technol,1996,30(5):1629-1636.
    [67] Gao S., Trout T.J., Schneider S. Evaluation of fumigation and surface seal methods on fumigantemissions in an orchard replant field. J Environ Qual,2008,37(2):369-377.
    [68] Gasser J.K.R., Peachey J.E. A note on the effects of some soil sterilants on the mineralisation andnitrification of soil-nitrogen. J Sci Food Agric,1964,15(3):142-146.
    [69] Gautier H., Auger J., Legros C., Lapied B. Calcium-Activated Potassium Channels in InsectPacemaker Neurons as Unexpected Target Site for the Novel Fumigant Dimethyl Disulfide. JPharmacol Exp Ther,2007,324(1):149-159.
    [70] Gelsomino A., Badalucco L., Landi L., Cacco G. Soil Carbon, Nitrogen and Phosphorus Dynamicsas Affected by Solarization Alone or Combined with Organic Amendment. Plant Soil,2006,279(1-2):307-325.
    [71] Gerik J.S. Evaluation of soil fumigants applied by drip irrigation for Liatris production. Plant Dis,2005,89(8):883-887.
    [72] Gerstl Z., Mingelgrin U., Yaron B. Behavior of Vapam and Methylisothiocyanate in Soils1. Soil SciSoc Am J,1977,41(3):545-548.
    [73] Giannakou I.O., Karpouzas D.G. Evaluation of chemical and integrated strategies as alternatives tomethyl bromide for the control of root-knot nematodes in Greece. Pest Manage Sci,2003,59(8):883-892.
    [74] Gilreath J.P., Motis T.N., Santos B.M., Mirusso J.M., Gilreath P.R., Noling J.W., Jones J.P.Influence of supplementary in-bed chloropicrin application on soilborne pest control in tomato(Lycopersicon esculentum). Crop Prot,2005,24(9):779-784.
    [75] Gilreath J.P., Santos B.M. Managing weeds and nematodes with combinations of methyl bromidealternatives in tomato. Crop Prot,2008,27(3-5):648-652.
    [76] Gilreath J.P., Santos B.M., Gilreath P.R., Jones J.P., Noling J.W. Efficacy of1,3-dichloropropeneplus chloropicrin application methods in combination with pebulate and napropamide in tomato.Crop Prot,2004,23(12):1187-1191.
    [77] Gilreath J.P., Santos B.M., Motis T.N., Noling J.W., Mirusso J.M. Methyl bromide alternatives fornematode and Cyperus control in bell pepper (Capsicum annuum). Crop Prot,2005,24(10):903-908.
    [78] Grossbard E. The Effect Of Repeated Field Applications Of Four Herbicides On The Evolution OfCarbon Dioxide And Mineralization Of Nitrogen In Soil. Weed Research,1971,11(4):263-275.
    [79] Gullino M.L., Camponogara A., Gasparrini G., Rizzo V., Clini C., Garibaldi A. Replacing MethylBromide for Soil Disinfestation: The ltalian Experience and Implications for Other Countries. PlantDis,2003,87(9):1012-1021.
    [80] Gullino M.L., Minuto A., Gilardi G., Garibaldi A., Ajwa H., Duafala T. Efficacy of preplant soilfumigation with chloropicrin for tomato production in Italy. Crop Prot,2002,21(9):741-749.
    [81] Gunsalus I.C., Pederson T.C., Sligar S.G. Oxygenase-catalyzed biological hydroxylations. AnnuRev Biochem,1975,44:377-407.
    [82] Gvakharia B.O., Permina E.A., Gelfand M.S., Bottomley P.J., Sayavedra-Soto L.A., Arp D.J.Global Transcriptional Response of Nitrosomonas europaea to Chloroform and Chloromethane.Appl Environ Microbiol,2007,73(10):3440-3445.
    [83] Hansen E.M., Myrold D.D., Hamm P.B. Effects of soil fumigation and cover crops on potentialpathogens, microbial activity, nitrogen availability, and seedling quality in conifer nurseries.Phytopathology,1990,80(8):698-704.
    [84] Harris D.C. A Comparison of Dazomet, Chloropicrin and Methyl Bromide as Soil Disinfestants for.Strawberries. J Hortic Sci,1991,66(0):51-58.
    [85] Haydock P.P.J., Deliopoulos T., Evans K., Minnis S.T. Effects of the nematicide1,3-dichloropropene on weed populations and stem canker disease severity in potatoes. Crop Prot,2010,29(10):1084-1090.
    [86] Hooper A.B., Terry K.R. Specific inhibitors of ammonia oxidation in Nitrosomonas. J Bacteriol,1973,115(2):480-485.
    [87] Huang Y., Tang Y. An estimate of greenhouse gas (N2O and CO2) mitigation potential undervarious scenarios of nitrogen use efficiency in Chinese croplands. Global Change Biology,2010,16(11):2958-2970.
    [88] Hyman M.R., Kim C.Y., Arp D.J. Inhibition of ammonia monooxygenase in Nitrosomonaseuropaea by carbon disulfide. J Bacteriol,1990,172(9):4775-4782.
    [89] Ibekwe A.M. Effects of Fumigants on Non-Target Organisms in Soils. Adv Agron,2004,83:1-35.
    [90] Jawson M., Franzluebbers A., Galusha D., Aiken R. Soil fumigation within monoculture androtations: Response of corn and mycorrhizae. AgronJ,1993,85:1174-1180.
    [91] Jenkinson D.S., Powlson D.S. The effects of biocidal treatments on metabolism in soil. V. Amethod for measuring soil biomass. Soil Biol Biochem,1976,8(3):209-213.
    [92] Jenkinson D.S., Powlson D.S., Wedderburn R.W.M. The effects of biocidal treatments onmetabolism in soil. III. The relationship between soil biovolume, measured by optical microscopy,and the flush of decomposition caused by fumigation. Soil Biol Biochem,1976,8(3):189-202.
    [93] Joergensen R.G., Brookes P.C. Ninhydrin-reactive nitrogen measurements of microbial biomass in0.5m K2SO4soil extracts. Soil Biol Biochem,1990,22(8):1023-1027.
    [94] Johansson C., Galbally I.E. Production of nitric oxide in loam under aerobic and anaerobicconditions. Appl Environ Microbiol,1984,47(6):1284-1289.
    [95] Jones D.L., Kemmitt S.J., Wright D., Cuttle S.P., Bol R., Edwards A.C. Rapid intrinsic rates ofamino acid biodegradation in soils are unaffected by agricultural management strategy. Soil BiolBiochem,2005,37(7):1267-1275.
    [96] Jones D.L., Shannon D., V. Murphy D., Farrar J. Role of dissolved organic nitrogen (DON) in soilN cycling in grassland soils. Soil Biol Biochem,2004,36(5):749-756.
    [97] Joye S.B., Hollibaugh J.T. Influence of Sulfide Inhibition of Nitrification on Nitrogen Regenerationin Sediments. Science,1995,270(5236):623-625.
    [98] Juliette L.Y., Hyman M.R., Arp D.J. Inhibition of Ammonia Oxidation in Nitrosomonas europaeaby Sulfur Compounds: Thioethers Are Oxidized to Sulfoxides by Ammonia Monooxygenase. ApplEnviron Microbiol,1993,59(11):3718-3727.
    [99] Kalembasa S.J., Jenkinson D.S. A comparative study of titrimetric and gravimetric methods for thedetermination of organic carbon in soil. J Sci Food Agric,1973,24(9):1085-1090.
    [100] Kenaga E.E. Some biological, chemical and physical properties of sulfuryl fluoride as aninsecticidal fumigant. J Econ Entomol,1957,50(1):1-6.
    [101] Kester R.A., De Boer W., Laanbroek H.J. Production of NO and N2O by pure cultures ofnitrifying and denitrifying bacteria during changes in aeration. Appl Environ Microbiol,1997,63(10):3872-3877.
    [102] Kinney C.A., Mandernack K.W., Mosier A.R. Laboratory investigations into the effects of thepesticides mancozeb, chlorothalonil, and prosulfuron on nitrous oxide and nitric oxide productionin fertilized soil. Soil Biol Biochem,2005,37(5):837-850.
    [103] Kinney C.A., Mosier A.R., Ferrer I., Furlong E.T., Mandernack K.W. Effects of the fungicidesmancozeb and chlorothalonil on fluxes of CO2, N2O, and CH4in a fertilized Colorado grasslandsoil. J Geophys Res,2004,109(D5):303-312.
    [104] Klemedtsson L., Svensson B.H., Rosswall T. A method of selective inhibition to distinguishbetween nitrification and denitrification as sources of nitrous oxide in soil. Biol Fertil Soils,1988,6(2):112-119.
    [105] Klose S., Ajwa H.A., Fennimore S.A., Martin F.N., Browne G.T., Subbarao K.V. Doseresponse of weed seeds and soilborne pathogens to1,3-D and chloropicrin. Crop Prot,2007,26(4):535-542.
    [106] Knowles R. Denitrification. Microbiol Rev,1982,46(1):43-70.
    [107] Kool D.M., Dolfing J., Wrage N., Van Groenigen J.W. Nitrifier denitrification as a distinct andsignificant source of nitrous oxide from soil. Soil Biol Biochem,2011,43(1):174-178.
    [108] Kurola J., Salkinoja-Salonen M., Aarnio T., Hultman J., Romantschuk M. Activity, diversityand population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil. FEMSMicrobiol Lett,2005,250(1):33-38.
    [109] Laughlin R.J., Stevens R.J. Evidence for fungal dominance of denitrification andcodenitrification in a grassland soil. Soil Sci Soc Am J,2002,66(5):1540-1548.
    [110] Lebbink G., Proper B., Nipshagen A. Accelerated degradation of1,3-dichloropropene. ActaHortic1989,255:361-371.
    [111] Lembright H.W. Soil Fumigation:Principles and Application Technology. J Nematol,199022(4S):632-644.
    [112] Lewis J.A., Papavizas G.C. Evolution of volatile sulfur-containing compounds fromdecomposition of crucifers in soil. Soil Biol Biochem,1970,2(4):239-246.
    [113] Li X., Zhang G., Xu H., Cai Z., Yagi K. Effect of timing of joint application of hydroquinoneand dicyandiamide on nitrous oxide emission from irrigated lowland rice paddy field.Chemosphere,2009,75(10):1417-1422.
    [114] Liebig M.A., Gross J.R., Kronberg S.L., Phillips R.L. Grazing management contributions tonet global warming potential: a long-term evaluation in the northern great plains. J Environ Qual,2010,39:799-809.
    [115] Locascio S.J., Gilreath J.P., Dickson D.W., Kucharek T.A., Jones J.P., Noling J.W. Fumigantalternatives to methyl bromide for polyethylene-mulched tomato. HortScience,1997,32(7):1208-1211.
    [116] Ma W., Bedardhaughn A., Siciliano S., Farrell R. Relationship between nitrifier and denitrifiercommunity composition and abundance in predicting nitrous oxide emissions from ephemeralwetland soils. Soil Biol Biochem,2008,40(5):1114-1123.
    [117] Ma W.K., Schautz A., Fishback L.-A.E., Bedard-Haughn A., Farrell R.E., Siciliano S.D.Assessing the potential of ammonia oxidizing bacteria to produce nitrous oxide in soils of a higharctic lowland ecosystem on Devon Island, Canada. Soil Biol Biochem,2007,39(8):2001-2013.
    [118] McCarty G.W. Modes of action of nitrification inhibitors. Biol Fertil Soils,1999,29(1):1-9.
    [119] McCarty G.W., Bremner J.M. Inhibition of nitrification in soil by heterocyclic nitrogencompounds. Biol Fertil Soils,1989,8(3):204-211.
    [120] McLain J.E.T., Martens D.A. Nitrous oxide flux from soil amino acid mineralization. SoilBiol Biochem,2005,37(2):289-299.
    [121] McLain, T. J.E., MARTENS, A. D. N2O production by heterotrophic N transformations in asemiarid soil. Appl Soil Ecol,2006,32(2):253-263.
    [122] Mills H., McElhannon W. Terrazole suppression of denitrification. HortScience,1984,19:54-55.
    [123] Mitsui S., Watanabe I., Honma M., Honda S. The effect of pesticides on the denitrificatitn inpaddy soil. Soil Sci Plant Nutr,1964,10(3):15-23.
    [124] Mosier A.R. Soil processes and global change. Biol Fertil Soils,1998,27(3):221-229.
    [125] Mosier A.R., Zhu Z. Changes in patterns of fertilizer nitrogen use in Asia and itsconsequences for N2O emissions from agricultural systems. Nutr Cycl Agroecosyst,2000,57(1):107-117.
    [126] Nelson D.W., Bremner J.M. Gaseous products of nitrite decomposition in soils. Soil BiolBiochem,1970,2(3):203-IN208.
    [127] Neufeld J.D., Knowles R. Inhibition of Nitrifiers and Methanotrophs from an AgriculturalHumisol by Allylsulfide and Its Implications for Environmental Studies. Appl Environ Microbiol,1999,65(6):2461-2465.
    [128] Nijburg J.W., Laanbroek H.J. The influence of Glyceria maxima and nitrate input on thecomposition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community.FEMS Microbiol Ecol,1997,22(1):57-63.
    [129] Nishimura S., Komada M., Takebe M., Yonemura S., Kato N. Nitrous oxide evolved from soilcovered with plastic mulch film in horticultural field. Biol Fertil Soils,2012:1-9.
    [130] Ntalli N.G., Menkissoglu-Spiroudi U., Giannakou I. Nematicidal activity of powder andextracts of Melia azedarach fruits against Meloidogyne incognita. Ann Appl Biol,2010,156(2):309-317.
    [131] Oka Y., Ben-Daniel B., Cohen Y. Nematicidal activity of the leaf powder and extracts ofMyrtus communis against the root-knot nematode Meloidogyne javanica. Plant Pathology,2012,61(6):1012-1020.
    [132] Omirou M., Rousidou C., Bekris F., Papadopoulou K.K., Menkissoglou-Spiroudi U., EhaliotisC., Karpouzas D.G. The impact of biofumigation and chemical fumigation methods on the structureand function of the soil microbial community. Microb Ecol,2011,61(1):201-213.
    [133] Papen H., von Berg R., Hinkel I., Thoene B., Rennenberg H. Heterotrophic nitrification byAlcaligenes faecalis: NO2-, NO3-, N2O, and NO production in exponentially growing cultures. ApplEnviron Microbiol,1989,55(8):2068-2072.
    [134] Papiernik S.K., Yates S.R., Dungan R.S., Lesch S.M., Zheng W., Guo M. Effect of surfacetarp on emissions and distribution of drip-applied fumigants. Environ Sci Technol,2004,38(16):4254-4262.
    [135] Parton W.J., Mosier A.R., Ojima D.S., Valentine D.W., Schimel D.S., Weier K., Kulmala A.E.Generalized model for N2and N2O production from nitrification and denitrification. GlobalBiogeochem Cycles,1996,10(3):401-412.
    [136] Paul J.W., Beauchamp E.G. Denitrification and fermentation in plant-residue-amended soil.Biol Fertil Soils,1989,7(4):303-309.
    [137] Payne W.J. Reduction of nitrogenous oxides by microorganisms. Microbiol Mol Biol Rev,1973,37(4):409-452.
    [138] Porter I., Brett R., Wiseman B. Alternatives to methyl bromide: chemical fumigants orintegrated pest management systems? Australas Plant Pathol,1999,28(1):65-71.
    [139] Prather M.J., McElroy M.B., Wofsy S.C. Reductions in ozone at high concentrations ofstratospheric halogens. Nature,1984,312:227-231.
    [140] Price N.R. The mode of action of fumigants. J Stored Prod Res,1985,21(4):157-164.
    [141] Qiao K., Liu X., Wang H., Xia X., Ji X., Wang K. Effect of abamectin on root-knot nematodesand tomato yield. Pest Manag Sci,2012,68(6):853-857.
    [142] Qin R., Gao S., McDonald J.A., Ajwa H., Shem-Tov S., Sullivan D.A. Effect of plastic tarpsover raised-beds and potassium thiosulfate in furrows on chloropicrin emissions from dripfumigated fields. Chemosphere,2008,72(4):558-563.
    [143] Rasche M.E., Hicks R.E., Hyman M.R., Arp D.J. Oxidation of monohalogenated ethanes andn-chlorinated alkanes by whole cells of Nitrosomonas europaea. J Bacteriol,1990,172(9):5368-5373.
    [144] Rasche M.E., Hyman M.R., Arp D.J. Biodegradation of Halogenated Hydrocarbon Fumigantsby Nitrifying Bacteria. Appl Environ Microbiol,1990,56(8):2568-2571.
    [145] Ravishankara A.R., Daniel J.S., Portmann R.W. Nitrous oxide (N2O): the dominantozone-depleting substance emitted in the21st century. Science,2009,326(5949):123-125.
    [146] Robertson G.P., tiedje J.M. Nitrous oxide sources in aerobic soils: Nitrification, denitrificationand other biological processes. Soil Biol Biochem,1987,19(2):187-193.
    [147] Ross D.J. Influence of four pesticide formulations on microbial processes in a New Zealandpasture soil.Ⅱ Nitrogen mineralization. New Zealand J AgricRes,1974,17(0):9-17.
    [148] Roux-Michollet D., Czarnes S., Adam B., Berry D., Commeaux C., Guillaumaud N., Le RouxX., Clays-Josserand A. Effects of steam disinfestation on community structure, abundance andactivity of heterotrophic, denitrifying and nitrifying bacteria in an organic farming soil. Soil BiolBiochem,2008,40(7):1836-1845.
    [149] Roux-Michollet D., Dudal Y., Jocteur-Monrozier L., Czarnes S. Steam treatment of surfacesoil: how does it affect water-soluble organic matter, C mineralization, and bacterial communitycomposition? Biol Fertil Soils,2010,46(6):607-616.
    [150] Rovira A.D., Simon A. Growth, nutrition and yield of wheat in calcareous sandy loams ofSouth Australia: Effects of soil fumigation, fungicide, nematicide and nitrogen fertilizers. Soil BiolBiochem,1985,17(3):279-284.
    [151] Russell E.J. The partial sterilization of soils. Journal of the Royal Horticultural Society,1920,45(4):237-246.
    [152] Ruzo L.O. Physical, chemical and environmental properties of selected chemical alternativesfor the pre-plant use of methyl bromide as soil fumigant. Pest Manag Sci,2006,62(2):99-113.
    [153] Sahrawat K.L. Nitrification in some tropical soils. Plant Soil,1982,65(2):281-286.
    [154] Santos B., Gilreath J., Motis T., Noling J., Jones J., Norton J. Comparing methyl bromidealternatives for soilborne disease, nematode and weed management in fresh market tomato. CropProt,2006,25(7):690-695.
    [155] Santos B.M., Gilreath J.P. Effects of propylene oxide doses on Cyperus and Belonolaimuscontrol and nutrient absorption in tomato. Crop Prot,2007,26(12):1839-1842.
    [156] Sayavedra-Soto L., Gvakharia B., Bottomley P., Arp D., Dolan M. Nitrification anddegradation of halogenated hydrocarbons—a tenuous balance for ammonia-oxidizing bacteria.Appl Microbiol Biotechnol,2010,86(2):435-444.
    [157] Schneider S.M., Rosskopf E.N., Leesch J.G., Chellemi D.O., Bull C.T., Mazzola M. UnitedStates Department of Agriculture-Agricultural Research Service research on alternatives to methylbromide: pre-plant and post-harvest. Pest Manag Sci,2003,59(6-7):814-826.
    [158] Shoun H., Kim D.-H., Uchiyama H., Sugiyama J. Denitrification by fungi. FEMS MicrobiolLett,1992,94(3):277-281.
    [159] Spokas K., Wang D. Stimulation of nitrous oxide production resulted from soil fumigationwith chloropicrin. Atmos Environ,2003,37(25):3501-3507.
    [160] Spokas K., Wang D., Venterea R. Greenhouse gas production and emission from a forestnursery soil following fumigation with chloropicrin and methyl isothiocyanate. Soil Biol Biochem,2005,37(3):475-485.
    [161] Spokas K., Wang D., Venterea R., Sadowsky M. Mechanisms of N2O production followingchloropicrin fumigation. Appl Soil Ecol,2006,31(1-2):101-109.
    [162] Stromberger M.E., Klose S., Ajwa H., Trout T., Fennimore S. Microbial Populations andEnzyme Activities in Soils Fumigated with Methyl Bromide Alternatives. Soil Sci Soc Am J,2005,69(6):1987.
    [163] Sullivan D.A., Holdsworth M.T., Hlinka D.J. Control of off-gassing rates of methylisothiocyanate from the application of metam-sodium by chemigation and shank injection. AtmosEnviron,2004,38(16):2457-2470.
    [164] Tanaka S., Kobayashi T., Iwasaki K., Yamane S., Maeda K., Sakurai K. Properties andmetabolic diversity of microbial communities in soils treated with steam sterilization comparedwith methyl bromide and chloropicrin fumigations. Soil Science&Plant Nutrition,2003,49(4):603-610.
    [165] Tateya A. Approaches for Methyl Bromide Use Reduction for Soil Treatment and CurrentSituation of Alternative Technology in Japan. Agrochem Jpn,2002,80:8-11.
    [166] Taylor A.L.M., C. W. Preliminary tests of methyl bromide as a nematocide. Proceedings of theHelminthological Society of Washington1940,7(2):94-96.
    [167] Thomas J.E., Ou L.T., Allen L.H., McCormack L.A., Vu J.C., Dickson D.W. Persistence,Distribution, and Emission of Telone C35Injected into a Florida Sandy Soil as Affected byMoisture, Organic Matter, and Plastic Film Cover. Journal of Environmental Science and Health,Part B,2004,39(4):505-516.
    [168] Triky-Dotan S., Austerweil M., Steiner B., Peretz-Alon Y., Katan J., Gamliel A. Generationand Dissipation of Methyl Isothiocyanate in Soils Following Metam Sodium Fumigation: Impacton Verticillium Control and Potato Yield. Plant Dis,2007,91(5):497-503.
    [169] UNEP. Nairobi, Kenya: United Nations Environment Programme,1998.
    [170] UNEP. Nairobi, Kenya: United Nations Environment Programme,2006.
    [171] Van Cleemput O., Baert L. Nitrite: a key compound in N loss processes under acid conditions?Plant Soil,1984,76(1):233-241.
    [172] Van Cleemput O., Samater A.H. Nitrite in soils: accumulation and role in the formation ofgaseous N compounds. Nutr Cycl Agroecosyst,1995,45(1):81-89.
    [173] Vance E.D., Brookes P.C., Jenkinson D.S. An extraction method for measuring soil microbialbiomass C. Soil Biol Biochem,1987,19(6):703-707.
    [174] Vandevivere P., Ficara E., Terras C., Julies E., Verstraete W. Copper-Mediated SelectiveRemoval of Nitrification Inhibitors from Industrial Wastewaters. Environ Sci Technol,1998,32(7):1000-1006.
    [175] Vannelli T., Logan M., Arciero D.M., Hooper A.B. Degradation of halogenated aliphaticcompounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl Environ Microbiol,1990,56(4):1169-1171.
    [176] Venterea R.T., Rolston D.E. Mechanisms and kinetics of nitric and nitrous oxide productionduring nitrification in agricultural soil. Global Change Biology,2000,6(3):303-316.
    [177] Venterea R.T., Rolston D.E. Nitric and nitrous oxide emissions following fertilizer applicationto agricultural soil: Biotic and abiotic mechanisms and kinetics. J Geophys Res,2000,105(D12):15117-15129.
    [178] Walter H., Keeney D., Fillery I. Inhibition of nitrification by acetylene. SSSAJ,1979,43:195-196.
    [179] Wang D., Rosen C., Kinkel L., Cao A., Tharayil N., Gerik J. Production of methyl sulfide anddimethyl disulfide from soil-incorporated plant materials and implications for controlling soilbornepathogens. Plant Soil,2009,324(1-2):185-197.
    [180] Webster F.A., Hopkins D.W. Contributions from different microbial processes to N2Oemission from soil under different moisture regimes. Biol Fertil Soils,1996,22(4):331-335.
    [181] Welsh C.E., Guertal E.A., Wood C.W. Effects of soil fumigation and N source on soilinorganic N and tomato growth. Nutr Cycl Agroecosyst,1998,52(1):37-44.
    [182] Wijler J., Delwiche C.C. Investigations on the denitrifying process in soil. Plant Soil,1954,5(2):155-169.
    [183] Wilhelm S., Storkan R.C., Sagen I.E. Verticillium wilt of strawberry controlled by fumigationof soil with chloropicrin and chloropicrin-methyl bromide mixtures. Phytopathology,1961,51:744-748.
    [184] Wilhelm S.N., Shepler K., Lawrence L.J., Lee H. Environmental Fate of Chloropicrin [M].Fumigants: Environmental Fate, Exposure, and Analysis. American Chemical Society.1996:79-93.
    [185] Wrage N., Velthof G.L., Laanbroek H.J., Oenema O. Nitrous oxide production in grasslandsoils: assessing the contribution of nitrifier denitrification. Soil Biol Biochem,2004,36(2):229-236.
    [186] Wrage N., Velthof G.L., Oenema O., Laanbroek H.J. Acetylene and oxygen as inhibitors ofnitrous oxide production in Nitrosomonas europaea and Nitrosospira briensis: a cautionary tale.FEMS Microbiol Ecol,2004,47(1):13-18.
    [187] Wrage N., Velthof G.L., van Beusichem M.L., Oenema O. Role of nitrifier denitrification inthe production of nitrous oxide. Soil Biol Biochem,2001,33(12-13):1723-1732.
    [188] Wright D.J., Birtle A.J., Corps A.E., Dybas R.A. Efficacy of avermectins against a plantparasitic nematode. Ann Appl Biol,1983,103(3):465-470.
    [189] Wu J., Joergensen R.G., Pommerening B., Chaussod R., Brookes P.C. Measurement of soilmicrobial biomass C by fumigation-extraction—an automated procedure. Soil Biol Biochem,1990,22(8):1167-1169.
    [190] Xue S., Gan J., Yates S.R., Becker J.O. Nematode response to methyl bromide and1,3-dichloropropene soil fumigation at different temperatures. Pest Manage Sci,2000,56(9):737-742.
    [191] Yamamoto T., Ultra Jr V.U., Tanaka S., Sakurai K., Iwasaki K. Effects of methyl bromidefumigation, chloropicrin fumigation and steam sterilization on soil nitrogen dynamics andmicrobial properties in a pot culture experiment. Soil Science&Plant Nutrition,2008,54(6):886-894.
    [192] Yan D., Wang Q., Mao L., Li W., Xie H., Guo M., Cao A. Quantification of the effects ofvarious soil fumigation treatments on nitrogen mineralization and nitrification in laboratoryincubation and field studies. Chemosphere,2013,90(3):1210-1215.
    [193] Yan D., Wang Q., Mao L., Xie H., Guo M., Cao A. Evaluation of Chloropicrin GelatinCapsule Formulation as a Soil Fumigant for Greenhouse Strawberry in China. J Agric Food Chem,2012,60(20):5023-5027.
    [194] Yates S.R., Gan J., Papiernik S.K., Dungan R., Wang D. Reducing fumigant emissions aftersoil application. Phytopathology,2002,92(12):1344-1348.
    [195] Yates S.R., Wang D., Gan J., Ernst F.F., Jury W.A. Minimizing methyl bromide emissionsfrom soil fumigation. Geophys Res Lett,1998,25(10):1633-1636.
    [196] Yeomans J.C., Bremner J.M. Denitrification in soil: Effects of herbicides. Soil Biol Biochem,1985,17(4):447-452.
    [197] Yeomans J.C., Bremner J.M. Denitrification in soil: Effects of insecticides and fungicides.Soil Biol Biochem,1985,17(4):453-456.
    [198] Yeomans J.C., Bremner J.M. Effects of dalapon, atrazine and simazine on denitrification insoil. Soil Biol Biochem,1987,19(1):31-34.
    [199] Yeomans J.C., Bremner J.M. Effects of organic solvents on denitrification in soil. Biol FertilSoils,1989,7(4):336-340.
    [200] Yung Y.L., Pinto J.P., Watson R.T., Sander S.P. Atmospheric Bromine and OzonePerturbations in the Lower Stratosphere. Journal of the Atmospheric Sciences,1980,37(2):339-353.
    [201] Zaman M., Blennerhassett J.D. Effects of the different rates of urease and nitrificationinhibitors on gaseous emissions of ammonia and nitrous oxide, nitrate leaching and pastureproduction from urine patches in an intensive grazed pasture system. Agriculture, Ecosystems&Environment,2010,136(3-4):236-246.
    [202] Zaman M., Nguyen M., Blennerhassett J., Quin B. Reducing NH3, N2O and NO3-N lossesfrom a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenousfertilizers Biol Fertil Soils,2008,44(5):693-705.
    [203] Zaman M., Saggar S., Blennerhassett J.D., Singh J. Effect of urease and nitrification inhibitorson N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptakein grazed pasture system. Soil Biol Biochem,2009,41(6):1270-1280.
    [204] Zhang C., Li G., Lin Q., Cao A., Zhao X. The dynamics of dissolved organic N in thefumigated soils. Biol Fertil Soils,2011,47(7):833-837.
    [205] Zhang W., McGiffen M.E., Becker J.O., Ohr H.D., Sims J.J., Campbell S.D. Effect of soilphysical factors on methyl iodide and methyl bromide. Pestic Sci,1998,53(1):71-79.
    [206] Zhang Y., Wang D. Emission, distribution and leaching of methyl isothiocyanate andchloropicrin under different surface containments. Chemosphere,2007,68(3):445-454.
    [207] Zhao Y., Zhang B., Feng C., Huang F., Zhang P., Zhang Z., Yang Y., Sugiura N. Behavior ofautotrophic denitrification and heterotrophic denitrification in an intensified biofilm-electrodereactor for nitrate-contaminated drinking water treatment. Bioresour Technol,2012,107:159-165.
    [208] Zheng W., Yates S.R., Papiernik S.K., Guo M. Effect of Combined Application of MethylIsothiocyanate and Chloropicrin on Their Transformation. J Environ Qual,2004,33(6):2157-2164.
    [209] Zhou Z., Takaya N., Sakairi M.A.C., Shoun H. Oxygen requirement for denitrification by thefungus Fusarium oxysporum. Arch Microbiol,2001,175(1):19-25.
    [210] Zhu X., Burger M., Doane T.A., Horwath W.R. Ammonia oxidation pathways and nitrifierdenitrification are significant sources of N2O and NO under low oxygen availability. Proceedings
    of the National Academy of Sciences,2013,110(16):6328-6333.