抗纹枯病转基因水稻的培育
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纹枯病是水稻三大病害之一,对水稻生产造成非常大的损失。由于在现有的水稻种质资源中没有发现对纹枯病完全免疫的抗源材料,也没有克隆到抗纹枯病的主效QTL,而且水稻转基因抗纹枯病缺乏很好的新的基因资源,所以水稻抗纹枯病遗传育种进展缓慢,一直没有取得重大突破。本研究主要从以下两方面着手进行探索研究:(1)对水稻来源的对真菌病原具有潜在抗性的多聚半乳糖醛酸酶抑制蛋白基因(OsPGIP)家族进行生物信息学分析和功能验证;(2)将有效霉素A生物合成途径的8个必需基因转化水稻。希望一方面可以深入分析水稻内源抗病相关基因并从中挑选出对水稻转基因抗纹枯病育种有潜在应用价值的基因;另一方面打破固有的水稻转基因抗纹枯病育种思路,将农业生产上应用得十分成熟而且有效的有效霉素A生物合成途径转入水稻,以期得到更好的抗性效果。本研究获得的主要结果如下:
     1.通过生物信息学分析,在水稻中新找到2个OsPGIP基因,它们都具有典型的LRR结构域和膜定位信号肽以及保守的半胱氨酸残基。
     2.对不同物种中PGIP基因家族做进化树分析,发现所有的禾本科植物中的PGIP基因亲缘关系比较近,单子叶和双子叶植物中的PGIP基因进化关系比较远,表明PGIP基因在进化中具有较高的保守性。
     3.对水稻籼稻品种明恢63(Minghui63,MH63)中OsPGIP基因家族成员(除了OsPGIP3)在不同组织和器官的表达谱进行了分析,结果表明这6个基因的表达模式具有多样化的特性,这可能与这些基因的功能分化有密切联系。
     4.为了验证实验室芯片数据库的结果,我们对水稻籼稻品种MH63三叶一心期幼苗中OsPGIP基因家族在不同激素处理下的表达谱进行了分析,结果表明这7个基因都对GA3,KT和NAA处理有响应。进一步对水稻粳稻品种中花11(Zhonghua11,ZH11)三叶一心期幼苗中OsPGIP基因家族在更多激素处理下的表达谱进行了分析,结果表明在粳稻中,这7个基因对ABA,BR,GA3,IAA, JA,KT和SA处理的响应情况具有多样性。
     5.对水稻粳稻品种ZH11孕穗期植株中OSPGIP基因家族在纹枯病菌接种处理后的响应情况进行了分析,结果表明除了OsPGIP6的表达量在接种后下降了,其它6个基因的表达均不同程度地被纹枯病菌接种所诱导上调。
     6.对水稻中OsPGIP基因家族成员启动子区潜在的顺式元件进行了分析,结果表明大多数的基因启动子区都存在与激素响应或者是病原诱导相关的顺式原件,这也进一步验证了前期的实验结果。
     7.对OsPGIP1,2,3,4四个基因分析了其亚细胞定位。经过基因枪转化洋葱表皮细胞和PEG介导转化水稻原生质体实验,初步确定了这4个基因均定位于细胞膜上。
     8.挑选OsPGIP1,2,3,4这4个基因分别构建超表达载体,利用农杆菌介导的水稻遗传转化,在水稻品种ZH11中进行超表达,通过对转基因植株进行southren blot和northern blot检测,证实目标基因已经整合到水稻基因组上,而且多数家系目的基因表达量与对照相比有了显著升高。将单拷贝而且表达量高的转基因家系挑选出来进行后续研究。
     9.转基因植株经过2年大田接种纹枯病菌实验,结果表明OsPGIP1和OsPGIP4的部分转基因阳性株系与转基因阴性和野生型对照以及感病对照相比对水稻纹枯病菌的抗性都有显著提高,预示着这2个基因在抗纹枯病转基因育种中有潜在的应用价值。
     10.将有效霉素A生物合成途径的8个必需基因每一个都分别接上一个能在植物中表达的启动子,然后两两构建入一个表达载体(共构建4个载体),最后通过农杆菌介导的水稻遗传转化,将其转入水稻ZH11,得到了转基因植株。通过对转基因植株进行southern blot和northern blot检测,证实目标基因已经整合到水稻基因组上,而且多数家系目的基因表达量非常高。将单拷贝而且表达量高的转基因家系挑选出来作为杂交聚合的亲本。
     11.经过杂交聚合,得到了8基因聚合的植株,通过real-time PCR检测,显示在部分8基因聚合的植株中目标基因均有比较高的表达量,但是经过初步检测,在8基因聚合的阳性植株中没有检测到最终产物有效霉素A的存在。
Sheath blight was one of the three major diseases of rice. It caused great losses in rice production every year. The breeding progress for sheath blight resistance was very slow and so far no break-through had been made. The major reasons could be:(1) no rice varieties had been found to be completely immune to Rhizoctonia solani;(2) no major resistance QTLs had been identified to sheath blight;(3) lack of new resistance genes for transgenic rice breeding to sheath blight. In this study, we focused on the following two aspects:(1) bioinformatic analysis and functional characterization of the rice-derived polygalacturonase-inhibiting protein (OsPGIP) gene family that could be resistant to rice sheath blight;(2) transformation of8val genes that were essential for the biosynthetic pathway of validamycin A into rice. On one hand, we expected that we could identify important endogenous defense-responsive genes, which had potential applications in transgenic breeding against rice sheath blight. On the other hand, we aimed to try a new approach for rice sheath blight resistance transgenic breeding. The main results obtained in this study were as follows:
     1.2OsPGIP genes were newly identified in rice by using bioinformatic analysis, which all have the typical LRR domain, signal peptides directed to the membrane and conserved cysteine residues.
     2. An unrooted phylogenetic tree was generated by using the alignments of the PGIP amino acid sequences from different species. The results showed that all the PGIP from the Gramineae among monocot plants were in the same group, while the PGIP from monocot and dicot had a far relation. All these results might provide an evidence for the genetic evolution of PGIP from different species were conserved.
     3. The expression profiles of OsPGIP gene family (OsPGIP'3not included) in different tissues and organs throughout the entire life cycle of indica rice variety MH63were analyzed. The results showed that the expression patterns of these6genes were variable, which indicated that these6genes might play different roles in the development of rice.
     4. In order to confirm the results of the microarray database, we treated indica rice MH63with GA3, KT and NAA at trefoil stage. The expression profiles of these7genes were analyzed. The results showed that all7genes could respond to GA3, KT and NAA treatments. We also detected the responses of OsPGIP genes in japonica rice Zhonghua11to ABA, BR, GA3, IAA, JA, KT and SA treatments. The results showed that the responses of OsPGIP genes in japonica rice to different phytohormone treatments were complicated and diversified.
     5. In order to obtain the information about responses of the OsPGIP gene family in rice to Rhizoctonia solani, we inoculated rice japonica variety ZH11with Rhizoctonia solani at booting stage. The results showed that except of the decreased expression of OsPGIP6, all the other six genes were up-regulated after inoculation.
     6. To evaluate the different expression patterns and various responses to stresses of OsPGIP genes in japonica rice, putative cis-elements in the promoter regions were checked. The results showed that most OsPGIP promoters contained at least one cis-acting regulatory element associated with pathogen or phytohormone responses, which was in accordance with the different expression patterns of OsPGIP genes.
     7. We analyzed the subcellular localization of OsPGIP1,2,3and4by bombardment of the onion epidermal and transformation rice protoplasts by using PEG. The results showed that all four genes were localized on the cell membrane.
     8. We transformed OsPGIP1,2,3and4into rice and analyzed the transgenic plants by using southern blotting and northern blotting. The results showed that all four genes were integrated into the rice genome, and in some transgenic plants, the expression of each gene was significantly increased compared to the control plants. We selected highly-expressed transgenic plants with a single copy for follow-up studies.
     9. The resistance level of transgenic plants to Rhizoctonia solani was tested for two years in the field trial. Results showed that some of the OsPGIP1and4transgenic lines were more resistant to sheath blight compared to the negative transgenic control, the wild-type control and the susceptible variety control. This indicated that OsPGIPI and4might be useful for application in transgenic breeding against rice sheath blight.
     10. In addition, in order to build a novel validamycin A biosynthesis pathway in rice, eight necessary genes were transformed into the rice genome. Those eight genes, each driven by a rice derived promoter, were first constructed, and then two expression cassettes were put into a transformation vector, resulting four transformation vectors. All these vectors were transformed to rice with Agrobacterium-mediated rice transformation method individually to obtain transgenic plants. Transgenic plants were then analyzed by southern blotting and northern blotting. Results showed that all eight genes had been successfully integrated into the rice genome, and the expression levels of target genes in some transgenic lines were very high. We selected highly-expressed transgenic plants with a single copy as hybridization parents.
     11. We pyramided all eight genes by genetically crosses and tested the hybrids by real-time PCR. Results showed that all eight genes were abundantly expressed in some transgenic lines, however, we could not detect the existence of validamycin A using present available methods.
引文
1.陈久仁.影响井冈霉素发酵效价,生产力和碳素转化因素的探讨.浙江农业学报,1992,3:010
    2.陈志谊,殷尚智,陆凡,陈毓苓,史阿宝.稻种资源对水稻纹枯病抗性鉴定初报.植物保护,1994,06:23
    3.陈宗祥,邹军煌,徐敬友,童蕴慧,汤述翥,王子斌,蒋日民,凌兵,唐进,潘学彪.对水稻纹枯病抗源的初步研究.中国水稻科学,2000,14:15-18
    4.陈宗祥,左示敏,王龙平,朱俊凯,张亚芳,王辉,马玉银,潘学彪.江苏省“十五”前后主栽粳稻品种纹枯病抗性评价.扬州大学学报(农业与生命科学版),2010,02:31-35
    5.高志新.水稻纹枯病抗源筛选初报.盐碱地利用,1986,02:7-10
    6.关文碧,王晨,张红艳.高效液相色谱-串联质谱法测定稻米和稻壳井冈霉素A的残留.分析科学学报,2012,28:136-138
    7.胡春锦,黄思良,岑贞陆,谢玲.深水稻品种对稻纹枯病抗性鉴定初报.植物保护,2003,04:19-22
    8.黄世文,王玲,黄雯雯,刘连盟.水稻主要病虫害“傻瓜”式防控技术理论与实践.中国稻米,2009,4:13-15
    9.黄雯雯,王玲,刘连盟,刘恩勇,范锃岚,黄世文.安徽省部分水稻品种(组合)对纹枯病的苗期抗性评价.中国稻米,2011,01:21-24
    10.蹇晓红.吸水链霉菌10-22与5008中井岗霉素生物合成机理的研究.[博士学位论文].上海:上海交通大学,2008
    11.李兰波,王政逸,陈卫良,余丽琴,何烈干.江西省水稻种质资源对纹枯病的抗性评价.中国稻米,2011,03:9-10
    12.李磊.吸水链霉菌5008中井冈霉素生物合成机理的研究.[博士学位论文].上海:上海交通大学,2008
    13.廖皓年,肖陵生,王华生.水稻纹枯病发生历史及演变原因简析.广西植保,1997,3:35-38
    14.廖晓殉.井冈霉素产生菌的诱变选育及发酵条件优化.[硕士学位论文].四川:四 川大学,2007
    15.廖晓殉,陶科,侯太平.井冈霉素产生菌的诱变选育及发酵条件优化.四川大学学报(自然科学版),2008,45:963-966
    16.廖悦乔.发酵温度对有效霉素生物合成的影响.[硕士学位论文].上海:上海交通大学,2008
    17.刘永峰,陈志谊,吉健安,刘邮洲.江苏省水稻主栽及区试品种对水稻纹枯病的抗性分析.江苏农业科学,2006,01:27-28
    18.娄性忠,程爱民,黄德明.贵州省糯稻遗传资源研究-Ⅲ:贵州省糯稻地方品种对水稻纹枯病的抗性.耕作与栽培,1995,05:56-57
    19.彭绍裘.水稻纹枯病及其防治.上海:上海科学技术出版社,1986
    20.上海市农药研究所农用抗菌素组.井岗霉素产生菌的鉴定.微生物学报,1975,02:110-113
    21.沈赤.农用抗生素井冈霉素发酵工艺条件的改革试验.抗生素,1981,06:9-21
    22.沈赤.井冈霉素亲水型制剂及其应用研究.农药,1983,05:4-5
    23.沈寅初.农用抗生素-井冈霉素开发研究.抗生素,1981,6:58-61
    24.沈寅初.农用抗生素研究开发的新进展.国外医药:抗生素分册,1998,19:155-160
    25.王子斌,左示敏,李刚,陈夕军,陈宗祥,张亚芳,潘学彪.水稻抗纹枯病苗期快速鉴定技术研究.植物病理学报,2009a,39:174-182
    26.王子斌,左示敏,李刚,陈夕军,陈宗祥,张亚芳,潘学彪.水稻纹枯病几种田间病级调查标准的比较研究.扬州大学学报:农业与生命科学版,2009b,30:57-62
    27.吴杭.井冈霉素高产的比较功能基因组研究.[博士学位论文].上海:上海交通大学,2012
    28.吴庆安.阿维菌素B1和井冈霉素衍生物的合成及其生物活性研究.[博士学位论文].浙江:浙江工业大学,2004
    29.徐慧.井冈霉素的生物合成及途径改造.[博士学位论文].上海:上海交通大学,2009
    30.杨家珍.筛选水稻抗纹枯病抗源品种的研究.安徽农业科学,1982,02:62-65
    31.袁筱萍,魏兴华,余汉勇,王一平,汤圣祥.不同品种及有关外因对水稻纹枯病 抗性的影响.作物学报,2004,08:768-773
    32.张楷正,李平,李娜,向殉朝.水稻抗纹枯病种质资源、抗性遗传和育种研究进展.分子植物育种,2006,05:713-720
    33.张楷正,明红梅,李平.我国南方稻区水稻骨干亲本纹枯病抗性鉴定与分析.植物保护,2008,01:45-48
    34.张茜茜.井冈霉素高产菌株的诱变育种与发酵条件的研究:[硕士学位论文].武汉:湖北工业大学,2009
    35.章亦荣.井冈霉素与杀念菌素生物合成基因的功能研究.[博士学位论文].上海:上海交通大学,2009
    36.周祥.井冈霉素生物合成限速步骤解析及高产.[博士学位论文].上海:上海交通大学,2011
    37.左示敏,张亚芳,陈宗祥,陈夕军,潘学彪.水稻抗纹枯病遗传育种研究进展.中国科学:生命科学,2010,1014-1023
    38. Agueero CB, Uratsu SL, Greve C, Powell AL, Labavitch JM, Meredith CP, Dandekar AM. Evaluation of tolerance to Pierce's disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene. Mol Plant Pathol,2005,6:43-51
    39. Ahsan N, Yoon HS, Jo J. Molecular cloning of a BcPGIP cDNA from Brassica campestris and its expression to several stresses. Plant Sci,2005,169:1081-1089
    40. Albersheim P, Anderson AJ. Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens. Proc Natl Acad Sci USA,1971,68:1815-1819
    41. Alghisi P, Favaron F. Pectin-degrading enzymes and plant-parasite interactions. Eur J Plant Pathol,1995,101:365-375
    42. Amante A, Pena R, Sitch L, Leung H, Mew T. Sheath blight (ShB) resistance in wild rices. Int Rice Res Newsl,1990,15:5
    43. Asamizu S, Yang J, Almabruk KH, Mahmud T. Pseudoglycosyltransferase catalyzes nonglycosidic C-N coupling in validamycin A biosynthesis. J Am Chem Soc,2011, 133:12124-12135
    44. Asano N, Takeuchi M, Kameda Y, Matsui K, Kono Y. Trehalase inhibitors, validoxylamine A and related compounds as insecticides.J Antibiot,1990,43: 722-726
    45. Asano N, Tanaka K, Kameda Y, Matsui K. All eight possible mono-beta-D-glucosides of validoxylamine A. Ⅱ. Biological activities. JAntibiot,1991,44:1417-1421
    46. Asano N, Yamaguchi T, Kameda Y, Matsui K. Effect of validamycins on glycohydrolases of Rhizoctonia solani. JAntibiot,1987,40:526-532
    47. Bai L, Li L, Xu H, Minagawa K, Yu Y, Zhang Y, Zhou X, Floss HG, Mahmud T, Deng Z. Functional analysis of the validamycin biosynthetic gene cluster and engineered production of validoxylamine A. Chem biol,2006,13:387-397
    48. Baisakh N, Datta K, Oliva N, Ona I, Rao G, Mew T, Datta S. Rapid development of homozygous transgenic rice using anther culture harboring rice chitinase gene for enhanced sheath blight resistance. Plant Biotechnol,2001,18:101-108
    49. Bala R, Goel R. Detection of sources of multiple disease resistance in different Oryza species. JRes,2007,44:110-112
    50. Bateman D, Basham H. Degradation of plant cell walls and membranes by microbial enzymes. Physiol Plant Pathol,1976:316-355
    51. Belien T, Van Campenhout S, Robben J, Volckaert G. Microbial endoxylanases: Effective weapons to breach the plant cell-wall barrier or, rather, triggers of plant defense systems? Mol Plant Microbe Interaction,2006,19:1072-1081
    52. Bergey DR, Orozco CM, De Moura DS, Ryan CA. A wound-and systemin-inducible polygalacturonase in tomato leaves. Proc Natl Acad Sci USA,1999,96:1756-1760
    53. Bernier J, Kumar A, Venuprasad R, Spaner D, Verulkar S, Mandal NP, Sinha PK, Peeraju P, Dongre PR, Mahto R. Characterization of the effect of a QTL for drought resistance in rice, qt112.1, over a range of environments in the Philippines and eastern India. Euphytica,2009,166:207-217
    54. Biswas A. Resistance of rice germplasm to sheath blight disease in West Bengal, India. Environ Ecol,1999,17:1039-1040
    55. Bonman J, Khush G, Nelson R. Breeding rice for resistance to pests. Annu Rev Phytopathol,1992,30:507-528
    56. Borah P, Baruah DK, Ali MS, Kalita UC, Hazarika MH. Evaluation of indigenous Ahu rice germplasm for resistance to leaf blast, bacterial blight and sheath blight diseases. JAgric Sci Soc North East India,1994,7:111-113
    57. Bruce RJ, West CA. Elicitation of casbene synthetase activity in castor bean The role of pectic fragments of the plant cell wall in elicitation by a fungal endopolygalacturonase. Plant Physiol,1982,69:1181-1188
    58. Carling D, Baird R, Gitaitis R, Brainard K, Kuninaga S. Characterization of AG-13, a newly reported anastomosis group of Rhizoctonia solani. Phytopathology,2002a,92: 893-899
    59. Carling D, Kuninaga S, Brainard K. Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology,2002b,92:43-50
    60. Carling D, Pope E, Brainard K, Carter D. Characterization of mycorrhizal isolates of Rhizaoctonia solani from an orchid,including AG-12, a new anastomosis group. Phytopathology,1999,89:942-946
    61. Castilla N, Leano R, Elazhour F, Teng P, Savary S. Effects of plant contact, inoculation pattern, leaf wetness regime, and nitrogen supply on inoculum efficiency in rice sheath blight. JPhytopathol,1996,144:187-192
    62. Cervone F, Castoria R, Leckie F, De Lorenzo G. Perception of fungal elicitors and signal transduction. Signal transduction in plants:Springer,1996:153-177.
    63. Cervone F, Hahn MG, De Lorenzo G, Darvill A, Albersheim P. Host-pathogen interactions XXXIII. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses. Plant Physiol,1989,90:542-548
    64. Channamallikarjuna V, Sonah H, Prasad M, Rao G, Chand S, Upreti H, Singh N, Sharma T. Identification of major quantitative trait loci qSBRll-1 for sheath blight resistance in rice. Mol Breeding,2010,25:155-166
    65. Che K, Zhan Q, Xing Q, Wang Z, Jin D, He D, Wang B. Tagging and mapping of rice sheath blight resistant gene. Theor Appl Genet,2003,106:293-297
    66. Cheng Q, Cao Y, Pan H, Wang M, Huang M. Isolation and characterization of two genes encoding polygalacturonase-inhibiting protein from Populus deltoides. J Genet Genomics,2008,35:631-638
    67. Collmer A, Keen NT. The role of pectic enzymes in plant pathogenesis. Annu Rev Phytopathol,1986,24:383-409
    68. Cooper RM, Wood R. Regulation of synthesis of cell wall degrading enzymes by Veticillium albo-atrum and Fusarium oxysporum f. sp. lycopersici. Physiol Plant Pathol,1975,5:135-156
    69. Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol,2005,6:850-861
    70. D'Ovidio R, Mattei B, Roberti S, Bellincampi D. Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant-pathogen interactions. BBA Proteins Proteom,2004a,1696:237-244
    71. D'Ovidio R, Raiola A, Capodicasa C, Devoto A, Pontiggia D, Roberti S, Galletti R, Conti E, O'Sullivan D, De Lorenzo G. Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. Plant Physiol,2004b,135:2424-2435
    72. Datta K, Baisakh N, Thet KM, Tu J, Datta S. Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem border and sheath blight. Theor Appl Genet,2002,106:1-8
    73. Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK. Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci,2001,160:405-414
    74. Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush G, Muthukrishnan S, Datta S. Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet,1999,98:1138-1145
    75. De Lorenzo G, Castoria R, Bellincampi D, Cervone F. Fungal invasion enzymes and their inhibition. Plant Relationships:Springer,1997:61-83
    76. De Lorenzo G, Cervone F. Polygalacturonase-inhibiting proteins (PGIPs):their role in specificity and defense against pathogenic fungi. Plant-microbe interactions: Springer,1997:76-93
    77. De Lorenzo G, D'Ovidio R, Cervone F. The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annu Rev Phytopathol,2001, 39:313-335
    78. De Lorenzo G, Ferrari S. Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi. Curr Opin Plant Biol,2002,5:295-299
    79. De Vries RP, Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev,2001,65:497-522
    80. Degwert U, Van Hiilst R, Pape H, Herrold RE, Beale JM, Keller PJ, Lee JP, Floss HG. Studies on the biosynthesis of the alpha-glucosidase inhibitor acarbose:valienamine, an C7N unit not derived from the shikimate pathway. J Antibiot,1987,40:855
    81. Di Matteo A, Bonivento D, Tsernoglou D, Federici L, Cervone F. Polygalacturonase-inhibiting protein (PGIP) in plant defence:a structural view. Phytochemistry,2006,67:528-533
    82. Di Matteo A, Federici L, Mattei B, Salvi G, Johnson K, Savino C, De Lorenzo G, Tsernoglou D, Cervone F. The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defense. Proc Natl Acad Sci USA,2003,100:10124-10128
    83. Dievart A, Clark SE. LRR-containing receptors regulating plant development and defense. Development,2004,131:251-261
    84. Dong HJ, Mahmud T, Tornus I, Lee S, Floss HG. Biosynthesis of the validamycins: Identification of intermediates in the biosynthesis of validamycin A by Streptomyces hygroscopicus var. limoneus. JAm Chem Soc,2001,123:2733-2742
    85. Eizenga G, Agrama H, Lee F, Jia Y. Exploring genetic diversity and potential novel disease resistance genes in a collection of rice (Oryza spp.) wild relatives. Genet Resour Crop Evolution,2009,56:65-76
    86. Eizenga G, Lee F, Rutger J. Screening Oryza species plants for rice sheath blight resistance. Plant Dis,2002,86:808-812
    87. Esquerre-Tugaye MT, Boudart G, Dumas B. Cell wall degrading enzymes, inhibitory proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens. Plant Physiol Biochem,2000,38:157-163
    88. Federici L, Di Matteo A, Fernandez-Recio J, Tsernoglou D, Cervone F. Polygalacturonase inhibiting proteins:players in plant innate immunity? Trends Plant Sci,2006,11:65-70
    89. Ferrari S, Vairo D, Ausubel FM, Cervone F, De Lorenzo G. Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell,2003,15:93-106
    90. Fielding AH. Natural inhibitors of fungal polygalacturonases in infected fruit tissues. J Gen Microbiol,1981,123:377-381
    91. Fish WW, Davis AR. The purification, physical/chemical characterization, and cDNA sequence of cantaloupe fruit polygalacturonase-inhibiting protein. Phytopathology, 2004,94:337-344
    92. Gao S, Shain L. Activity of polygalacturonase produced by Cryphonectria parasitica in chestnut bark and its inhibition by extracts from American and Chinese chestnut. Physiol Mol Plant Pathol,1995,46:199-213
    93. Gomathi V, Gnanamanickam SS. Polygalacturonase-inhibiting proteins in plant defence. Curr Sci,2004,87:1211-1217
    94. Han YP, Xing YZ, Chen ZX, Gu SL, Pan XB, Chen XL, Zhang QF. Mapping QTLs for horizontal resistance to sheath blight in an elite rice restorer line, Minghui 63. Acta Genetica Sin,2002,29:622-626
    95. Have AT, Mulder W, Visser J, van Kan JA. The endopolygalacturonase gene Bcpgl is required for full virulence of Botrytis cinerea. Mol Plant Microbe Interaction,1998, 11:1009-1016
    96. Hegedus DD, Li R, Buchwaldt L, Parkin I, Whitwill S, Coutu C, Bekkaoui D, Rimmer SR. Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense hormone treatment. Planta,2008,228: 241-253
    97. Hein. Reaction of germplasm to sheath blight of rice. Myanmar JAgric Sci,1990,2: 1-12
    98. Hernandez I, Portieles R, Chacon O, Borras-Hidalgo O. Proteins and peptides for the control of phytopathogenic fungi. Biotecnol Aplicada,2005,22:256-260
    99. Hua L, Cheng Yan S, WanBiao C, GuiLing W. Evaluation and screening of resistance in keng rice varieties to sheath blight. Plant Protect,2000,26:19-21
    100.Huang Q, Allen C. Polygalacturonases are required for rapid colonization and full virulence of Ralstonia solanacearum on tomato plants. Physiol Mol Plant Pathol, 2000,57:77-83
    101.Idnurm A, Howlett BJ. Pathogenicity genes of phytopathogenic fungi. Mol Plant Pathol,2001,2:241-255
    102.IRRI. Annual report for 1987. International Rice Resarch Institute, Los Banos, Philippines,1987
    103.IRRI. Annual report for 1992. International Rice Resarch Institute, Los Banos, Philippines,1992
    104.Isshiki A, Akimitsu K, Yamamoto M, Yamamoto H. Endopolygalacturonase is essential for citrus black rot caused by Alternaria citri but not brown spot caused by Alternaria alternata. Mol Plant Microbe Interaction,2001,14:749-757
    105.Iwasa T, Yamamoto H, Shibata M. Studies on validamycins, new antibiotics. I. Streptomyces hygroscopicus var. limoneus nov. var., validamycin-producing organism. J Antibiot,1970,23:595-602
    106.James WC. Assessment of plant diseases and losses. Annu Rev Phytopathol,1974,12: 27-48
    107.Jang S, Lee B, Kim C, Kim SJ, Yim J, Han JJ, Lee S, Kim SR, An G. The OsFORl gene encodes a polygalacturonase-inhibiting protein (PGIP) that regulates floral organ number in rice. Plant Mol Biol,2003,53:357-372
    108.Janni M, Di Giovanni M, Roberti S, Capodicasa C, D'Ovidio R. Characterization of expressed PGIP genes in rice and wheat reveals similar extent of sequence variation to dicot PGIPs and identifies an active PGIP lacking an entire LRR repeat.Theor Appl Genet,2006,113:1233-1245
    109.Janni M, Sella L, Favaron F, Blechl AE, De Lorenzo G, D'Ovidio R. The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol Plant Microbe Interaction,2008,21:171-177
    110.Jha S, Chattoo BB. Transgene stacking and coordinated expression of plant defensins confer fungal resistance in rice. Rice,2009,2:143-154
    111.Jha S, Chattoo BB. Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res,2010,19:373-384
    112.Jha S, Tank HG, Prasad BD, Chattoo BB. Expression of Dm-AMP 1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani. Transgenic Res,2009,18: 59-69
    113.Jia Y, Correa-Victoria F, McClung A, Zhu L, Liu G, Wamishe Y, Xie J, Marchetti M, Pinson S, Rutger J. Rapid determination of rice cultivar responses to the sheath blight pathogen Rhizoctonia solani using a micro-chamber screening method. Plant Dis, 2007,91:485-489
    114.Jian X, Pang X, Yu Y, Zhou X, Deng Z. Identification of genes necessary for jinggangmycin biosynthesis from Streptomyces hygroscopicus 10-22. Antonie Van Leeuwenhoek,2006,90:29-39
    115.Joubert DA, Kars I, Wagemakers L, Bergmann C, Kemp G, Vivier MA, van Kan JA. A polygalacturonase-inhibiting protein from grapevine reduces the symptoms of the endopolygalacturonase BcPG2 from Botrytis cinerea in Nicotiana benthamiana leaves without any evidence for in vitro interaction. Mol Plant Microbe Interaction, 2007,20:392-402
    116.Joubert DA, Slaughter AR, Kemp G, Becker JV, Krooshof GH, Bergmann C, Benen J, Pretorius IS, Vivier MA. The grapevine polygalacturonase-inhibiting protein (VvPGIP1) reduces Botrytis cinerea susceptibility in transgenic tobacco and differentially inhibits fungal polygalacturonases. Transgenic Res,2006,15:687-702
    117.Juge N. Plant protein inhibitors of cell wall degrading enzymes. Trends Plant Sci, 2006,11:359-367
    118.Kalpana K, Maruthasalam S, Rajesh T, Poovannan K, Kumar KK, Kokiladevi E, Raja JA, Sudhakar D, Velazhahan R, Samiyappan R. Engineering sheath blight resistance in elite indica rice cultivars using genes encoding defense proteins. Plant Sci,2006, 170:203-215
    119.Kameda Y, Asano N, Yamaguchi T, Matsui K. Validoxylamines as trehalase inhibitors. JAntibiot,1987,40:563-565
    120.Kameda Y, Asano N, Yamaguchi T, Matsui K, Horii S, Fukase H. Validamycin G and validoxylamine G, new members of the validamycins. J Antibiot,1986,39: 1491-1494
    121.Kim JK, Jang IC, Wu R, Zuo WN, Boston RS, Lee YH, Ahn IP, Nahm BH. Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Res,2003,12:475-484
    122.Krishnamurthy K, Balconi C, Sherwood JE, Giroux MJ. Wheat puroindolines enhance fungal disease resistance in transgenic rice. Mol Plant Microbe Interaction, 2001,14:1255-1260
    123.Kumar KK, Poovannan K, Nandakumar R, Thamilarasi K, Geetha C, Jayashree N, Kokiladevi E, Raja JA, Samiyappan R, Sudhakar D. A high throughput functional expression assay system for a defence gene conferring transgenic resistance on rice against the sheath blight pathogen, Rhizoctonia solani. Plant Sci,2003,165:969-976
    124.Kumari SL, Joseph T, Nayr NK, Niza TJ. Field tolerance levels of indica rice varieties for major diseases of Kerala. Crop Res (Hisar),1998,15:112-114
    125.Kunihiro Y, Qian Q, Sato H, Teng S, Zeng DL, Fujimoto K, Zhu L. QTL analysis of sheath blight resistance in rice(Oryza sativa L.). Acta Genetica Sin,2002,29:50
    126.Lagaert S, Belien T, Volckaert G. Plant cell walls:Protecting the barrier from degradation by microbial enzymes. Semin Cell Dev Biol,2009,20:1064-1073
    127.Lakshmanan P, Velusamy R. Resistance to sheath blight (ShB) and brown spot (BS) in lines derived from Oryza officinalis. Int Rice Res Newsl,1991,16:8
    128.Lee FN, Rush M. Rice sheath blight:A major rice disease. Plant Dis,1983,67: 829-833
    129.Lee S, Sauerbrei B, Niggemann J, Egelkrout E. Biosynthetic studies on the alpha-glucosidase inhibitor acarbose in Actinoplanes sp.:source of the maltose unit. J Antibiot,1997,50:954
    130.Li P, Pei Y, Sang X, Ling Y, Yang Z, He G. Transgenic indica rice expressing a bitter melon (Momordica charantia) class I chitinase gene (McCHIT1) confers enhanced resistance to Magnaporthe grisea and Rhizoctonia solani. Eur J Plant Pathol,2009, 125:533-543
    131.Li R, Rimmer R, Yu M, Sharpe AG, Seguin-Swartz G, Lydiate D, Hegedus DD. Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses. Planta,2003,217:299-308
    132.Li Z, Pinson S, Marchetti M, Stansel J, Park W. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theor Appl Genet,1995,91:382-388
    133.Lin W, Anuratha C, Datta K, Potrykus I, Muthukrishnan S, Datta SK. Genetic engineering of rice for resistance to sheath blight. Nat Biotechnol,1995,13:686-691
    134.Liu G, Jia Y, Correa-Victoria FJ, Prado G, Yeater K, McClung A, Correll J. Mapping quantitative trait loci responsible for resistance to sheath blight in rice. Phytopathology,2009,99:1078-1084
    135.Liu Z, Sinclair J. Differentiation of intraspecific groups within anastomosis group 1 of Rhizoctonia solani using ribosomal DNA internal transcribed spacer and isozyme comparisons. Can J Plant Pathol,1993,15:272-280
    136.Mahmud T, Lee S, Floss HG. The biosynthesis of acarbose and validamycin. Chem Rec,2001,1:300-310
    137.Mahmud T, Tornus I, Egelkrout E, Wolf E, Uy C, Floss HG, Lee S. Biosynthetic studies on the a-glucosidase inhibitor acarbose in Actinoplanes sp.: 2-epi-5-epi-valiolone is the direct precursor of the valienamine moiety. J Am Chem Soc,1999,121:6973-6983
    138.Manfredini C, Sicilia F, Ferrari S, Pontiggia D, Salvi G, Caprari C, Lorito M, Lorenzo GD. Polygalacturonase-inhibiting protein 2 of Phaseolus vulgaris inhibits BcPGl, a polygalacturonase of Botrytis cinerea important for pathogenicity, and protects transgenic plants from infection. Physiol Mol Plant pathol,2005,67: 108-115
    139.Markovic O, Janecek S. Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution. Protein Eng,2001,14: 615-631
    140.Martin GB, Bogdanove AJ, Sessa G. Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol,2003,54:23-61
    141.Maruthasalam S, Kalpana K, Kumar K, Loganathan M, Poovannan K, Raja J, Kokiladevi E, Samiyappan R, Sudhakar D, Balasubramanian P. Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight. Plant Cell Rep,2007,26:791-804
    142.Meena B, Ramamoorthy V, Banu J, Thangavelu R, Muthusamy M. Screening of rice genotypes against sheath blight disease. JEcobiol,2000,12:103-109
    143.Mehli L, Schaart JG, Kjellsen TD, Tran DH, Salentijn EM, Schouten HJ, Iversen TH. A gene encoding a polygalacturonase-inhibiting protein (PGIP) shows developmental regulation and pathogen-induced expression in strawberry. New Phytol,2004,163: 99-110
    144.Mew TW, Leung H, Savary S, Vera Cruz CM, Leach JE. Looking ahead in rice disease research and management. Crit Rev Plant Sci,2004,23:103-127
    145.Minagawa K, Zhang Y, Ito T, Bai L, Deng Z, Mahmud T. ValC, a new type of C7-cyclitol kinase involved in the biosynthesis of the antifungal agent validamycin A. Chembiochem,2007,8:632-641
    146.Mishra AK, Sharma K, Misra RS. Elicitor recognition, signal transduction and induced resistance in plants. J Plant Interaction,2012,7:95-120
    147.Mohammadi M, Banihashemi M, Hedjaroude GA, Rahimian H. Genetic diversity among Iranian isolates of Rhizoctonia solani Kuhn anastomosis group1 subgroups based on isozyme analysis and total soluble protein pattern. JPhytopathol,2003,151: 162-170
    148.Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol,2008,11: 266-277
    149.Montesinos E. Antimicrobial peptides and plant disease control. FEMS Microbiol Lett,2007,270:1-11
    150.Mosaddeque H, Talukder M, Islam M, Amin A, Alam M. Screening of some restorer and maintainer hybrid rice lines against sheath blight (Rhizoctoni solani). J Soil Nat, 2008,2:23-29
    151.Nandakumar R, Babu S, Kalpana K, Raguchander T, Balasubramanian P, Samiyappan R. Agrobacterium-mediated transformation of indica rice with chitinase gene for enhanced sheath blight resistance. Biol Plant,2007,51:142-148
    152.Oelofse D, Dubery IA, Meyer R, Arendse MS, Gazendam I, Berger DK. Apple polygalacturonase inhibiting proteinl expressed in transgenic tobacco inhibits polygalacturonases from fungal pathogens of apple and the anthracnose pathogen of lupins. Phytochemistry,2006,67:255-263
    15. Pan X, Zou J, Chen Z, Lu J,Yu H, Li H,Wang Z,Pan X, Rush M,Zhu L.Tagging major quantitative trait loci for sheath blight resistance in a rice variety, Jasmine 85. Chin Sci Bull,1999,44:1783-1789
    154.Park D-S, Sayler RJ, Hong YG, Nam MH, Yang Y. A method for inoculation and evaluation of rice sheath blight disease. Plant Dis,2008,92:25-29
    155.Patkar RN, Chattoo BB. Transgenic indica rice expressing ns-LTP-like protein shows enhanced resistance to both fungal and bacterial pathogens. Mol Breeding,2006,17: 159-171
    156.Pinson SR, Capdevielle FM, Oard JH. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Sci, 2005,45:503-510
    157.Powell AL, van Kan J, ten Have A, Visser J, Greve LC, Bennett AB, Labavitch JM. Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant Microbe Interaction,2000,13:942-950
    158.Prasad B, Eizenga G. Rice sheath blight disease resistance identified in Oryza spp. accessions. Plant Dis,2008,92:1503-1509
    159.Ram T, Ansari M. Preliminary screening of rice cultures against major diseases. J Andaman Sci Assoc,1990,6:53-54
    160.Ram T, Majumder ND, Laha GS, Ansari MM, Kar CS, Mishra B. Identification of donors for sheath blight resistance in wild species of rice. Indian J Genet Plant Breed, 2008,68:317-319
    161.Ridley BL, O'Neill MA, Mohnen D. Pectins:structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry,2001,57:929-967
    162.Robertsen B. Elicitors of the production of lignin-like compounds in cucumber hypocotyls. Physiol Mol Plant Pathol,1986,28:137-148
    163.Rush MC, Mcllrath WO. An uniform disease rating system for rice disease in the United States. Proc 16th Rice Tech Working Group, Lake Charles, Louisiana, USA, 64,1976
    164.Sato H, Ideta O, Ando I, Kunihiro Y, Hirabayashi H, Iwano M, Miyasaka A, Nemoto H, Imbe T. Mapping QTLs for sheath blight resistance in the rice line WSS2. Breeding Sci,2004,54:265-271
    165.Savary S, Castilla N, Elazegui F, McLaren C, Ynalvez M, Teng P. Direct and indirect effects of nitrogen supply and disease source structure on rice sheath blight spread. Phytopathology,1995,85:959-965
    166.Savary S, Teng PS, Willocquet L, Nutter Jr FW. Quantification and modeling of crop losses:a review of purposes. Annu Rev Phytopathol,2006,44:89-112
    167.Savary S, Willocquet L, Elazegui FA, Castilla NP, Teng PS. Rice pest constraints in tropical Asia:quantification of yield losses due to rice pests in a range of production situations. Plant Dis,2000,84:357-369
    168.Sha X, Zhu L. Resistance of some rice varieties to sheath blight (ShB). Int Rice Res Newsl,1990,15:7-8
    169. Shah JM, Raghupathy V, Veluthambi K. Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens. Biotechnol Lett,2009,31:239-244
    170.Shanmugam V. Role of extracytoplasmic leucine rich repeat proteins in plant defence mechanisms. Microbiol Res,2005,160:83-94
    171.Sharma A, McClung AM, Pinson SR, Kepiro JL, Shank AR, Tabien RE, Fjellstrom R. Genetic Mapping of sheath blight resistance QTLs within tropical rice cultivars. Crop Sci,2009,49:256-264
    172.Shibata M, Mori K, Hamashima M. Inhibition of hyphal extension factor formation by validamycin in Rhizoctonia solani. J Antibiot,1982,35:1422-1423
    173.Shieh MT, Brown RL, Whitehead MP, Cary JW, Cotty PJ, Cleveland TE, Dean RA. Molecular genetic evidence for the involvement of a specific polygalacturonase, P2c, in the invasion and spread of Aspergillus flavus in cotton bolls. Appl Environ Microbiol,1997,63:3548-3552
    174.Singh A, Rohilla R, Singh U, Savary S, Willocquet L, Duveiller E. An improved inoculation technique for sheath blight of rice caused by Rhizoctonia solani. Can J Plant Pathol,2002,24:65-68
    175.Singh D, Seo MJ, Kwon HJ, Rajkamikar A, Kim KR, Kim SO, Suh JW. Genetic localization and heterologous expression of validamycin biosynthetic gene cluster isolated from Streptomyces hygroscopicus var. limoneus KCCM 11405 (IFO 12704). Gene,2006,376:13-23
    176.Singha K, Borah P. Screening of local upland rice cultivars of Assam against sheath blight. Annal Biol,2000,16:161-162
    177.Singha K. Evaluation of aromatic and semi-glutinous rice germplasm of Assam for resistance against rice diseases. Oryza,1998,35:87-88
    178.Slaton NA,Cartwright RD,Meng J,Gbury EE Norma RJ.Sheath blight severity and rice yield as affected by nitrogen fertilizer rate, application method, and fungicide. Agron J,2003,95:1489-1496
    179.Song K-H, Nam YW. Genomic organization and differential expression of two polygalacturonase-inhibiting protein genes from Medicago truncatula. J Plant Biol, 2005,48:467-478
    180.Spadoni S, Zabotina O, Di Matteo A, Mikkelsen JD, Cervone F, De Lorenzo G, Mattei B, Bellincampi D. Polygalacturonase-inhibiting protein interacts with pectin through a binding site formed by four clustered residues of arginine and lysine. Plant Physiol,2006,141:557-564
    181.Sridevi G, Parameswari C, Sabapathi N, Raghupathy V, Veluthambi K. Combined expression of chitinase and β-1,3-glucanase genes in indica rice(Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Sci,2008,175:283-290
    182.Sridevi G, Sabapathi N, Meena P, Nandakumar R, Samiyappan R, Muthukrishnan S, Veluthambi K. Transgenic indica rice variety Pusa Basmati 1 constitutively expressing a rice chitinase gene exhibits enhanced resistance to Rhizoctonia solani. J Plant Biochem Biotechnol,2003,12:93-101
    183.Srinivasachary, Willocquet L, Savary S. Resistance to rice sheath blight (Rhizoctonia solani Kuhn) [(teleomorph:Thanatephorus cucumeris (A.B. Frank) Donk.] disease: current status and perspectives. Euphytica,2011,178:1-22
    184.Sripriya R, Raghupathy V, Veluthambi K. Generation of selectable marker-free sheath blight resistant transgenic rice plants by efficient co-transformation of a cointegrate vector T-DNA and a binary vector T-DNA in one Agrobacterium tumefaciens strain. Plant Cell Rep,2008,27:1635-1644
    185.Stotz HU, Contos JJ, Powell AL, Bennett AB, Labavitch JM. Structure and expression of an inhibitor of fungal polygalacturonases from tomato. Plant Mol Biol, 1994,25:607-617
    186.Stratmann A, Mahmud T, Lee S, Distler J, Floss HG, Piepersberg W. The AcbC protein from Actinoplanes species is a C7-cyclitol synthase related to 3-dehydroquinate synthases and is involved in the biosynthesis of the a-glucosidase inhibitor acarbose. JBiol Chem,1999,274:10889-10896
    187.Tan CX, Ji XM, Yang Y, Pan XY, Zuo SM, Zhang YF, Zou JH, Chen ZX, Zhu LH, Pan XB. Identification and marker-assisted selection of two major quantitative genes controlling rice sheath blight resistance in backcross generations. Acta Genetica Sin, 2005,32:399-405
    188.Teng P, Torres C, Nuque F, Calvero S. Current knowledge on crop losses in tropical rice. Crop loss assessment in rice, IRRI,1990,39-53
    189.Toyokuni T, Jin W, Rinehart Jr KL. Biosynthetic studies on validamycins:a C2+C2+C3 pathway to an aliphatic C7N unit. J Am Chem Soc,1987,109:3481-3482
    190.Vorwerk S, Somerville S, Somerville C. The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci,2004,9:203-209
    191.Walton JD. Deconstructing the cell wall. Plant Physiol,1994,104:1113-1118
    192.Wehmeier U, Piepersberg W. Biotechnology and molecular biology of the a-glucosidase inhibitor acarbose. Appl Microbiol Biotechnol,2004,63:613-625
    193.Wubben JP, ten Have A, van Kan JA, Visser J. Regulation of endopolygalacturonase gene expression in Botrytis cinerea by galacturonic acid, ambient pH and carbon catabolite repression. Curr Genet,2000,37:152-157
    194.Xia T, Jiao R. Studies on glutamine synthetase from Streptomyces hygroscopicus var. jinggangensis. Sci Sin B,1986,29:379-388
    195.Xu H, Yang J, Bai L, Deng Z, Mahmud T. Genetically engineered production of 1, l'-bis-valienamine and validienamycin in Streptomyces hygroscopicus and their conversion to valienamine. Appl Microbiol Biotechnol,2009a,81:895-902
    196.Xu H, Zhang Y, Yang J, Mahmud T, Bai L, Deng Z. Alternative epimerization in C(7) N-aminocyclitol biosynthesis is catalyzed by ValD, a large protein of the vicinal oxygen chelate superfamily. Chem Biol,2009b,16:567-576
    197. Yin Y, Zuo S, Wang H, Chen Z, Gu S, Zhang Y, Pan X. Evaluation of the effect of qSB-9Tq involved in quantitative resistance to rice sheath blight using near-isogenic lines. Can J Plant Sci,2009,89:731-737
    198.Yu Y, Bai L, Minagawa K, Jian X, Li L, Li J, Chen S, Cao E, Mahmud T, Floss HG. Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. Appl Environ Microbiol,2005,71:5066-5076
    199. Yuen JE, Forbes GA. Estimating the level of susceptibility to Phytophthora infestans in potato genotypes. Phytopathology,2009,99:782-786
    200.Zou J, Pan X, Chen Z, Xu J, Lu J, Zhai W, Zhu L. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.). Theor Appl Genet,2000,101:569-573
    201. Zuo S,Yin Y,Zhang L,Zhang Y,Chen Z,Pan X.Breeding value and further mapping of a QTLqSB-11 conferring the rice sheath blight resistance. Chin J Rice Sci,2007, 21:136-142
    202.Zuo S, Zhang L, Wang H, Yin Y, Zhang Y, Chen Z, Ma Y, Pan X. Prospect of the QTL-qSB-9 Tq utilized in molecular breeding program of japonica rice against sheath blight. J Genet Genomics,2008,35:499-505