中国明对虾C-型凝集素的重组表达和功能分析以及对虾素与防御素融合抗菌肽表达载体构建、重组表达和性质分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Purification and Characterization of a C-type Lectin from Fenneropenaeus Chinensis and a Fusion AMP Protein of the Penaeidin and Defensin
  • 作者:傅立东
  • 论文级别:硕士
  • 学科专业名称:动物学
  • 学位年度:2008
  • 导师:王金星
  • 学科代码:071002
  • 学位授予单位:山东大学
  • 论文提交日期:2008-05-16
摘要
中国对虾是我国重要的海产养殖品种,具有重要的经济地位。大规模的养殖使对虾传染性疾病频发,造成重大经济损失,因而,找到有效预防和诊断治疗对虾疾病的方法迫在眉睫。利用一系列的生物化学和分子生物学方法,研究对虾先天免疫相关基因C-型凝集素及其功能,能够在一定层面上提供对虾免疫机制的认识,为对虾疾病的防治提供理论依据。针对海水养殖业病害发生的现状,从筛选和克隆海洋动物抗病功能基因——抗菌肽基因入手,应用基因工程手段获得抗菌肽融合基因,以期研制安全、高效、广谱的抗细菌、抗病毒的重组抗病蛋白渔药,从而减少养殖病害发生,提高水产品质量,保障水产养殖业可持续发展。
     本论文主要报道了中国明对虾先天免疫中重要的模式识别蛋白(patternrecognition proteins,PRPs)C-型凝集素的重组表达及功能分析;利用基因工程手段获得融合表达抗菌肽(Antimicrobial peptides,AMPs)并研究其抗菌功能。主要结果如下:
     1.中国明对虾C-型凝集素的重组表达和功能分析
     无脊椎动物通过模式识别受体识别病原微生物细胞表面特异保守的糖分子,从而能够识别入侵微生物。C-型凝集素属于模式识别蛋白,在对虾先天免疫中起重要作用。本实验室从中国明对虾中克隆得到一种新型的C-型凝集素,命名为Fc-hsL,并发现其与免疫联系紧密。
     本论文在原核表达系统中大规模诱导表达重组蛋白Fc-hsL,利用纯化的重组蛋白进行了一系列性质研究。凝集实验证明,Fc-hsL成熟肽在钙离子存在情况下可以凝集革兰氏阳性菌和革兰氏阴性菌,包括:巨大芽孢杆菌,大肠杆菌等。细菌结合实验发现,重组蛋白可以结合巨大芽孢杆菌,苏云金芽孢杆菌,藤黄微球菌和金黄色葡萄球菌等革兰氏阳性菌,以及部分革兰氏阴性菌,如革兰氏阴性菌大肠杆菌和肺炎克雷伯氏杆菌。通过进一步实验发现,Fc-hsL对甘露糖、半乳糖、脂多糖等都有结合能力,对甘露糖的结合能力大于对半乳糖的结合能力。通过管碟法和液体生长抑制实验等方法测试重组蛋白的抑菌活性和最小抑菌浓度(MIC),发现其对革兰氏阳性菌和真菌的抑菌能力较强,对革兰氏阴性菌有一定的抑菌能力。
     2.融合抗菌肽表达载体构建、重组表达和性质分析
     抗菌肽(Antimicrobial peptides,AMPs)是先天免疫系统重要的组成成分。本实验室从家蝇(Musca domestica)中克隆得到的防御素(Musca domesticadefensin,Mdde)具有抗革兰氏阳性菌和部分革兰氏阴性菌的活性(Wang et al.,2006)。中国明对虾对虾素(penaeidin 5)是本实验室从其血细胞中克隆得到的,对革兰氏阳性菌,阴性菌和真菌有抗性,最小抑菌浓度(MIC)分别:6.3-25.0μM,12.5-50μM,6.25-12.5μM(Kang et al.,2007)。
     本论文通过重叠延伸PCR的方法将中国明对虾对虾素-5(penaeidin 5)和家蝇防御素Mdde基因片段融合,构建表达载体pET30a-pen-mdde。这个方法的核心就在于设计两对引物。首先位于融合基因后端的Mdde的前引物引入penaeidin5末端的22个核苷酸;其次penaeidin 5的前引物和Mdde的后引物引入EcoR1和XhoI酶切位点。本论文成功地在大肠杆菌中大规模诱导表达,并纯化得到了融合蛋白。利用管碟法和液体生长抑制法进行检测,发现重组蛋白有抗菌活性,对革兰氏阳性菌,阴性菌和真菌的最小抑菌浓度分别为:0.3-2.4μM,1.2-2.4μM,0.3-2.7μM。和单独的抗菌肽相比,融合蛋白对革兰氏阳性菌和革兰氏阴性菌以及真菌的抗性都大大增强,例如:对虾素-5抑制革兰氏阳性菌,阴性菌和真菌所需最小的浓度分别为:6.3μM,12.5μM,6.25μM(Kang et al.,2007),而融合蛋白重组蛋白为:0.3μM,1.2μM,0.3μM,其中,对真菌苹果炭疽菌(Glomerella album)和革兰氏阳性菌苏云金杆菌(Bacillus thuringiensis)的最小抑菌浓度为0.3μM。而且融合蛋白保留了对虾素penaeidin 5和家蝇防御素Mdde对革兰氏阳性菌的抗性大于对革兰氏阴性菌的抗性的特点。
As one of important mariculture varieties,Fenneropenaeus chinensis has an important economic status.Large-scale shrimp farming have caused frequent infectious diseases,which resulted in heavy economic losses.So it is high time that we find a effective way to prevent,diagnose and treat shrimp disease.The research on innate immune-related genes and their function of Chinese shrimp,using of a series of biochemistry and molecular biology methods,provides knowledges about shrimp immune mechanism and theoretical basis for disease control.Encountering the situation of mariculture industry,we take screening and(?)loning marine animals' disease-resistant gene(Antimicrobial peptides,AMPs)as a start,acquiring a fusion gene of AMPs by means of genetic engineering technology.The aim is to develop a kind of fishery drugs which is safe,efficient and broad-spectrum anti-bacterial and anti-viral activities.At the same time,we expect to reduce the frequency of mariculture disease and to improve the quality of aquatic products.
     My studies focus on the recombinant protein expression and functions analysis of C-type lectin,which belongs to the PRPs family.The second part is about getting a fusion AMP protein of the defensin from housefly and the penaeidin 5 from shrimp and testing its antimicrobial activity.
     1.Recombinant expression and functions analysis of a C-type lectin
     Invertebrates recognize non-self with pattern recognition receptors,which recognize conserved and specific molecules on the surface of invading microorganisms.C-type lectin which palys an important role in the shrimp innate immune,is a member of PRPs family.One novel C-type lectin named Fc-hsL has been cloned from Chinese shrimp.
     In our studies,we got high expression and purification of recombinant protein of Fc-hsL in E.coli.The recombinant Fc-hsL had agglutinating,binding and antimicrobial activities in vitro.Recombinant mature Fc-hsL had agglutinating activity against Gram-positive and-negative bacteria,including B.megaterium,E. coli.with calcium.Recombinant Fc-hsL bound to several Gram-positive bacteria, such as B.cereus,B.megaterium,B.thuringiensis,M.luteus and S.aureus,and some Gram-negative bacteria,such as Escherichia coli,Klebsiella pneumoniae.Various sugars can be bound by recombinant Fc-hsL.For example,mannose,glucose,LPS can inhibit the agglutination of recombinant Fc-hsL to B.megaterium cells.The antimicrobial activity of Fc-hsL recombinant protein was tested by Oxford cup method and minimal inhibitory concentration(MIC)assay,the results showed high antimicrobial activity against some Gram-positive bacteria and fungi,however displayed comparatively low antimicrobial activity of Gram-negative bacteria.
     2.Expression vector construction,recombinant expression and functions analysis of a fusion antimicrobial peptide.
     The AMPs is extremely important in the innate immunity.Previously,we have got a defensin from Musca domestica named Musca domestica defensin(Mdde), which has activity against Gram-positive and-negative bacteria(Wang et al.,2006) and penaeidin 5 from Chinese shrimp(Kang et al.,2007).
     Two pairs of primers was designed for the overlap extension PCR.The last 22 nucleotides of penaeidin 5 were introduced by the former primer of Mdde which was at the back-end of the fusion gene.T wo restriction sites(EcoRI and X hoI)were introduced by the fomer forward primer of penaeidin 5 which was in front of the fusion gene and the reverse primer of Mdde.The fusion gene was amplified and recombinant expression vector pET30a-pen-mdde was constructed.The recombinant vector pET30a-pen-mdde was transfored into E.coli.The recombinant fusion AMP, Pen-Mdde,was successfully expressed and purified.It was found that the recombinant protein had antimicrobial activity against Gram-positive,Gram -negative bacteria and fungi by Oxford cup method and minimal inhibitory concentration assay.The MIC of rPen-Mdde against Gram-positive,Gram-negative bacteria and fungi was 0.3-2.4μM,1.2-2.4μM,0.3-2.7μM respectively.It was also found that the antimicrobial activity of the fusion gene recombinant protein had been greatly enhanced compared with the the recombinant protein of penaeidin 5 and Mdde.For example,the MIC of the penaeidin 5 which can inhibit the growth of Gram-positive,Gram-negative bacteria and fungi was 6.3μM,12.5μM,6.25μM(Kang et al.,2007).However,the MIC of fusion gene recombinant protein was 0.3μM,1.2μM,0.3μM.It was especially that the MIC against Glomerella album and Bacillus thuringiensis was all 0.3μM.And the characteristics of having a better resistance activity against Gram-positive than Gram-negative which was also had by penaeidin 5 and Mdde was maintained.
引文
Agundis C, Pereyra A, Zenteno R, Brassart C, Sierra C, Vazquez L, Zenteno E,Quantification of lectin in freshwater prawn (Macrobrachium rosenbergii) hemolymph by ELISA, Comp Biochem Physiol B Biochem Mo! Biol, 2000,127(2):165-72.
    
    Alpuche J, Pereyra A, Agundis C, Rosas C, Pascual C, Slomianny MC, Vazquez L,Zenteno E, Purification and characterization of a lectin from the white shrimp Litopenaeus setiferus (Crustacea decapoda) hemolymph. Biochim Biophys Acta,2005, 1724(1-2): 86-93.
    
    Ao J, Ling E, Yu XQ, Drosophila C-type Lectins Enhance Cellular Encapsulation,Molecular Immunology, 2007, 44(10): 2541-2548.
    
    Cambi A, Figdor CG, Levels of complexity in pathogen recognition by C-type lectins,Current Opinion in Immunology, 2005, 17:345-351.
    
    Christophides GK, Zdobnov E, Barillas-Mury C, Birney E, Blandin S, Blass C, Brey PT, Collins FH, Danielli A, Dimopoulos G, Hetru C, Hoa NT, Hoffmann JA,Kanzok SM, Letunic I, Levashina EA, Loukeris TG, Lycett G, Meister S, Michel K, Moita LF, Muller HM, Osta MA, Paskewitz SM, Reichhart JM, Rzhetsky A,Troxler L, Vernick KD, Vlachou D, Volz J, von Mering C, Xu J, Zheng L, Bork P,Kafatos FC,Immunity-related genes and gene families in Anopheles gambiae.Science, 2002, 298(5591): 159-165.
    
    Cominetti MR, Marques MR, Lorenzini DM, L(o|¨)fgren SE, Daffre S, Barracco MA., Characterization and partial purification of a lectin from the hemolymph of the white shrimp Litopenaeus schmitti, Developmental and Comparative Immunology, 2002,26 (2002) 715-721.
    
    Destoumieux D, Bulet P, Strub, J.M., Van Dorsselaer, A., Bachere, E., Recombinant expression and range of activity of penaeidins, antimicrobial peptides from penaeid shrimp, European Journal of Biochemistry, 1999,266, 335-346.
    
    Dodd RB, Drickamer K, Lectin-like proteins in model organisms: implicat- ionnns for evolution of carbohydrate-binding activity, Glycobiology, 2001, 11(5): 71-97.
    
    Drickamer K, Engineering galactose-binding activity into a C-type mannose-binding protein, Nature, 1992, 360, 183-186.
    
    Drickamer K, C-type lectin-like domains, Current Opinion in Structural Biology ,1999, 9:585-590.
    
    East L, Isacke CM, Afshan McCarthy, Dirk Wienke, Justin Sturge, Alan Ashworth,and Clare M. Isacke. The mannose receptor family, Biochimica et Biophysica Acta,2002, 1572(2-3): 364-386.
    Fisher WS, DiNuzzo AR, Agglutination of bacteria and erythrocytes by serum from six species of marine mollusks, J. Invertebr. Pathol., 1991, 57, 380-394.
    Fujita T, Evolution of the lectin-complement pathway and its role in innate immunity.Nat Rev Immunol, 2002, 2(5):346-353.
    
    Gottar M, Gobert V, Michel T, Belvin M, Duyk G, Hoffmann JA, Ferrandon D,Royet J, The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature, 2002, 416 (6881) :640-643.
    
    Gourdine JP, Markiv A, Smith-Ravin J.,The three-dimensional structure of codakine and related marine C-type lectins, Fish Shellfish Immunology, 2007,23 (4):831-839.
    Hetru C, Bulet P, Strategies for the isolation and characterization of antimicrobial peptides of invertebrates, Methods in Molecular Biology, 1997, 78:35-49.
    Hoffmann J A, Kafatos F C , Janeway C A , Ezekowitz RA, Phylogenetic perspectives in innate immunity, Science , 1999 , 284 (5418) : 1313—1318.
    Holmskov U, Thiel S, Jensenius JC, Collections and ficolins: humoral lectins of the innate immune defense, Annual Review of Immunology, 2003, 21: 547-578.
    Hosono, M., Sugawara, S., Ogawa, Y., Kohno, T., Takayanagi, M., Nitta, K.,.Purification, characterization, cDNA cloning, and expression of asialofetuin-binding C-type lectin from eggs of shishamo smelt (Osmerus [Spirinchus] lanceolatus), Biochimica et Biophysica Acta ,2005,1725, 160-173.
    Iwanaga S, Lee BL, Recent advances in the innate immunity of invertebrate animals,Journal of biochemistry and molecular biology, 2005, 38(2): 128-150.
    Inamori Y, Shinohara S, Tsujibo H, Okabe T, Morita Y, Sakagami Y, Kumeda Y, Ishida N,Antimicrobial activity and metalloprotease inhibition of hinokitiol-related compounds, the constituents of Thujopsis dolabrata S. and Z. hondai MAK, Biol Pharm Bull., 1999,22(9):990-3.
    Kaneko H, Inoue R, Teramoto T, Morimoto W, Isogai K, Kasahara K, Kondo N, Detection of the genes induced in activated lymphocytes by modified differential display, J Investig Allergol Clin Immunol, 2002, 12(2): 86-90.
    Kawabata S, Iwanaga S, Role of lectins in the innate immunity of horseshoe crab,Dev Comp Immunol, 1999,23(4-5):391-400.
    Kawabata S, and Tsuda R, Molecular basis of non-self recognition by the horseshoe crab tachylectins, Biochimica et Biophysica Acta, 2002,1572: 414-421.
    Kim Y S , Ryu J H , Han S J ,Gram-negative bacteria-binding protein , a pattern recognition receptor for lipopolysaccharide and 21 , 32 glucan that mediates the signaling for the induction of innate immune ienes in Drosophila melanogaster cells. Journal biology chemistry, 2000 , 275 (42) : 32721-32727.
    Kim, Y.M., Park, K.I., Choi, K.S., Alvarez, R.A., Cummings, R.D., Cho, M., Lectin from the Manila clam Ruditapes philippinarum is induced upon infection with the protozoan parasite Perkinsus olseni, The journal biology chemistry, 2006,281,26854-26864.
    Kilpatrick, D.C., Mannan-binding lectin: clinical significance and applications,Biochimica et biophysica acta, 2002,1572, 401-413.
    Koizumi, N., Imamura, M., Kadotani, T., Yaoi, K., Iwahana, H., Sato, R., The lipopolysaccharide-binding protein participating in haemocyte nodule formation in the silkworm Bombyx mori is a novel member of the Ctype lectin superfamily with two different tandem carbohydrate-recognition domains, FEBS Lett. ,1999 ,443,139-143.
    Koizumi, N., A. Morozumi, M. Imamura, E. Tanaka, H. Iwahana, and R. Sato., Lipopolysaccharide-binding proteins and their involvement in the bacterial, 1999,443(2):139-43.
    Kondo M, Matsuyama H, Yano T, The opsonic effect of lectin on phagocytosis by hemocytes of Kuruma Prawn, Penaeus japonicus, Fish Pathol, 1992, 27:217-22.
    Laskowski M Jr, Kato I., Protein inhibitors of proteinases, Annual Review of Immunology, 1980, 49: 593-626.
    Lee, S.Y., Soderhall, K., Characterization of a pattern recognition protein, a masquerade-like protein, in the freshwater crayfish Pacifastacus leniusculus. Journal Immunology, 2001,166, 7319-7326.
    Levashina E A , Moita L F , Blandin S , Conserved role of a complement like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito , Anopheles gambiae, Cell, 2001 , 104(5): 7092718.
    Li, L., Wang, J.X., Zhao, X.F., Kang, C.J., Liu, N., Xiang, J.H., Li, F.H., Sueda, S.,Kondo, H., High level expression, purification, and characterization of the shrimp antimicrobial peptide, Ch-penaeidin, in Pichia pastoris, Protein Exessionr Purification, 2005, 39, 144-151.
    Ling, E., Yu, X.Q., Cellular encapsulation and melanization are enhanced by immulectins, pattern recognition receptors from the tobacco hornworm Manduca sexta, Dev. Comp. Immunol., 2006, 30, 289-299.
    Liu, Y.C., Li, F.H., Dong, B., Wang, B., Luan, W., Zhang, X.J., Zhang, L.S., Xiang,J.H.,Molecular cloning, characterization and expression analysis of a putative C-type lectin (Fclectin) gene in Chinese shrimp Fenneropenaeus chinensis, Mol.Immunol., 2007,44, 598-607.
    Loker ES, Adema CM, Zhang SM, Kepler TB., Invertebrate immune systems--not homogeneous, not simple, not well understood, Immunol Rev, 2004, 198(1):10-24.
    Luo T, Zhang X, Shao Z, Xu X. PmAV, a novel gene involved in virus resistance of shrimp Penaeus monodon, FEBS Lett, 2003, 551(1-3): 53-57.
    Luo T, Yang H, Li F, Zhang X, Xu X.Purification, characterization and cDNA cloning of a novel lipopolysaccharide-binding lectin from the shrimp Penaeus monodon, Dev Comp Immunol, 2006, 30(7): 607-617.
    Maheswari R, Mullainadhan P, Arumugam M, Characterisation of a natural haemagglutinin with affinity for acetylated aminosugars in the serum of the marine prawn, Penaeus indicus(H Milne Edwards), Fish Shellfish Immunol, 1997,17-28.
    Ma TH, Tiu SH, He JG, Chan SM., Molecular cloning of a C-type lectin (LvLT) from the shrimp Litopenaeus vannamei: Early gene down-regulation after WSSV infection ,Fish Shellfish Immunology, 2007,23 (2):430-437.
    Marques, M.R.F., Barracco, M.A., Lectins, as non-self recognition factors,in crustaceans, Aquaculture, 2000,191:23-44.
    
    McGreal EP, Martinez-Pomares L, Gordon S, Divergent roles for C-type lectins expressed by cells of the innate immune system, Molecular Immunology, 2004,41(2004) 1109-1121.
    Medzhiotov R, Preston2Hurlburt P , Janeway C A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity,Nature, 1997 ,388 (6640) : 394-397.
    Mercy PD., Ravindranath MH., Purification and characterization of N-glyc-olyneuraminic-acid-spe-cific lectin from Scylla serrata, Eur J Biochem, 1993, 215(3): 697-704.
    Mullin, N.P., Hitchen, P.G., Taylor M.E., Mechanisms of Ca~(2+) and monosaccharide binding to a C-type carbohydrate-recognition domain of the macrophage mannose receptor, Journal biology chemistry, 1997, 272, 5668- 5681.
    Ohta M et al., Watanabe A, Mikami T, Nakajima Y, Kitami M, Tabunoki H, Ueda K,Sato R, Mechanism by which Bombyx mori hemocytes recognize microorganisms: direct and indirect recognition systems for PAMPs. Dev Comp Immunol., 2006, 30(10):867-77.
    
    Oliveira MD, Andrade CA, Santos-Magalh(?)es NS, Coelho LC, Teixeira JA,Carneiro-da-Cunha MG, Correia MT, Purification of a lectin from Eugenia uniflora L. seeds and its potential antibacterial activity, Lett Appl Microbiol, 2008,46(3):371-6.
    
    Radis-Baptista, G., Moreno, F.B., de Lima Nogueira, L., Martins, A.M., de Oliveira Toyama, D., Toyama, M.H., Cavada, B.S., de Azevedo Jr., W.F., Yamane,
    T.,Crotacetin, a novel snake venom C-type lectin homolog of convulxin, exhibits an unpredictable antimicrobial activity,Cell Biochem. Biophys, 2006,44(3):412-23.
    Ratanapo S, Chulavatnatol M. Monodin, A new sialic acid-specific lectin from black tiger prawn (Penaeus monodon), Comp. Biochem Physiol, 1990, 97(B): 515-520.
    Ratanapo S, Chulavatnatol M., Monodin-induced agglutination of Vibrio vulnificus, a major infective bacterium in black tiger prawn(Penaeus monodon), Comp Biochem Physiol Biochem, 1992, 102(B): 855-859.
    Peiser L, Mukhopadhyay S, Gordon S. Scavenger receptors in innate immunity, Curr Opin Immunol., 2002 , 14 (1): 123-128.
    Pereyra A,Zenteno R, Vázquez L,Martínez-Cairo S,Rodríguez A,Mendoza-Hernández G, Zenteno E, A gundis C, Characterization of lectin aggregates in the hemolymph of freshwater prawn Macrobrachium rosenbergii, Biochimica et Biophysica Acta, 2004, 1673 (2004) 122- 130.
    Roberts NA. Drug-resistance patterns of saquinavir and other HIV proteinase inhibitors,AIDS, 1995,12(9): 27-32.
    Saito T, Kawabata S, Shigenaga T, Takayenoki Y, Cho J, Nakajima H, Hirata M, Iwanaga S, A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence, and antibacterial activety, J Biochem (Tokyo), 1995, 117(5):1131-1137.
    Schroder HC, Ushijima H, Krasko A, Gamulin V, Thakur NL, Diehl-Seifert B,Muller IM, Muller WE, Emergence and disappearance of an immune molecule, an antimicrobial lectin, in basal metazoa. A tachylectin- related protein in the sponge Suberites domuncula, J Biol Chem, 2003, 278(35): 32810-32817.
    Sierra C, Lascurain R, Pereyra A, Guevara J, Martinez G, Agundis C, Zenteno E,Vazquez L.,Participation of serum and membrane lectins on the oxidative burst regulation in Macrobrachium rosenbergii hemocytes,Dev Comp Immunol, 2005,29(2): 113-121.
    Shin SW, Park DS, Kim SC, Park HY, Two carbohydrate recognition domains of Hyphantria cunea lectin bind to bacterial lipopolysaccharides through O-specific chain, FEBS Lett, 2000, 467(1): 70-74.
    Sun J, Wang L, Wang B, Guo Z, Liu M, Jiang K, Luo Z, Purification and characterisation of a natural lectin from the serum of the shrimp Litopenaeus vannamei,Fish Shellfish Immunology,2007, 23(2):292-9.
    Takahashi KG, Kuroda T, Muroga K., Purification and antibacterial characterization of a novel isoform of the Manila clam lectin (MCL-4) from the plasma of theManila clam, Ruditapes philippinarum, Comparative biochemistry and physiology, 2008, 150(1):45-52.
    
    Tunkijjanukij S, Olafsen JA, Sialic acid-binding lectin with antibacterial activity from the horse mussel: further characterization and immunolocalization,Dev.Comp. Immunol., 1998,22, 139-150.
    
    Vazquez L, Masso F, Rosas P, Montano LF, Zenteno E., Purification and characterization of a lectin from Macrobrachium rosenbergii Crustacea, Decapoda.hemolymph, Comp Biochem Physiol, 1993, 105(B): 617-623.
    Vasta GR, Ahmed H, Du S, Henrikson D,Galectins in teleost fish: Zebrafish (Danio rerio) as a model species to address their biological roles in development and innate immunity, Glycoconj J, 2004, 21(8-9): 503-521.
    
    Weis WI, Kahn R, Fourme R, Drickamer K, Hendrickson WA, Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing, Science, 1991, 254, 1608- 1615.
    Weis WI, Drickamer K, Hendrickson WA, Structure of a C-type mannose-binding protein complexed with an oligosaccharide, Nature, 1992,360, 127-134.
    Wilson R, Chen C, Ratcliffe NA, Innate immunity in insects: the role of multiple, endogenous serum lectins in the recognition of foreign invaders in the cockroach,Blaberus discoidalis, J Immunol, 1999, 162(3): 1590-1596.
    Willment Janet A. and Gordon D. Brown, C-type lectin receptors in antifungal Immunity, Trends Microbiol, 2008, Jan;16(1):27-32.
    
    Yu XQ, Gan H, Kanost MR. Immulectin, an inducible C-type lectin from an insect, Manduca sexta, stimulates activation of plasma prophenol oxidase, Insect Biochem Mol Biol, 1999, 29(7): 585-597.
    
    Yu XQ, Kanost MR. Immulectin-2, a lipopolysaccharide-specific lectin from an insect, Manduca sexta, is induced in response to gram-negative bacteria,J Biol Chem, 2000, 275(48): 37373-37381.
    Yu XQ, Zhu YF, Ma C, Fabrick JA., Kanost MR, Pattern recognition proteins in Manduca sexta plasma,Insect Biochem Mole Biol, 2002 , 32 (10) :1287~ 1293.
    Yu Y, Yu Y, Huang H, Feng K, Pan M, Yuan S, Huang S, Wu T, Guo L, Dong M,Chen S, Xu A., A Short-Form C-Type Lectin from Amphioxus Acts as a Direct Microbial Killing Protein via Interaction with Peptidoglycan and Glucan, The Journal of Immunology, 2007, 179: 8425-8434.
    
    Yang H, Luo T, Li F, Li S, Xu X, Purification and characterisation of a calcium-independent lectin (PjLec) from the haemolymph of the shrimp Penaeus japonicus, Fish Shellfish Immunology ,2007,22(1-2):88-97.
    
    Zelensky AN, Gready JE, The C-type lectin-like domain superfamily, FEBS J, 2005,272(24): 6179-6217.
    Bachere E, Destoumieux D, Bulet P,Penaeidins, antimicrobial peptides of shrimp:a comparison with other effectors of innate immunity, Aquaculture,2000,191:71-88.
    Bachere E, Gueguen Y, Gonzalez M, de Lorgeril , Gamier J, Romestand B,Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas, Immun. Rev., 2004,198, 149-168.
    Bulet P, Stocklin R and Menin L, Anti-microbial peptides: from invertebrates to vertebrates, Immunol. Rev., 2004, 198, 169-184.
    Cuthbertson BJ, Deterding LJ, Williams JG, Tomer KB, Etienne K, Blackshear PJ,Büllesbach EE, Gross PS, Diversity in penaeidin antimicrobial peptide form and function, Developmental and Comparative Immunology ,2008,32(3):167-81.
    Cuthbertson BJ, Shepard EF, Chapman RW, Gross PS,Diversity of the penaeidin antimicrobial peptides in two shrimp species, Immunogenetics,2002, 54,442-445.
    Chen JY, Pan CY, Kuo CM, Molecular cloning and sequencing of shrimp (Penaeus monodori) penaeidin-5 cDNA,Fish Shellfish Immunol, 2004, 16,665-670.
    Chiou TT, Wu JL, Chen TT, Lu JK, Molecular cloning and characterization of cDNAof penaeidin-like antimicrobial peptide from tiger shrimp (Penaeus monodon),Mar. Biotechnol., 2005, 7(2): 119-27.
    Destoumieux D, Bulet P, Loew D, van DorsselaerA, Rodriguez J, Bachere E,Penaeidins, a newfamily of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda), J. Biol. Chem, 1997,272, 28398-28406.
    Destoumieux D, Bulet P, Strub JM, Van Dorsselaer , Bachere E, Recombinant expression and range of activity of penaeidins, antimicrobial peptides from penaeid shrimp, Eur. J. Biochem, 1999, 266, 335-346.
    Destoumieux D, Munoz M, Bulet P, Bachere E,Penaeidins, a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda),Cell Mol Life Sci, 2000,57:1260-71.
    Destoumieux D, Mu(?)oz M, Cosseau C, Rodriguez J, Bulet P, Comps M, Bachere E, Penaeidins, antimicrobial peptides with chitinbinding activity, are produced and stored in shrimp granulocytes and released after microbial challenge, J Cell Sci, 2000,113(Pt 3):461-9.
    Dimarca JL, Bulet P, Hetru C, Hoffmann J, Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers (Peptide Science), 1998, 47:465-477.
    Fehlbaum P, Bulet P, Michaut L, Lagueux M, Broekaert W F, Hetru C,
    Hoffmann JA, Insect immunity: septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides,J. Biol. Chem, 1994,269, 33159-33163.
    
    Gross PS, Bartlett TC, Browdy CL, Chapman RW, Warr GW, Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific White Shrimp, Litopenaeus vannamei, and the Atlantic White Shrimp, L. setiferus, Dev. Comp. Immunol, 2001 25, 565-577.
    
    Hetru C, Bulet P, Strategies for the isolation and characterization of antimicrobial peptides of invertebrates. Methods in Molecular Biology, 1997, 78:35-49.
    
    Ho SN, Hunt HD, Horton RM, Pullen JK,Pease LR, Site-directed mutagenesis by overlap extension using the polymerase chain reaction, Gene, 1989, 77(1):51-59.
    
    Horton RM, Cai ZI, Ho SN, Pease LR, Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction, Bio Techinques,1990,8(5):528-535.
    
    Jenssen H, Hamill P, Hancock RE, Peptide Antimicrobial Agents,Clinical Microbiology Reviews, 2006, 19(3): 491-511.
    
    Kang CJ, Xue JF, Liu N, Zhao XF, Wang JX, Characterization and expression of a new subfamily member of penaeidin antimicrobial peptides (penaeidin 5) from Fenneropenaeus chinensis, Molecular Immunology,2007,44(7): 1535-43.
    
    Kang CJ, Wang JX, Zhao XF, Yang XM, Shao HL, Xiang JH,Molecular cloning and expression analysis of the ch-penaedin, an antimicrobial peptide from Chinese shrimp, Fenneropenaeus chinensi, Fish Shellfish Immunol, 2004,16,513-525.
    
    Lamberty M, Ades S, Uttenweiler-Joseph S, Brookhart G, Bushey D, Hoffmann JA, Bulet P, Insect immunity: isolation from the lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity, J. Biol.Chem, 1999 ,274, 9320-9326.
    
    Lamberty M, Zachary D, Lanot R, Bordereau C, Robert A, Hoffmann JA, Bulet P,Insect immunity: constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect, J. Biol. Chem. 2001, 276,4085-4092.
    
    Lehrer RL, T Ganz, Antimicrobial peptides in mammalin and insect host defence.Current Opinion in Immunology ,1999, 11:23-27.
    
    Li L, Wang JX, Zhao XF, Kang CJ, Liu N, Xiang JH, Li FH, Sueda S, Kondo H, High level expression, purification, and characterization of the shrimp antimicrobial peptide, Ch-penaeidin, in Pichia pastoris, Protein Exp. Purif.,2005,39,144-151.
    
    Murakami T, Nakajima T, Koyanagi Y, Tachibana K, Fujii N, Tamamura H,Yoshida N, Waki M, Matsumoto A, Yoshie O, Kishimoto T, Yamamoto N,Nagasawa T, A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection, J. Exp. Med, 1997, 186:1389-1393.
    Munoz M, Vandenbulcke F, Gamier J, Gueguen Y, Bulet P, Saulnier D, Bachere E, Involvement of penaeidins in defense reactions of the shrimp Litopenaeus stylirostris to a pathogenic vibrio, Cell Mol. Life Sci., 2004, 61, 961-972.
    Radek K, Gallo R, Antimicrobial peptides: natural effectors of the innate immune system Semin Immunopathol, 2007, 29(1):27-43.
    Rojtinnakorn J, Hirono I, Itami T, Takahashi Y, Aoki T, Gene expression in haemocytes of kuruma prawn, Penaeus japonicus, in response to infection with WSSV by EST approach, Fish Shellfish Immunol, 2002, 13, 69-83.
    Robinson, WE Jr, McDougall B, Tran D, Selsted ME, Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils, J. Leukoc. Biol., 1998,63 (1):94-100.
    Saberwal G, Nagara R, Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes. Biochem Biophys Acta, 1994,1197(2):109-131.
    Schuhmann B, Seitz V, Vilcinskas A, Podsiadlowski L, Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella, Arch. Insect Biochem. Physiol, 2003, 53,125-133.
    Selitrennikoff CP, Antifungal Proteins, App. and Envir.Microbio, 2001,67:2883-2894.
    Supungul P, Klinbunga S, Pichyangkura R, Hirono I, Aoki T, Tassanakajon A,Antimicrobial peptides discovered in the black tiger shrimp Penaeus monodon using the EST approach, Dis. Aquat. Organ, 2004, 61, 123-135.
    Sinha S, Cheshenko N, Lehrer RI, Herold BC, NP-1, a rabbit alpha-defensin,prevents the entry and intercellular spread of herpes simplex virus type 2,Antimicrob. Agents Chemother, 2003,47:494-500.
    Tamamura H, Xu Y, Hattori T, Zhang X, Arakaki R, Kanbara K, Omagari A,Otaka A, Ibuka T, Yamamoto N, Nakashima H, Fujii N, A low-molecular-weight inhibitor against the chemokine receptor CXCR4: a strong anti-HIV peptide T140, Biochem. Biophys. Res. Commun., 1998,253:877-882.
    Vizioli J and Salzet M, Antimicrobial peptides from animals: focus on invertebrates TRENDS in Pharma, Sci., 2002, 23:494-496.
    Wang JX, Zhao XF, Liang YL, Li L, Zhang W, Ren Q, Wang LC, Wang LY,Molecular characterization and expression of the antimicrobial peptide defensin from the housefly (Musca domestica),Cell. Mol. Life Sci, 2006, 63(24):3072-82.
    Yang Y, Poncet J, Gamier J, Zatylny C, Bachere E, Aumelas A,Solution structure of the recombinant penaeidin-3, a shrimp antimicrobial peptide, J Biol Chem, 2003,278:36859-67.
    Yasin B,Wang W,P ang M,Cheshenko N,Hong T,Waring AJ,Herold BC,Wagar EA,and Lehrer RI,Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry,J.Virol,2004,78:5147-5156.
    Yount NY,Bayer AS,Xiong YQ,Yeaman MR,Advances in Antimicrobial Peptide Immunobiology,Biopolymers,2006,84(5):435-58.
    Zasloff M,Antimicrobial peptides of multicellular organisms,Nature,2002,145:389-395.
    张毅,屈贤铭,杨胜利,融合蛋白基因工程应用及研究,生物工程进展,2000,Vol.20,No.3.
    桑春果,张开春,张军科,重叠区扩增法合成抗菌肽B基因,西北农林科技大学学报(自然科学版),2002,30(1):65-67.
    李德谋,罗小英,候磊,裴炎,方卫国,杨光伟,利用交错延伸剪接PCR技术扩增油菜花粉育性基因MS2Bnap全长cDNA序列,遗传,2001,23(6):553-555.