极化SAR图像人造目标检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
极化合成孔径雷达(Polarimetric Synthetic Aperture Radar,PolSAR)是目前遥感领域最先进的传感器之一。利用极化信息检测SAR图像中的人造目标是极化SAR图像解译和应用的前沿课题,对于推动极化SAR解译理论研究走向实用化具有重要意义。在上述背景下,本论文立足于极化SAR图像中人造目标与自然杂波的极化信息差异,以满足杂波背景复杂、目标类型多变的实测极化SAR数据自动目标检测技术的应用需求,深入研究了极化SAR图像无监督检测量的构造、检测量杂波的统计建模以及CFAR目标检测等关键技术。所做工作主要包括以下几个方面:
     (1)理论分析与实验验证了基于多视极化白化滤波(Multi-look PolarimetricWhitening Filter, MPWF)检测量与极化总功率合成检测量(SPAN)的2P-CFAR检测器在均匀度变化较大的杂波场景中检测性能不佳的问题;发展和完善了极化匹配滤波(Polarimetric Matched Filter, PMF)检测量的杂波统计建模与恒虚警(Constant False Alarm Rate, CFAR)目标检测技术。具体的:推导出了地物杂波的雷达散射截面(Radar Cross Section, RCS)服从常数、Gamma分布、逆Gamma分布与广义逆Gauss分布时PMF检测量的统计分布模型;在参数估计环节,基于第二类型统计量(Second Kind Statistics, SKS),将PMF检测量统计分布的SKS参数估计表达式转化为均匀区域检测量统计分布与RCS统计分布的SKS参数估计表达式的求和过程,简化了直接求解PMF检测量统计分布的SKS参数估计的问题;在CFAR检测环节,基于RCS服从逆Gamma分布时推导的PMF检测量统计分布具有更广泛杂波建模能力这一实验验证结论,推导对应统计分布的CFAR检测阈值求解表达式,进而设计了相应的CFAR滑窗检测方案,提高了CFAR检测的准确性与实用性。实验结果表明:所推导的统计分布模型以及参数估计能够确保不同杂波均匀度环境中PMF检测量的精确统计建模;相比基于MPWF与SPAN的2P-CFAR检测器以及经典的PMF检测器,所提基于PMF检测量的CFAR检测方法在均匀度变化较大的杂波背景中具有更优的检测性能;
     (2)提出了一种基于极化SAR散射机理的无监督目标检测方法。首先在对常见的人造目标与自然杂波散射机理深入剖析的基础上,总结出各自的散射特征及主要差异,并详细分析了不同散射类型的相干矩阵随散射体取向的变化情况;在此基础上,为有效改善人造目标的散射特性,引入Lee等人的方位角补偿方法去除目标取向对其散射特性的影响,进而提取方位角补偿后的极化SAR数据四成份分解结果中偶次散射与螺旋体散射成分功率之和作为检测量;针对新检测量数据的统计分布特征,采用具有广泛建模能力的G0分布,构建了基于数据拟合方式的目标检测流程。实验结果表明:方位角补偿处理能显著地增加目标与杂波的极化散射特性差异,由此得到的检测量在不同类型的地物杂波背景中都具有很高的信杂比(Signal to Clutter Ratio, SCR);后续基于G0分布的检测量数据拟合及检测流程确保了不同均匀度杂波中目标检测的准确性;
     (3)提出了一种基于典型散射体特征极化态的无监督CFAR目标检测方法。在对一类典型散射体同极化与正交极化通道极化响应分析的基础上,选取对金属平板具有最小接收功率,同时对零取向的金属二面角具有最大接收功率的极化态,即同极化通道下左右旋圆极化态与正交极化通道下45线极化态,求取上述极化态对应的天线接收功率作为新检测量,并论证了该类检测量与PMF检测量之间存在线性变换关系。利用四成分分解模型,对新检测量的目标增强与杂波抑制效果进行了深入分析,进一步理论分析了新检测量与目标相似性系数、相似性测度的关系,指出了新检测量同时包含目标与杂波散射相似性与功率信息两种差异。在目标检测环节,采用PMF检测量的目标检测流程对新检测量实现CFAR检测。实验结果表明:所提检测量计算简单、运算量小,且在非均匀以及均匀与非均匀混合区域具有目标增强效果显著、检测性能好的优势;
     (4)提出了一种基于人造目标与自然杂波反射对称性差异的CFAR目标检测方法。在对人造目标与自然杂波反射对称性差异深入分析的基础上,构建了一种同时包含散射媒质方位角分布信息与螺旋性信息的新检测量,即相干矩阵第三副对角线元素(相干矩阵(2,3)项)的样本平均值。对该检测量在均匀区域的统计分布模型进行数学近似,使得近似后的统计分布模型易于进行参数估计与CFAR检测。在简化的均匀区域统计分布的基础上,利用逆Gamma分布描述该检测量在非均匀区域RCS因子的统计分布,推导出非均匀区域该检测量的统计分布,并给出了对应的参数估计表达式和CFAR检测流程。实验结果表明:所提检测量具有计算简单,杂波抑制能力强、稳健性好等优势;简化的检测量统计分布以及由此推导的非均匀与极不均匀区域检测量的统计分布分别能够实现对不同均匀度区域杂波数据较为精确的统计建模,进而基于该分布的CFAR检测能够实现在杂波类型多变的场景中较为准确的自动目标检测。
Polarimetric Synthetic Aperture Radar (PolSAR) is one of the most advancedsensors in the present remote sensing field. Using the polarimetric information for theman-made target detection in SAR image is a frontal subject in PolSAR imageinterpretation. It is of theoretical and practical importance in promoting the PolSARsystem for utilization. For the reasons above, grounded on the polarimetric informationdifferences between man made target and natural clutter, and aiming at the requirementof automatic target detection technique for polarimetric SAR image with compoundedclutter background and varies target types, this thesis deeply investigates some keytechniques such as the construct of the unsupervised polarimetric target detectionmetrics, the statistical modeling for the clutter of the metrics and the CFAR targetdetection etc. The main work includes the following aspects.
     Through theoretical analysis and experimental validation, we present the reason ofthe inefficient detection performance of2P-CFAR detector based on MPWF and SPANmetrics in the compounded background where the degree of the clutter varies vastly.Further, the detection technique of PMF metric including the statistical modeling, theparameter estimation and the CFAR detection are developed and improved. For thePMF metric, the constant, the Gamma distribution, the inverse Gamma distribution andthe inverse Gauss distribution is selected to characterize the distribution of the RCScomponent in the homogenous, heterogeneous, extremely heterogeneous and thecompounded areas, then the distributions of PMF metric are derived for thecorresponding area. In the parameter estimation, based on the SKS method, theparameter estimation expression of the derived distributions are converted into thesummation of the parameter estimation of PMF distribution in the homogenous area andthe parameter estimation of RCS distribution, thus simplifying the parameter estimationin the maximal degree. In the CFAR detection, based on the conclusion that thedistribution of PMF metric with the RCS modeled in inverse Gamma distribution hasmore extensive modeling capacity in various clutter area, the formula of the CFARdetection threshold of the correponding distribution is deduced. Then the CFARdetection with sliding window is designed, which improves the accuracy andpracticability of CFAR detection. The experimental results demonstrate the greatefficiency of the derived distributions and the corresponding parameter estimation ofPMF metric in the areas with different degree of homogeneity. Moreover, comparedwith the2P-CFAR detector based on MPWF and SPAN metrics, the proposed CFARdetector based on the PMF metric has better detection performance in complex clutterenvironment where the homogeneity of terrain varies sharply.
     (2) An unsupervised PolSAR image target detection method is proposed based on the scattering characteristic difference between man-made target and natural clutter.Through analyzing the polarimetric scattering mechanism of the common man-madetargets and natural clutters, the scattering characteristic and the major differencebetween man-made target and natural clutter is generalized. Then the effect of theorientation on the coherency matrices of the four component model is analyzed in detail.based on the analysis above, the orientation of the PolSAR data is compensated toremove the effect of the orientation to the scattering characteristics. Finally, using theorientation compensated data, the sum of double-bounce and helix scattering powerderived from the four-component model is extracted as the new metric. Afterward,according to the statistical characteristic of the new metric, a data fitting based targetdetection scheme is presented, which utilizes the G0distribution to fit the distribution ofPDEH metric. The experimental results demonstrate the great efficiency of orientationcompensation in increasing the scattering difference between the man made target andnatrual clutter and the derived metric has high SCR. Finally, the target detection schemeusing the G0distribution assures the accurate target detection in clutters with differentdegree of homogeneity.
     (3) A novel PolSAR unsupervised CFAR target detectionmethod is proposed basedon the characteristic polarization state of the canonical scatterers. Through analyzing thepolarization signature of the canonical scatterers in the co-polarized and cross-polarizedchannels, we select the characteristic polarization states which have the the minimalreceiving power for metallic plane and maximal receiving power for the dihedral in theco-polarized the cross-polarized channels, i. e., the left and the right circularpolarization state in the co-polarized channel and the45degree linear characteristicpolarization state in the cross-polarized channel as the canonical characteristicpolarization states for the target detection. Therefore, we compute the antenna receivingpower in the characteristic polarization states above as the new metrics and validate thelinear relationsip between the new metrics and PMF metric. Utilizing thefour-component decomposition model, we analyze the effect of new metrics on thetarget enhancement and clutter suppression, and the SCR relationship of the antennareceiving power with the polarimetric similarity theoretically. It can be seen the newmetrics include both the scattering similarity and the power information difference, thussuch metrics is provided with distinct target enhancement. In the target detectionsegment, according to the linear relationship between the new metrics and the PMFmetric, we realize the CFAR detection of new metrics using the target detection schemeof PMF metric. The experimental results demonstrate that the proposed metrics aresimple to obtain and have minimal computation load. Moreover, they are provided withthe advantadge of notable target enhancement and effcient detection performance.
     (4) A new polarimetric SAR CFAR target detector is proposed based on thereflection symmetry. Through analyzing the reflection symmetry difference between most of the man made targets and natural clutters, a new metric, which includes theinformation of the orientation distribution and the helicity of the scattering medium, isconstructed using the magnitude of the third off-diagonal term of the sample averagedcoherency matrix (the (2,3) term of the coherency matrix). In order to realize theparameter estimation and CFAR detection analytically, the statistical model of the newmetric is approximated and simplified in the homogenous area. Then grounded on thesimplified statistical model in the homogenous area, the statistical model of the newmetric is derived in the heterogeneous area by introducing the inverse Gammadistribution to characterize the distribution of RCS component. Based on the statisticalmodels, the parameter estimation and the automatic constant false alarm rate (CFAR)detection scheme are given in detail. The experimental results have demonstrated theproposed metric has the advantage of simple in computing, efficient and robust inclutter suppression and target enhancement. Moreover, the simplified distribution of theproposed metric has reasonable goodness of fit results in the homogenous clutter areasuch as sea, farmland etc, thus validating the rationality of the mathematicalapproximation. In the heterogeneous area, the derived distribution of the proposedmetric can also assure the precise modeling in vegetation area, urban and their mixedarea etc. Further more, the proposed approach can realize the precise CFAR targetdetection in the compounded background with the clutter varies vastly.
引文
[1]张直中.微波成像技术[M].北京:科学出版社,1990.
    [2]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [3]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社,2003.
    [4]秦先祥.极化SAR图像目标检测方法研究[D].长沙:国防科学技术大学,2010.
    [5]匡纲要,陈强,蒋咏梅等.极化合成孔径雷达基础理论及其应用[M].长沙:国防科技大学出版社,2011.
    [6]庄钊文,肖顺平,王雪松.雷达极化信息处理及其应用[M].北京:国防工业出版社,1999.
    [7]徐牧.极化SAR图像人造目标提取与几何结构反演研究[D].国防科技大学,2008.
    [8]张腊梅.极化SAR图像人造目标特征提取与检测方法研究[D].哈尔滨:哈尔滨工业大学,2010.
    [9]刘秀清.全极化合成孔径雷达极化信息处理技术研究[D].北京:中国科学院电子学研究所,2004.
    [10]汪洋.极化合成孔径雷达图像处理及其应用研究[D].合肥:安徽大学,2007.
    [11]王文光.极化SAR信息处理技术研究[D].北京:北京航空航天大学,2007.
    [12]代大海. PolSAR图像模拟及目标检测与分类方法研究[D].长沙:国防科技大学,2003.
    [13] van Zyl J. J. AIRSAR Reference Manual [EB/OL]. Jet Propulsion Laboratory,HTTP://airsar.jpl.nasa.gov/documents/instrument.htm.
    [14]陈强.雷达极化基础理论及应用研究[D].长沙:国防科技大学,2010.
    [15]周晓光.极化SAR图像分类方法研究[D].长沙:国防科技大学,2008.
    [16] Novak L. M., Burl M. C. Studies of target detection algorithms that usePolarimetric radar data [J]. IEEE Transactions on Aerospace and Electronic Systems,1989,25(2):150-165.
    [17] Goodman J. W. Speckle phenomena in optics: theory and applications [M].Englewood, CO, USA: Roberts&Company,2006.
    [18] Lee J. S., Schuler D. L., Lang R. H. et al. K-distribution for multi-lookprocessed Polarimetric SAR imagery [C]. IEEE International Conference on Geoscienceand Remote Sensing, Pasadena, CA, USA,1994:2179-2181.
    [19] Freitas C. C., Frery A. C., Correia A. H. The polarimetric G distribution forSAR data analysis [J]. Environmetrics,2005,16(1):13-31.
    [20] Gambini J. Polarimetric SAR region boundary detection using B-splinedeformable countours under the GH Model [C]. XVIII Brazilian Symposium onComputer Graphics and Image Processing, Natal, RN, Brazil,2005:197-204.
    [21] Lee J. S., Hoppel K. W., Mango S. A. et al. Intensity and phase statistics ofmultilook polarimetric and interferometric SAR imagery [J]. IEEE Transactions onGeoscience and Remote Sensing,1994,32(5):1017-1028.
    [22] Sarabandi K. Derivation of phase statistics from the Muller matrix [J]. RadioScience,1992,7(5):553-560.
    [23] Barakat R. The statistical properties of partially polarized light [J]. OPTICAACTA,198532(3):295-312.
    [24] Touzi R., Lopes A. Statistics of the stokes parameters and of the complexcoherence parameters in one-look and multi-look speckle fields [J]. IEEE Transactionson Geoscience and Remote Sensing,1996,34(2):519-531.
    [25]金亚秋,张南雄.合成孔径雷达多视图像中4个Stokes参数的统计特性[J].电子与信息学报,2002,11(24):1648-1658.
    [26]刘涛.瞬态极化统计理论及应用研究[D].长沙,2007.
    [27]庄钊文,李永祯,肖顺平等.瞬态极化的统计特性及处理[M].北京:国防工业出版社,2005.
    [28] Novak L. M., Burl M. C., Irving W.W. Optimal polarimetric processing forenhanced target detection [J]. IEEE Transactions on Aerospace and Electronic Systems,1993,29(1):234-244.
    [29] Lopes A., Sery F. Optimal speckle reduction for the product model inmutilook polarimetric SAR imagery and the Wishart distribution [J]. IEEE Transactionson Geoscience and Remote Sensing,1997,35(3):632-647.
    [30] Liu G. Q., Huang S. J., Torre A. et al. The multilook Polarimetric whiteningfilter (MPWF) for intensity speckle reduction in Polarimetric SAR images [J]. IEEETransactions on Geoscience and Remote Sensing,1998,36(3):152-158.
    [31]吴永辉,计科峰,郁文贤.极化白化滤波器的一种多通道扩展[J].电子与信息学报,2006,28(9):1590-1593.
    [32]韩昭颖,种劲松.极化合成孔径雷达图像船舶目标检测算法[J].测试技术学报,2006,20(1):65-70.
    [33] Lee J. S., Grunes M. R., Mango S. A. Speckle reduction in multipolarization,multifrequency SAR imagery [J]. IEEE Transactions on Geoscience and RemoteSensing,1991,29(4):535-544.
    [34] Lopes A., Goze S., Nezry E. Polarimetric speckle filters for SAR data [C].IEEE International Geoscience and Remote Sensing Symposium, Houston, TX, USA,1992:80-82.
    [35] Touzi R., Lopes A. The principle of speckle filtering in polarimetric SARimagery [J]. IEEE Transactions on Geoscience and Remote Sensing,1994,32(5):1110-1114.
    [36] Lee J. S., Grunes M. R., Boerner W. M. Polarimetric property preservation inSAR speckle filtering [C]. Proceedings of SPIE Wideband Interferometric Sensing andImaging Polarimetry, San Diego, California, USA,1997:236-242.
    [37] Lopez-Martinez C., Fabregas X. Polarimetric SAR speckle noise model [J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(10):2232-2242.
    [38] Lopes A., Sery F. The LMMSE polarimetric Wishart vector speckle filter formultilook data and the LMMSE spatial vector filter for correlated pixels in SAR images[C]. IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA,USA,1994:2143-2145.
    [39]皮亦鸣,邹琪,黄顺吉.极化SAR相干斑抑制--极化白化滤波器[J].电子与信息学报,2002,24(5):597-603.
    [40] Nezry E., Yakam S. F. New distribution-entropy maximum a posteriorispeckle filters for detected, complex and polarimetric SAR data [C]. IEEE InternationalGeoscience and Remote Sensing Symposiium, Philipsburg, Netherlands,1999:1804-1806.
    [41] Lee J. S., Grunes M. R., Ainsworth T. L. et al. Coherence estimation andspeckle filtering based on scattering properties [C]. IEEE International Geoscience andRemote Sensing Symposium, Toulouse, France,2003:705-707.
    [42] Lee K. Y., Bretschneider T. PolSAR speckle filtering with structuralfeatureand scattering property preservation [C]. IEEE International Geoscience andRemote Sensing Symposium, Seoul, Korea,2005:332-335.
    [43] Gu J., Yang J., Zhang H. et al. Speckle filtering in polarimetric SAR databased on the subspace decomposition [J]. IEEE Transactions on Geoscience andRemote Sensing,2004,42(8):1635-1641.
    [44] Lee J. S., Pottier E. Polarimetric radar imaging from basics to applications
    [EB].
    [45] Kennaugh E. M. Polarization properties of radar reflections [D]. Columbus.Ohio: The Ohio State University,1952.
    [46] Huynen J. R. Phenomenological theory of radar targets [D]. Delft, TheNetherlands: P.Q.R. Press,1970.
    [47] Boerner W. M., Yan W.L., Xi A.Q. et al. On the basic principles of radarpolarimetry: the target characteristic polarization state theory of Kennaugh, Huynen’spolarization fork concept, and its extension to the partially polarized case [J].Proceedings of the IEEE,1991,79(10):1538-1550.
    [48] van Zyl J. J., Papas C. H., Elachi C. On the optimum polarizations ofincoherently reflected waves [J]. IEEE Transactions on Antennas and Propagation,1987,35(7):818-825.
    [49] Kostinski A. B., Boerner W. M. On the polarimetric contrast optimization [J].IEEE Transactions on Antennas and Propagation,1987,35(8):988-991.
    [50] Titin-Schnaider C. Power optimization for polarimetric bistatic randommechanisms [J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(3):3646-3660.
    [51] Chen Q., Jiang Y. M. An optimization procedure of the lagrange multipliermethod for polarimetric power optimization [J]. IEEE Geoscience and Remote SensingLetters,2009,6(4):699-702.
    [52] Ioannidis G. A., Hammers D. E. Optimum antenna polarizations for targetdiscrimination in clutter [J]. IEEE Transactions on Antennas and Propagation,1979,27(3):357-363.
    [53] Yang J., Yamaguchi Y., Boerner W. M. et al. Numerical methods for solvingthe optimal problem of contrast enhancement [J]. IEEE Transactions on Geoscience andremote sensing,2000,38(2):965-971.
    [54] Yang J., Yamaguchi Y., Yamada H. et al. The optimal problem for contrastEnhancement in Polarimetric Radar Remote Sensing [J]. IEICE, Trans. Commun.,1999,E82-B(1):174-183.
    [55] Yang J. On theoretical problems in radar Polarimetry [D]. Niigata-shi: NiigataUniversity,1999.
    [56] Swartz A. A., Yueh H. A., Kong J. A. et al. Optimal polarizations forachieving maximum contrast in radar images [J]. Journal of Geophysical Research,1988,93(B12):15252-15260.
    [57] Kostinski A. B., James B. D., Boerner W. M. Polarimetric matched filter forcoherent imaging [J]. Canadian J. of Physics,1988,66(5):871-877.
    [58] Yang J., Yamaguchi Y., Yamada H. Co-null of targets and Co-Null Abeliangroup [J]. Electronics Letters,1999,35(12):1017-1019.
    [59] Huynen J. R. The Stokes matrix and their interpretation in terms of physicaltarget properties [C]. Proceedings of SPIE,1990:195-207.
    [60] Cloude S. R. Target decomposition theorems in radar scattering [J].Electronics Letters,1985,21(2):22-24.
    [61] Cameron W. L., Leung L. K. Feature motivated polarization scattering matrixdecomposition [C]. IEEE International Radar Conference,1990:549-557.
    [62] Krogager E. Decomposition of the radar target scattering matrix withapplication to high resolution target imaging [C]. IEEE Telesystems ConferenceProceedings,1991:77-82.
    [63] Cloude S. R. An entropy based classification scheme for polarimetric SARdata [C]. IEEE International Geoscience and Remote Sening symposium, Firenze,1995:2000-2002.
    [64] Cloude S. R., Pottier E. A review of target decomposition theorems in radarpolarimetry [J]. IEEE Transactions on Geoscience and Remote Sensing,1996,34(2):498-518.
    [65] Freeman A., Durden S. L. A three-component scattering model forpolarimetric SAR data [J]. IEEE Transactions on Geoscience and Remote Sensing,1998,36(3):963-973.
    [66] Dong Y., Forster B. C., Ticehurst C. A new decomposition of radarPolarization signatures [J]. IEEE Transactions on Geoscience and Remote Sensing,1998,36(3):933-939.
    [67] Yamaguchi Y., Moriyama T., Ishido M. et al. Four component scatteringmodel for polarimetric SAR image decomposition [J]. IEEE Transactions onGeoscience and Remote Sensing,2005,43(8):1699-1706.
    [68] Moriyama T., Uratsuka S., Umehara T. et al. Polarimetric SAR image analysisusing model fit for urban structures [J]. IEICE Trans. Commun,2005, E88-B(3):1234-1243.
    [69] An W. T., Cui Y., Yang J. Three-component model-based decomposition forPolarimetric SAR data [J]. IEEE Transactions on Geoscience and Remote Sensing,2010,48(6):2732-2739.
    [70] Kong J. A., Schwartz A. A., Yueh H. A. et al. Identification of terrain coverusing the optimal polarimetric classifier [J]. Journal of Electromagnetic Waves andApplications1988,2(2):171-194.
    [71] Lee J. S., Grunes M. R. Classification of multi-look polarimetric SARimagery based on complex Wishart distribution [J]. International Journal of RemoteRensing,1994,15(11):2299-2311.
    [72] Lee J. S., Du L., Schuler D. L. et al. Statistical analysis and segmentation ofmulti-look SAR imagery using partial polarimetric data [C]. IEEE InternationalGeoscience and Remote Sensing Symposium, Firenze,1995:1422-1424.
    [73] Liu G. Q., Huang S. J., Torre A. et al. Bayesian classification of multi-lookpolarimetric SAR images with a generalized multiplicative speckle model [C]. SPIEproceedings,1997:398-405.
    [74] Kouskoulas Y., Ulaby F. T., Pierce L. E. The Bayesian hierarchical classifier(BHC) and its application to short vegetation using multifrequency polarimetric SAR [J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(2):469-477.
    [75] Ainsworth T. L., Lee J. S. Polarimetric SAR image classification employingsubaperture polarimetric analysis [C]. IEEE International Geoscience and RemoteSensing Symposium,2005:48-50.
    [76] van Zyl J. J. Unsupervised classification of scattering behavior using radarpolarimetry data [J]. IEEE Transactions on Geoscience and Remote Sensing,1989,27(1):36-45.
    [77] Cloude S. R., Pottier E. An entropy based classification scheme for landapplications of polarimetric SAR [J]. IEEE Transactions on Geoscience and RemoteSensing,1997,35(1):549-557.
    [78] Pottier E., Cloude S. R. Application of the H/A/a polarimetric decompositiontheorems for land classification [C]. SPIE Proceedings,1997:132-143.
    [79] Lee J. S., Grunes M. R., Pottier E. Unsupervised terrain classificationpreserving polarimetric scattering characteristics [J]. IEEE Transactions on Geoscienceand Remote Sensing,2004,42(4):722-731.
    [80]刘秀清,杨汝良.基于全极化SAR非监督分类的迭代分类方法[J].电子学报,2004,32(12):112-116.
    [81]吴永辉,计科峰,郁文贤.基于H-α和改进C-均值的全极化SAR图像非监督分类[J].电子与信息学报,2007,29(1):30-34.
    [82]徐牧,王雪松,肖顺平.基于改善极化相似性的极化SAR目标增强新方法[J].电子与信息学报,2008,30(5):1047-1051.
    [83] Lee J. S., Ainsworth T. L. The effect of orientation angle compensation oncoherency matrix and Polarimetric target decompositions [J]. IEEE Transactions onGeoscience and Remote Sensing,2011,49(1):53-64.
    [84] Schuler D. L., Lee J. S., Grandi G. DE. Measurement of topographyusingpolarimetric SAR images [J]. IEEE Transactions on Geoscience and Remote Sensing,1996,34:1266-1277.
    [85] Krogager E., Czyz Z.H. Properties of the sphere, diplane, and helixdecomposition [C]. Proceedings of the Third International Workshop on RadarPolarimetry, University of Nantes,1995:106-114.
    [86] Lee J. S., Schuler D. L., Ainsworth T. L. Polarimetric SAR data compensationfor terrain azimuth slope variation [J]. IEEE Transcations on Geoscience and RemoteSensing,2000,38(5):2153-2163.
    [87] Xu F., Jin Y. Q. Deorientation theory of polarimetric scattering targets andapplication to terrain surface classification [J]. IEEE Transcations on Geoscience andRemote Sensing,2005,43(10):2351-2364.
    [88] S.R. De Graff. SAR Image Enhancement via Adaptive Polarization Synthesisand Polarimetric Detection Performance [C]. Polarimetric Technology Workshop,Redstone Arsenal,1988.
    [89] Chaney R.D., Burl M.C., Novak L.M. On the performance of Polarimetrictarget detection algorithms [J]. IEEE Aerospace and Electronic Systems Magazine,1990,5(11):10-15.
    [90] Boerne W.M., et al. On the concept of the polarimetric matched filter in highresolution radar imagery: an alternative for speckle reduction [C]. IEEE InternationalGeoscience and Remote Sensing Symposium, Edinburg, Scotland,1988:69-72.
    [91] Novak L. M., Burl M.C. Optimal speckle reduction in PolSAR imagery andits effect on target detection [C]. SPIE Millimeter wave and Synthetic Aperature Radar,1989:84-90.
    [92] Novak L. M., Burl M. C., Irving W. W. et al. Optimal polarimetric processingfor enhanced target detection [C]. Telesystems Conference Proceedings,1991:69-75.
    [93] Novak L. M., Burl M. C. Optimal speckle reduction in polarimetric SARimagery [J]. IEEE Transactions on Aerospace and Electronic Systems,1990,26(1):293-305.
    [94] Novak L.M., Hesse S. R. Optimal polarizations for radar detection andrecognition of target in clutter [C]. IEEE National Radar Conference, Lynnfield, MA,USA,1993:79-83.
    [95]种劲松,李晓玮,韩昭颖. ENVISAT ASAR交替极化模式目标检测性能分析[J].电子与信息学报,2007,29(10):2359-2363.
    [96] Liu G. Q., Huang S. J., Torre A. et al. Multi-look Polarimetric SAR targetdetection: performance analysis and frequency selection [C]. CIE InternationalConference of Radar, Beijing,1996:305-308.
    [97] Liu G. Q., Huang S. J., Torre A. et al. Optimal polarimetric speckle reductionmulti-look Polarimetric SAR image [C]. IEEE International Geoscience and RemroteSensing Symposium,1995:664-666.
    [98]刘国庆,黄顺吉, Torre A. et al.一种新的多视全极化SAR目标检测器及性能分析[J].信号处理,1998,14(2):110-116.
    [99] Pottier E., Saillard J. Optimal polarimetric detection of radar target in a slowlyfluctuating environment of clutter [J]. IEEE AES Magazine,1990,3(6):4-9.
    [100] Kim M., Fisher J., Principe J. C. A new CFAR stencil for target detections insynthetic aperture radar (SAR) imagery [C]. SPIE Proceedings, Year:432-442.
    [101] Liu C., Vachon P. W., Geling G. W. Improved ship detection with airbornepolarimetric SAR Data [J]. Can. J. Remote Sensing,2005,31(1):122-131.
    [102] Kelly E. J. An adaptive detection algorithm [J]. IEEE Transactions onAntennas and Propagation,1986,22(1):115-127.
    [103] Lombardo P., Conte D.I., Morelli A. Comparison of optimised processors forthe detection and segmentation of oil slicks with polarimetric SAR images [C]. IEEEInternational Geoscience and Remote Sensing Symposium, Honolulu, HI,2000:2963-2965.
    [104] Sciotti M., Pastina D., Lombardo P. Exploiting the polarimetric informationfor the detection of ship targets in non-homogeneous SAR images [C]. IEEEGeoscience and Remote Sensing Symposium,2002:1911-1913.
    [105] Durand R., Thirion L., Ginolhac G. et al. Man made target detection in aforest with a subspace detector SAR processor [C]. IEEE Geoscience and RemoteSensing Symposium, Denver, CO,2006:149-152.
    [106] Brigui F., Thirion L. L., Ginolhac G. et al. New polarimetric signal subspacedetectors for SAR processors [C]. IEEE International Conference on Acoustics, Speechand Signal Processing Taipei,2009:2189-2192.
    [107] Fei C., Liu T., Lampropoulos G. et al. A markov chain CFAR detector forpolarimetric data using adaptive linear discriminant analysis [C]. IEEE InternationalGeoscience and Remote Sensing Symposium, Boston, MA,2008: V358-361
    [108] Fei C., Liu T., Lampropoulos G. Markov chain CFAR detection forpolarimetric data using data fusion [C]. IEEE conference proceedings on Digital SignalProcessing, Santorini-Hellas,2009:1-6.
    [109] Ringrose R., Harris H. Ship detection using Polarimetric SAR data [C].Proceedings of Committee on Earth Observation Satellites(CEOS) SAR workshop,Toulouse, France,1999:687.
    [110] Touzi R., Charbonneau F., Hawkins R. K. et al. Ship-sea contrastoptimization When using polarimetric SARS [C]. IEEE Geoscience and RemoteSensing Symposium, Sydney, NSW,2011:426-428.
    [111] Zou B., Sun D., Zhang L.M. et al. Building extraction using C band PolSARdata [C]. IEEE Geoscience and Remote Sensing Symposium, Denver, Colorado, USA,2006:1262-1265.
    [112] Lee J. S., Krogager E., Ainsworth T. L. et al. Polarimetric Analysis of RadarSignature of a Manmade Structure [C]. Proceedings of Asia-Pacific MicrowaveConference, Bangkok,2007:1-4.
    [113]汪长城. SAR图像海上舰船目标检测方法研究[D].武汉:武汉大学,2008.
    [114]李海艳.极化SAR图像海面船只监测方法研究[D].北京:中国科学院海洋研究所,2007.
    [115] Niu C. Y., Ma D. B., Zhang X. F. et al. Target detection and recognitionbased on polar decomposition and Haugh transform [C]. IEEE Geoscience and RemoteSensing Symposium,2005:4712-4715.
    [116] Yang W., Zhang H. J., Chen J. Y. et al. Automatic detection of powertransmission series in full polarimetric SAR imagery [C]. IEEE Radar Conference,Boston, MA,2007:789-793.
    [117] Yang J., Peng Y. N., Lin S. M. Similarity between two scattering matrices [J].Electronics Letters,2001,37(3):193-194.
    [118] An W. T., Zhang W. J., Yang J. et al. Similarity between two targets and Itsapplication to Polarimetric target detection for sea area [C]. Progress inElectromagnetics Research Symposium,2008:515-520.
    [119] Borghys D. Interpretation and registration of high-resolution polarimetricSAR images [D]. Paris: Ecole Nationale Supérieure des.,2001.
    [120]王文光,王俊,毛士艺等.基于极化SAR图像分类的海上舰船检测[J].信号处理,2007,23(5):676-679.
    [121] Zhao Y. Q., Gong P., Pan Q. Object detection by spectropolarimetricimagery fusion [J]. IEEE Transactions on Geoscience and Remote Sensing,2008,46(10):3337-3345.
    [122]于大洋,周露,杨健等.基于极化合成孔径雷达数据的桥梁检测[J].清华大学学报(自然科学版),2005,45(7):888-891.
    [123]范立生,杨健,彭应宁.基于交叉熵的特征提取与河流区域的目标检测[J].系统工程与电子技术,2006,28(3):339-341.
    [124]韩昭颖.多极化合成孔径雷达图像目标检测研究[D].北京:中国科学院电子学研究所,2005.
    [125] Liu T., Lampropoulos G. A new polarimetric CFAR ship detection system
    [C]. IEEE Geoscience and Remote Sensing Symposium, Denver, CO,2006:137-140.
    [126] Cai C., An W. T., Yang J. A hybrid manmade-target detection algorithm forpolarimetric SAR images [C]. IET International Radar Conference, Guillin, China, Year:1-5.
    [127]徐振海,王雪松,周颖等.基于PWF融合的高分辨极化雷达目标检测算法[J].电子学报,2001,29(12):1620-1622.
    [128] Souyris J. C., Henry C., Adragna F. On the use of complex SAR imagespectral analysis for target detection: assessment of Polarimetry [J]. IEEE Transactionson Geoscience and Remote Sensing,2003,41(12):2725-2733.
    [129] Reigber A., Jager M., He W. et al. Detection and classification of urbanstructures based on high resolution SAR imagery [C]. Proc.of URBAN Paris, France,2007:1-6.
    [130] Sarabandi K., Park M. A statistical theory of power line detection inpolarimetric MMW SAR images [C]. IEEE Antennas and Propagation SocietyInternational Symposium, Salt Lake City, UT,2000:2150-2153.
    [131] Schuler D. L., Lee J. S., Ainsworth T. L. Polarimetric SAR detection ofman-made structures using normalized circular-pol correlation coefficients [C]. IEEEGeoscience and Remote Sensing Symposium, Denver, CO,2006:485-488.
    [132] Poelman J. Virtual polarisation adaptation-A Method of increasing thedetection capability of a radar system through Polarization-vector processing [J]. IEEProceedings, Part F: Communications,Radar and Signal Processing,1981,128(5):261-270.
    [133]李莹,任勇,山秀明.基于目标极化适配的极化检测算法[J].系统工程与电子技术,2001,23(10):1-4.
    [134]高贵. SAR图像目标ROI自动获取技术研究[D].长沙:国防科技大学,2007.
    [135]时公涛.基于干涉图的多通道SAR地面慢动目标自动检测技术研究
    [D].长沙:国防科技大学,2009.
    [136]匡纲要,高贵,蒋咏梅.合成孔径雷达目标检测理论、算法及应用[M].长沙:国防科技大学出版社,2007.
    [137] Dogandzic A., Wang J., Nehorai A. Maximal liklihhod estimator ofcompound-Gaussian clutter and target papameters [R]. AD report,2004.
    [138] Tison C., Nicolas J. M., Tupin F. et al. A new statistical model forMarkovian classification of urban areas in high-resolution SAR images [J]. IEEETransactions on Geoscience and Remote Sensing,2004,42(4):2046-2057.
    [139]时公涛,高贵,周晓光等.基于Mellin变换的G0分布的参数估计方法[J].自然科学进展,2009,19(6):677-690.
    [140] Chen Q., Jiang Y. M., Zhao L. J. et al. Polarimetric scattering similaritybetween a random scatterer and a canonical scatterer [J]. IEEE Geoscience and RemoteSensing Letters,2010,7(4):866-869.
    [141] Mott H.,杨汝良.极化雷达遥感[M].北京:国防工业出版社,2008.
    [142] Frery A. C., Muller H. J., Yanasse C. C. F. et al. A model for extremelyheterogeneous clutter [J]. IEEE Transactions on Geoscience and Remote Sensing,1997,35(3):648-659.
    [143] Gradshteyn I. S., Ryzhik I. M. Table of integrals, series, and products [M].San Diego, CA Academic Press,2007.
    [144] Oliver C., Quegan S. Understanding synthetic aperture radar images [M].Boston, MA: Artech House,1998.
    [145] Jakeman E., Pusey. A model for non-Rayleigh sea echo [J]. IEEETransactions on Antennas Propagation,1976,24(6):806-814.
    [146]吴永辉.极化SAR图像分类技术研究[D].长沙:国防科技大学,2007.
    [147] Muller H. J. Modeling of extremely heterogeneous radar backscatter [C].International Geoscience and Remote Sensing Symposium,1997:1603-1605.
    [148] Galland F., Nicolas J. M., Sportouche H. et al. Unsupervised syntheticaperture radar image partitioning using Fisher distributions [J]. IEEE Transactions onGeoscience and Remote Sensing,2008,34(2):1123-1130.
    [149] Tison C., Nicolas J.M., Tupin F. et al. A new statistical model for Markovianclassifcation of urban areas in high-resolution SAR images [J]. IEEE Transactions onGeoscience and Remote Sensing,2004,42(10):2046-2057.
    [150] Barnes R. M. Detection of randomly polarized target [D]. Boston:Northeastern University,1984.
    [151] Novak L. M., Burl M.C., Chaney R.D. Optimal Processing of PolarimetricSynthetic Aperture Radar Imagery [J]. The Lincoln Laboratory Journal,1990,3(5):273-289.
    [152] Goldstein G. B. False-alarm regulation in Log-Normal and Weibull clutter[J]. IEEE Transactions on Aeospace and Electonic Systems,1973,9(1):84-92.
    [153] Novak L. M. Target detection studies using fully polarimetric data collectedby the Lincoln Laboratory MMW SAR [C]. International Radar Conference, Brighton,1992:167-170.
    [154]陈琪. SAR图像港口目标提取方法研究[D].国防科技大学,2011.
    [155]邓永录.应用概率及其理论基础[M].北京:清华大学出版社,2005.
    [156] Jiang Q. S., Wang S. R., Zoiu D. et al. Automatic detection for ship targetsin Radarasat SAR images from coastal regions [C]. Vision interface Trois Rivieres,Canada,1999:131-137.
    [157]时公涛,高贵,周晓光等.基于Mellin变换的G0分布的参数估计方法[J].自然科学进展,2009,19(6):677-690.
    [158] Nicolas J. M., Anfnsen S. N. Introduction to second kind statistics:application of Log-moments and Log-cumulants to analysis of radar images [J]. IEEETransactions on Geoscience and Remote Sensing,2002,34(2):139-167.
    [159]邹焕新. SAR图像舰船目标与航迹检测方法研究[D].长沙:国防科技大学,2003.
    [160]赵凌君.高分辨率SAR图像建筑物提取方法研究[D].长沙:国防科技大学,2009.
    [161] Dobson M. C., Ulaby F. T. Preliminary evaluation of the SIR-B response tosoil moisture, surface roughness, and crop canopy cover [J]. IEEE Transactions onGeoscience and Remote Sensing,1986, GE-24(4):517-526.
    [162] Cloude S. R. Polarisation: applications in remote sensing [M]. Oxford, NewYork: Oxford university press,2010.
    [163] Freeman A., Durden S. A three-component sacttering model to descirbePolarimetric SAR data [C]. SPIE Radar Polarimetry,1992:213-224.
    [164] Chang G., Yisok O. Polarimetric SAR image classification based on thedegree of polarization and co-polarized phase-difference statistics [C]. Asia-PacificMicrowave Conference, Bangkok,2007:1-4.
    [165] Dong Y., Richards J. A. Studies of the cylinder-ground double bouncescattering mechanism in forest backscatter models [J]. IEEE Transactions onGeoscience and Remote Sensing,1995,33(1):229-231.
    [166] Krogager E. Aspects of polarimetric radar imaging [D]. Copenhagen:Technical University of Denmark,1993.
    [167] Xia Z.G., Henderson F. M. Understanding the relationship between radarresponse patterns and the bio-and geophysical parameters of urban areas [J]. IEEETransactions on Geoscience and Remote Sensing,1997,35(1):93-101.
    [168] Yousif A. H. Effect of polarization and incidence angle on radar return fromurban features using L-band aircraft radar data [C]. IEEE Geoscience and RemoteSensing Symposium, Firenze,1995:178-180.
    [169] Touzi R. Calibrated polarimetric SAR data for ship detection [C]. IEEEInternational Geoscience and Remote Sensing Symposium, Honolulu, HI,2000:144-146.
    [170] Lee J. S., Schuler D. L., Ainsworth T. L. On the estimation of radarpolarization orientation shifts induced by terrain slopes [J]. IEEE Transactions onGeoscience and Remote Sensing,2002,40(1):30-41.
    [171] Huynen J. R. Physical reality of radar targets [C]. Proceedings of SPIE,1992:86-96.
    [172] Lee J. S., Schuler D. L., Ainsworth T. L. A review of polarization orientationestimation from polarimetric SAR data [C]. Proceedings of the Workshop onPOLinSAR-Applications of SAR Polarimetry and Polarimetric Interferometry Frascati,Italy,2003:529-536.
    [173] Huynen J. R. A revisitation of the phenomenological approach withapplications to radar target decomposition [R].1982.
    [174] Yamaguchi Y., Yajima Y., Yamada H. A four-component decomposition ofPOLSAR images based on the coherency matrix [J]. IEEE Geoscience and RemoteSensing Letters,2006,3(3):292-296.
    [175]徐丰,金亚秋.目标散射的去取向理论和应用(一)去取向理论[J].电波科学学报2006,21(1):6-15.
    [176] Pottier E., Schuler D.L., Lee J.S. et al. Estimation of the terrain surfaceazimuthal/range slopes using polarimetric decomposition of POLSAR data [C]. IEEEInternational Geoscience and Remote Sensing Symposium, Hamburg,1999:2212-2214.
    [177] Alberga V., Satalino G., Staykova D. K. Comparison of polarimetric SARobservables in terms of classification performance [J]. International Journal of RemoteSensing,2008,29(4):4129-4150.
    [178] Chen J., Chen Y. L., Yang J. Ship detection using polarization cross-Entropy[J]. IEEE Geoscience and Remote Sensing Letters,2009,6(4):723-727.
    [179] Bombrun L., Beaulieu J. M. Fisher distribution for texture modeling ofpolarimetric SAR data [J]. IEEE Geoscience and Remote Sensing Letters,2008,5(3):521-516.
    [180] Zebker H. A., van Zyl J. J. Imaging radar polarimetry: a review [J].Proceedings of IEEE,1991,79(11):1583-1606.
    [181] van Zyl J. J., Zebker H. A., Elachi C. Imaging radar polarization signatures:theory and observation [J]. Radio Science,1987,22(4):529-543.
    [182] Evans D. L., Farr T. G., vanZyl J. J. et al. Radar polarimetry: analysis toolsand applications [J]. IEEE Transactions on Geoscience and Remote Sensing,1988,26(6):774-789.
    [183]曾清平,闫世强.雷达极化技术与极化信息应用[M].北京:国防工业出版社,2006.
    [184] Das A. K., Singh C. P., Mohan S. et al. Polarization signatures of land coverclasses using L-band polarimetric SAR data [C]. SPIE Proceedings,2006:1-12.
    [185] Chen Q., Gao G., Zhu X. G. et al. Study on target characteristic polarizationstate in co-polarized channel for the coherent case [J]. Science in China Series E:Technological Sciences2009,52(1):1-13
    [186]王超,张红,陈曦等.全极化合成孔径雷达图像处理[M].北京:科学出版社,2008.
    [187]金亚秋,徐丰.极化散射与SAR遥感信息理论与方法[M].北京:科学出版社,2008.
    [188] Sarabandi K., Park M. Extraction of power line maps from millimeter-wavepolarimetric SAR images [J]. IEEE Transactions on Antennas and Propogation,2000,48(12):1802-1809.
    [189] Moriyama T., Uratsuka S., Umehara T. et al. A study on extraction of urbanareas from polarimetric synthetic aperture radar image [C]. IEEE Geoscience andRemote Sensing Symposium,2004:703-706.
    [190] Souyris J. C., Imbo P., Fj rtoft R. et al. Compact polarimetry based onsymmetry properties of geophysical media: The pi=4Mode [J]. IEEE Transactions onGeoscience and Remote Sensing,2005,43(4):634-646.
    [191] Van de Hulst H.C. Light scattering by small particles [M]. New York: Dover,1981.
    [192] Nghiem S. V., Yueh S. H., Kwok R. et al. Symmetry properties inpolarimetric remote sensing [J]. Radio Science,1992,27(5):693-711.
    [193] Lee J. S., Ainsworth T. L., Schuler D. L. et al. Interpreting off-diagonalterms in polarimetric coherency matrix [C]. IEEE Geoscience and Remote SensingSymposium, Sydney, NSW,2001:913-915.
    [194]张润楚.多元统计分析[M].北京:科学出版社,2003.
    [195]时公涛.基于干涉图的多通道SAR地面慢动目标自动检测技术研究[D].长沙:国防科技大学,2009.
    [196] Touzi R., Lopes A., Bruniquel J. et al. Unbiased estimation of the coherencefrom multi-look SAR data [C]. IEEE Geoscience and Remote Sensing Symposium,Lincoln, NE,1996:662-664.