迭代矩阵的谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算科学与工程中的许多问题最后都归结为对线性代数方程组和矩阵特征值问题的求解.因此,对这两个问题求解方法的研究是科学与工程计算的核心问题之一,具有极其重要的理论意义和实际应用价值.
     本文深入地研究了与稀疏线性代数系统迭代求解有关的几类特殊矩阵特征值的相互关系和不同的迭代法.特别地,给出了一些迭代法的比较理论,p-循环情况下不同迭代矩阵的特征值关系,定常迭代法预条件技术及其比较理论.
     讨论了著名的Stein-Rosengberg定理及其推广形式,给出MPSD迭代法中几类迭代矩阵与Jacobi迭代矩阵谱半径的比较,指出在特定条件下Jacobi迭代矩阵的谱半径更小,丰富了Stein-Rosengberg定理的内涵,完善了Stein-Rosengberg定理的内容.
     研究了p-循环矩阵,给出p-循环情况下MPSD迭代矩阵,GMPSD迭代矩阵及GUSAOR迭代矩阵与Jacobi迭代矩阵的特征值比较关系,优于相关文献的结果,特别是R.S.Varga在名著<>中的特征值关系.
     研究了几种定常迭代法的预条件技术:
     (1)提出Upper Jacobi与Upper Gauss-Seidel型迭代法;在特定的预条件矩阵下,给出预条件Upper Jacobi与Upper Gauss-Seidel型迭代法与对应的初始迭代法的比较关系及Upper Jacobi与Upper Gauss-Seidel型迭代法的比较关系;
     (2)给出AOR迭代法在文献[106,107]提出的预条件矩阵下的比较关系;
     (3)给出Gauss-Seidel迭代法在文献[107,111]提出的预条件矩阵下的比较关系.
The solution of linear systems of algebraic equations and computing matrices eigenvaluesarises in many problems of computational Science and Engineering computingproblem. So, the research of solutions for the two questions becomes one of the keyissues of scientific and engineering computing and has important theoretic significanceand valuable practical applications. This doctoral dissertation has a comprehensive studyon eigenvalues of some special matrices as well as iterative methods of linear algebraicsystems. In particular, comparison theories of some iterative methods are presented, andrelationships of eigenvalues among some iterative methods with Jacobi iterative methodhave also been studied and preconditioning techniques for the stationary iterative methodsare also investigated and some comparison theories are obtained.
     Stein-Rosenberg Theorem and its generalized forms are studied. Comparison relationshipsof the spectral radius between some iterative matrices of MPSD iterative methodand the Jacobi iterative matrices are obtained. We show that the spectral radius of theJacobi iterative method is smaller than others under some assumptions. So, the SteinRosenbergTheorem and other results in references are perfected.
     p-cyclic matrices are investigated. Relationships of eigenvalues between MPSD iterativematrices and Jacobi iterative matrices are obtained at first. The relationships ofeigenvalues between GMPSD iterative matrices and Jacobi iterative matrices are establishedlater and the relationships of eigenvalue between GUSAOR iterative matrices andJacobi iterative matrices are investigated in the end, The results in corresponding referencesare improved and perfected.
     Preconditioning techniques for stationary iterative methods are studied.
     (1) The Upper Jacobi and Upper Gauss-Seidel iterative methods are proposed. In thespecial preconditioner, the Upper Jacobi and Upper Gauss-Seidel iterative methods arestudied, the comparison relationships of preconditioned Upper Jacobi and Upper GaussSeideliterative methods with the origional ones, as well as comparison relationships ofpreconditioned Upper Jacobi method with preconditioned Upper Gauss-Seidel iterativemethod are obtained.
     (2) The precodtioned AOR iterative method under the percondtioners in [106, 107]is investigated and some comparison relationships are obtained.
     (3) The precodtioned Gauss-Seidel iterative method under the percondtioners in[107, 111] is studied and some comparison relationships are obtained.
引文
[1] R. S. Varga. Matrix Iterative Analysis. Englewood Cliffs, New York, Prentice-Hall, 2000.
    [2] J.J. Buoni, M. Neumann, R.S. Varga. Theorems of Stein-Rosengberg type Ⅲ, the singular case, Linear Algebra Appl., 1982, 42:183-198.
    [3] X.M. Wang. Generalized Stein-Rosengberg Theorems for the Regular Splittings and Convergence of Some Gerneralized Iterative Methods. Linear Algebra Appl., 1993, 184:207-234.
    [4] J.J. Buoni, R.S. Varga. Theorems of Stein-Rosengberg type in:R.Ansorge, K. Glashoff, B.Werner(Eds). Numer. Math., Birkauser, Basel, 1979, 65-75.
    [5] J.J. Buoni, R.S. Varga. Theorems of Stein-Rosengberg type Ⅱ, optimal paths of relaxation in the complex plane in:M.H. Schultz(Ed),Elliptic Problem Solvers. Academic Press, New York, 1981, pp.231-240.
    [6] J.G. Hu. Iterative Methods for Solving Linear Systems. China Science Press, Beijing, 1991.
    [7] I. Marek, D.B. Szyld. Comparison theorems for weak splittings of bounded operators. Nu- mer.Math., 1990, 58:389-397.
    [8] N.M. Missirlis, D. J. Evans. On the convergence of some generalized preconditioned iterative method. SIAM J. Numer.Anal., 1981,18:591-596.
    [9] Y. Song. Comparison theorems of nonnegative splittings of matrices. Linear Algebra Appl.,1991, 154-156:433-455.
    [10] Y. Song. Some Comparisons theorems for nonnegative splittings of matrices. Numer.Math., 1993,65:245-252.
    [11] X. Liu. Convergence of some iterative methods. Numer. Calculation.Comput. Appl., 1992, 1:58-64.
    [12] A. Berman, R.J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York, 1979, reprinted by SIAM, Philadelphia, PA, 1994.
    [13] J.J. Climent, C. Perea. Some comparison theorems for weak nonnegative splittings of bounded operators. Linear Algebra Appl., 1998, 275-276:77-106.
    [14] W. Li, L. Eisner, L. Lu. Comparisons of spectral radii and the theorems of Stein-Rosengberg. Linear Algebra Appl., 2002, 348:283-287.
    [15] J. Dancis. The optimal (?) is not best for the SOR iteration method. Linear Algebra Appl., 1991, 154-156:819-845.
    [16] A. Hadjidimos. Optimum accelerated overrelaxation method in a special case. Math. Comp.,1981,36:183-187.
    [17] A. Hadjidimos, R.J. Plemmons. Optimal p-cyclic SOR. Numer. Math., 1994, 67:475-490.
    [18] S. Galanis, A. Hajimos, D. Noutsos. A Young-Eidson's type algorithm for complex p-cyclic SOR spectra. Linear Algebra Appl., 1999, 286:87-106.
    [19] S. Galanis, A. Hajimos, D. Noutsos. Optimal p-cyclic SOR for complex spectra. Linear Algebra Appl., 1997, 263:233-260.
    [20] S. Galanis, A. Hadjidimos, D. Noutsos. On the equivalence of the (?)-step iterative Euler methods and successive overrelaxation(SOR)methods for (?)-cyclic matrices. Math. Comput. Simulation., 1988,30:213-230.
    [21] A. Hadjidimos, M. Neumann. Precise domains of convergence for the block SSOR method associated with p-cyclic matrices. BIT., 1989, 29:311-320.
    [22] A. Hadjidimos, D. Noutsos, M. Tzoumas. On the convergence domains of the p-cyclic SOR. J. Comp. Appl. Math., 1996,72:63-83.
    [23] A. Hadjidimos, M. Neumann. Superior convergence domains for the p-cyclic SSOR majorizer. J. Comp. Appl. Math., 1995, 62:27-40.
    [24] D. Noutsos. A operator relaxation of the USSOR and the Jacobi iteration matrices of a p-cyclic matrix. SIAM J. Matrix. Anal. Appl., 1996, 17:515-529.
    [25] G. Avdelas, A. Hadjidimos. Optimal 2-cyclic MSOR for "Bowtie" spectra and "Continuous" Manteuffel algorithm. Linear Algebra Appl., 1997, 265:29-54.
    [26] L. Chong, D.Y. Cai. Relationship between eigenvalues of Jacobi aand SSOR iterative matrix with p-weak cyclic matrix. J. Comput. Math. Coll. Univ., 1985, 1:79-84.
    [27] D.J. Pierce, A. Hadjidimas, R.J. Plemmons. Optimality relationships for p-cyclic SOR. Numer. Math., 1990,56:635-643.
    [28] K. Kontovasilis, R.J. Plemmons, W.J. Stewart. Block cyclic SOR for Markov chains with p-cyclic infinitesimal generator. Linear Algebra Appl., 1991, 154-156:145-223.
    [29] R. Li. Relationship of eigenvalue for USAOR iterative method applied to a class of p-cyclic matrices. Linear Algebra Appl., 2003, 362:101-108.
    [30] Y. Song. Semiconvergence of block SOR method for singular linear systems with p-cyclic matrices. J. Comput. Math., 2001, 130:217-229.
    [31] X. Li, R.S. Varga. A note on the SSOR and USSOR iterative methods applied to p-cyclic matrices. Numer. Math., 1989, 56:109-121.
    [32] Y.G. Saridakis. On the analysis of the unsymmetric overrelaxation method when applied to p-cyclic matrices. Numer.Math., 1986, 49:461-473.
    [33] P.J. Taylor. An generalization of symmetric relaxation methods for consistently orderd matrices.Numer.Math., 1969, 13:377-395.
    [34] R.S. Varga. p-cyclic matrices:a generalization of Young-Frankel successive overreaxation scheme. Pacific J. Math., 1999, 9:617-628.
    [35] S. Galanis, A. Hadjidimos, D. Noutsos, M. Tzoumas. On the optimal relaxation factor associated with p-cyclic matrices. Linear Algebra Appl., 1992, 162-164:433-445.
    [36] E.D.Sylva, G.A.Miles. The SSOR iteration scheme for equations with (?)_1-ordering. Comput. J.,1963, 6:271-273.
    [37] R.C.Y. Chin, T.A. Manteuffel. An analysis of block successive overrelaxation for a class of matrices with complex spectra. SI.AM J. Numer. Anal., 1988,25:564-585.
    [38] M. Eiermann, W. Niethammer, A. Ruttan. Optimal successive overrelaxation iterative methods for p-cyclic matrices. NumerMath., 1990,57:593-606.
    [39] M. Eiermann, W. Niethammer, R.S. Varga. A study of semi-iterative methods for non-symmetric systems of linear equations. Numer.Math., 1985,47:503-533.
    [40] M. Eiermann, W. Niethammer, R.S.Varga. Acceleration of relaxation methods for non-Hermitian linear systems. SIAM J. Matrix Anal.Appl., 1991, 13:979-991.
    [41] M. Eiermann, R.S. Varga. Is the optimal (?) best for SOR iterative method?. Linear Algebra Appl., 1993, 182:257-277.
    [42] A. Hadjidimos, D. Noutsos, M. Tzoumas. Torwards the determination of optimal p-cyclic SSOR. J. Comp. Appl. Math., 1996,90:1-14.
    [43] A. Hadjidimos, D. Noutsos, M. Tzoumas. On the exact p-cyclic SSOR convergence domains. Linear Algebra Appl., 2003, 232:213-236.
    [44] A. Hadjidimos, M. Neumann. Precise domains of convergence for the block SSOR method associated with p-cyclic matrices. BIT, 1989,29:311-320.
    [45] A. Hadjidimos, D. Noutsos. On a matrix identity connecting iteration operators associated with a p-cyclic matrix. Linear Algebra Appl., 1993, 182:157-178.
    [46] A. Hadjidimos, D. Noutsos, M. Tzoumas. Exact SOR convergence regions for a general class of p-cyclic matrices. BIT, 1995, 35:469-487.
    [47] D. Noutsos. A operator relation of the USSOR and the Jacobi iteration matrices of p-cyclic matrix. SIAM J. Matrix.Anal. Appl., 1996, 17:515-529.
    [48] K. Kontovasilis, R.J. Plemmons, W.J. Stewart. Block cyclic SOR for Markov chains with p-cyclic infinitesimal generator. Linear Algebra Appl., 1952, 154-156:145-223.
    [49] R.S. Varga, W. Niethammer, D.Y. Cai. p-cyclic matrices and the symmetric successive overreax-ation method. Linear Algebra Appl., 1984, 58:425-439.
    [50] P. Wild, W. Niethammer. Over and underrelaxation for linear systems with weakly cyclic Jacobi matrices of index p. Linear Algebra Appl., 1987, 91:29-52.
    [51] M. Eiermann, R.S. Varga. Optimal semi-iterative methods applied to SOR in the mixed case,in:L.Reichel, A.Rutta, R. S. Varga(Eds). Numerical Linear Algabra., Walter de Gruyter, New York., 1993, pp:47-73.
    [52] S.P. Frankel. Convergence rates of iterative treatments of partial differential equations. Math. Tables Aids Comput., 1950,4:65-75.
    [53] S. Galanis, A. Hadjidimos. Best cyclic repartitioning for optimal SOR convergence. SI.AM J. Matrix Anal. Appl., 1992, 13:102-120.
    [54] G.H. Golub, J.D. Pillis. Towards an effective two-parameter method, in:D.R. Kincaid, L. Hayes(Eds.), Iterative Methods for Large Linear Systems., Academic Press, New York, 1990, pp: 107-118.
    [55] D.M. Young. On the accelerated SSOR method for solving large linear systems. Adv. Math., 1977,23:215-271.
    [56] A. Hadjidimos, A. Yeyios. The principle of extrapolation in connection with the accelerated overrelaxation method. Linear Algebra Appl., 1980, 30:115-128.
    [57] A. Hadjidimos. Successive overrelaxation(SOR) and related method. J. Comp. Appl. Math., 2000,123:1777-199.
    [58] D.J. Evans, N.M. Missirlis. The preconditioned simultaneous displacement (MPSD) method for elliptic difference equations. Math. Comp. Simulations., 1980, XXII: 256-263.
    [59] H. Chen. Convergent and divergent relationship between MPSD iterative method and Jacobi method. Math. Comput., 2000, 14(1)1-8.
    [60] D. M. Young. Iterative Solution of Large Linear Systems. New York-London, Academic Press,1971.
    [61] N.M. Missirlis, D. J. Evans. The modified preconditioned simultaneous displacement (MPSD) method. Math. Comp. Simulations., 1984, XXⅣ: 257-262.
    [62] A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM,Philadelphia, PA., 1997.
    [63] A. Hadjidimos. Accelerated overrelaxation method. Math. Comp., 1978, 32:149-157.
    [64] A. Hadjidimos. The optimal solution to the problem of complex extrapolation of a first order scheme. Linear Algebra Appl., 1984, 62:241-261.
    [65] A. Hadjidimos. The optimization of the classical iterative schemes for the solution of complex singular linear systems. SIAM.J. Algebra Discrete Methods., 1985, 6:555-566.
    [66] A. Hadjidimos. A survey of the iterative methods for the solution of linear systems by extrapolation, relaxatinand other techniques. J. Comp. Appl. Math., 1987,20:37-51.
    [67] A. Hadjidimos, X.Z. Li, R.S. Varga. Application of the Schur-Cohn theorem to precise convergence domains for the cyclic SOR iterative method, unpublished manuscript. 1885.
    [68] A. Hadjidimos, M. Neumann. Convergence domains of the SSOR method for generalized consistently ordered matrices. J. Comp. Appl. Math., 1990, 33:35-52.
    [69] A. Hadjidimos, M. Neumann. Euclidean norm minimization of the SOR operators. SIAM J. Matrix Anal.Appl., 1998,19:191-204.
    [70] A. Hadjidimos, D. Noutsos. The Young-Eidson algorithm: applications and extensions. SIAM J. Matrix Anal.Appl., 1990, 11:620-631.
    [71] A. Hadjidimos, A. Psimarni, A.K. Yeyios. on the convergence of the modified accelerated over-relaxation(MAOR)method. Applied Numer. Math., 1992, 10:115-127.
    [72] A. Hadjidimos, Y.G. Saridakis. Modified successive overrelaxation(MSOR)and equivalent 2-step iterative methods for collocation matrices. J. Comp. Appl. Math., 1992, 342:375-393.
    [73] A. Hadjidimos, A.K. Yeyios. Symmetric accelerated overrelaxation(SAOR)method. Math.Comput. Simulation ., 1982, XXIV:72-76.
    [74] A. Hadjidimos, A.K. Yeyios. On some extensions of the accelerated overrelaxation(AOR)theory. Internat.J.Math. Math. Sci., 1982,5:49-60.
    [75] A. Hajimos, A.K. Yeyios. Some recent results on the modified SOR theory. Linear Algebra Appl., 1991, 154-156:5-21.
    [76] L.A.Hageman, D.M. Young. Applied Iterative Methods. Academic Press., New York, 1981.
    [77] P. Henrici. Applied and Computational Complex Analysis. Wiley., New York, 1974.
    [78] W. Kahan. Gauss-Seidel methods of solving largesystems of linear equations. Doctoral Thesis, University of Toronto, Toronto, Canada, 1958.
    [79] D.R. Kincaid. Norm of the successive overrelaxation method with fixed parameters.Math.Comp., 1972, 118:705-717.
    [80] D.R.Kincaid, D.M.Young. The modified successive overrelaxation(method). Math.Comp., 1972, 118:345-357.
    [81] G. Kjellberg. On the convergence of the successive over-relaxation applied to a lass of linear systems of equations with complex eigenvalues. Ericsson Technics Stockholm., 1952, 2:245-258.
    [82] B. Kredell. On complex successive over-relaxation. BIT., 1962,2:143-152.
    [83] M.S. Lynn. On the equivalence of SOR, SSOR and USSOR as applied to (?)_1-ordered systems of linear equations. Comut. J., 1964,7:72-75.
    [84] T.A. Manteuffel. The Tchebyshev iteration for non-symmetric linear systems. Numer.Math., 1977, 28:307-327.
    [85] T.A. Manteuffel. Adaptive procedure for estimating parameters for non-symmetric Tchebyshev iteration. Numer.Math., 1978, 31:183-208.
    [86] T.A. Manteuffel. Optimal parameters for linear second-degree stationary iterative methods. SIAM.J.Numer.Anal., 1982, 19:833-839.
    [87] T.L. Markham, M. Neumann, R.J. Plemmons. Convergence of a direct-iterative method for large- scale least squares problems. Linear Algebra Appl., 1985, 69:155-167.
    [88] N.M. Missirlis. Convergence theory of extrapolated iterative methods for a certain class of non-symmetric linear systems. Numer.Math., 1984,45:447-458.
    [89] A. Neumaier, R.S. Varga. Exact convergence and divergence domains for symmetric successive overrelaxation iterative(SSOR) method applied to H-matrices. Linear Algebra Appl., 1984,58:261-272.
    [90] N.K.N. Nichols, L. Fox. Generalized consistent ordering and optimum successive overrelaxation factor. Numer.Math., 1969, 13:425-433.
    [91] W. Niethammer. On different splittings and associated iteration methods. SIAM J.Numer.Anal., 1979, 16:186-200.
    [92] W. Niethammer, J.D. Pillis, R.S. Varga. Convergence of block iterative methods applied to sparse least squares problems. Linear Algebra Appl., 1984, 58:327-341.
    [93] W. Niethammer, R.S. Varga. The analysis of (?)-step iterative methods for linear systems from summability theory. Numer.Math., 1983, 41:177-206.
    [94] D. Noutsos. Optimal stretched parameters for the SOR iterative method. J. Comput. Appl., 1993,48:293-308.
    [95] G. Opfer, G. Schober. Richardson's iterations for nonsymmetric matrices. Linear Algebra Appl.,1984,58:343-361.
    [96] Y.G. Saridakis. Generalized consistent ordering and the accelerated overrelaxation method. BIT.,1986, 26:369-376.
    [97] R.S. Varga. Extensions of the successive overreaxation theory with applications to finite element approximations, in: J.H.H.Miller(Ed), Topics in Numerical Analysis, Academic Press,New York., 1973:242-247.
    [98] E.E. Wringley. On accelerating the Jacobi method for solving simultaneous equations by Cheby-shev extrapolation when the eigenvalues of the iteration matrix are complex. Comput. J., 1963,6:169-176.
    [99] D.M. Young. Iterative methods for solving partial differential equationc of elliptic type. Doctoral Thesis, Harvard University, Cambridge, MA, 1950.
    [100] D.M. Young. Iterative methods for solving partial differential equationc of elliptic type. Trans.Amer. Math.Soc, 1954, 76:92-111.
    [101] D.M. Young. Convergence properties of the symmetric and unsymmetric successive overrelaxation methods and related methods. Math.Comp., 1970, 112:793-807.
    [102] A. Hadjidimos. Accelerated Overelaxation Method. Math. Comp., 1978, 32:149-157.
    [103] A.D. Gunawardena, S.K. Jain, L. Snyder. Modified iterative methods for consistent linear systems. Linear Algebra Appl., 1981,41:99-110.
    [104] J.P. Milaszewicz. Improving Jacobi and Gauss-Seidel iterations. Linear Algebra Appl., 1987, 93:161-170.
    [105] A. Hadjidimos, D. Noutsos, M. Tzoumas. More on modifications and improvements of classical iterative schemes for M-matrices. Linear Algebra Appl.,2003, 364:253-279.
    [106] A.D. Gunawardena, S.K. Jain, L. Snyder. Modified iterative methods for consistent linear systems. Linear Algebra Appl., 1999,41:99-110.
    [107] H. Kotakemori, K. Harada, M. Morimoto, H. Niki. A comparision theorem for the iterative method with the preconditioner (I + S_(max)). J. Comp. Appl. Math., 2002. 145:373-378.
    [108] O. Axelsson. Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.
    [109] M. Neumann, R.J. Plemmons. Convergence of parallel multisplitting iterative methods for M-matrices. Linear Algebra Appl., 1987, 88-89:559-573.
    [110] W. Li, W. Sun. Modified Gauss-Seidel type methods and Jacobi type methods for Z-matrices. Linear Algebra Appl., 2000,317:227-240.
    [111] D.J. Evans, M.M. Martins, M.E. Trigo. The AOR Iterative Method for New Preconditioned Linear Systems. J. Comp. Appl. Math., 2001, 132:461-466.
    [112] A. Frommer, D.B. Szyld. H-splitting and two-stage iterative methods. Numer. Math., 1992,63:345-356.
    [113] T. Kohno, H. Kotakemori, H. Niki, M. Usui. Improving the Gauss-Seidel method for Z-matrices. Linear Algebra Appl., 1997, 267:113-123.
    [114] M. Usui, H. Niki, T. Kohno. Adaptive Gauss-Seidel method for linear systems. Int. J. Comput.Math., 1994,51:119-125.
    [115] Y.Y. Wang, L.Z. Lu. Preconditioned Lanczos method for generalized Toeplitz eigenvalue problems. J. Comp. Appl. Math., 2009,226:66-76.
    [116] L. Wang, Y. Song. Preconditioned AOR iterative methods for M-matrices. J. Comp. Appl.Math., 2009, 226:114-124.
    [117] Z.Q. Wang. Optimization of the parameterized Uzawa preconditioners for saddle point matrices.J. Comp. Appl. Math., 2009, 226:136-154.
    [118] J.F. Yin, K. Hayami. Preconditioned GMRES methods with incomplete Givens orthogonalization method for large sparse least-squares problems. J. Comp. Appl. Math., 2009, 226:177-186.
    [119] X. Zhou, Y. Song, L. Wang, Qi. Liu. Preconditioned GAOR methods for solving weighted linear least squares problems. J. Comp. Appl. Math., 2009, 224:242-249.
    [120] K. Neymeyr. On preconditioned eigensolvers and Invert-Lanczos processes. Linear Algebra Appl., 2009,430:1039-1056.
    [121] J.H. Yun. A note on preconditioned AOR method for L-matrices. J. Comp. Appl. Math., 2008,220:13-16.
    [122] X.Q. Jin, Y.M. Wei. A survey and some extensions of T. Chan's preconditioner. Linear Algebra Appl., 2008,428:403-412.
    [123] J. H. Yun. A note on the modified SOR method for Z-matrices. Appl.Math.Comput., 2007,194:572-576.
    [124] J.E. Morel, T.Y. Yang, J.S. Warsa. Linear multifrequency-grey acceleration recast for preconditioned Krylov iterations. J. Comp. Physics., 2007, 227:244-263.
    [125] T. Kohno, H. Niki. A note on the preconditioner P_m= I + S_m. J. Comp. Appl. Math., 2009, 225:316-319.
    [126] Q. Liu, G. Chen, J. Cai. Convergence analysis of the preconditioned Gauss-Seidel method for H-matrices. Comp. Appl. Math., 2008, 56:2048-2053.
    [127] M. Benhamadou. Preconditioners for the resolution of the linear systems. Appl.Math.Comput., 2007,189:927-942.
    [128] M. Bellalij, K. Jbilou, H. Sadok. New convergence results on the global GMRES method for diagonalizable matrices. J. Comp. Appl. Math., 2008, 219:350-358.
    [129] H.S. Najafi, H. Zareamoghaddam. A new computational GMRES method. Appl.Math.Comput.,2008,199:527-534.
    [130] H.B. An, Z.Z. Bai. A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations. Appl. Numer. Math., 2007, 57:235-252.
    [131] J. Zhang. Sparse approximate inverse and multilevel block ELU preconditioning techniques for general sparse matrices. Appl. Numer. Math., 2000, 35:67-86.
    [132] S.W. Kim, J. H. Yun. Block ILU factorization preconditioners for a block-tridiagonal H-matrix. Linear Algebra Appl., 2000, 317:103-125.
    [133] J.H. Yun. Block incomplete factorization preconditioners for a symmetric block-tridiagonal M-matrix. J. Comp. Appl. Math., 1998, 94: 133-152.
    [134] M. Benzi. Preconditioning Techniques for Large Linear Systems: A Survey. J. Comp. Physics., 2002, 182:418-477.
    [135] M. Benzi, M. Tuma. A comparative study of sparse approximate inverse preconditioners. Appl. Numer. Math., 1999, 30:305-340.
    [136] M. Benzi, M. Tuma. A robust incomplete factorization preconditioner for positive definite matrices. Numer. Linear Algebra Appl., 2003, 10:385-400.
    [137] E. Chow, Y. Saad. Approximate inverse preconditioners via sparse-sparse iterations. SIAM J. Sci. Comput., 1998, 19:995-1023.
    [138] J.A. Meijerrink, H.A. Van der Vorst. An iterative solution method for linear equation systems of which the coefficient matrix is a systemmtric M-matrix. Math. Comp., 1977, 31:148-162.
    [139] G.H. Cheng, T.Z. Huang, S.Q. Shen. Block triangular preconditioners for the discretized time-harmonic Maxwell equations in mixed form. Comput. Physics Commun., 2009, 180:192-196.
    [140] J.C. Sun, J.W. Cao, C. Yang. Parallel preconditioners for large scale partial difference equation systems. J. Comp. Appl. Math., 2009,226:125-135.
    [141] A. Nejat, C.O.Gooch. Effect of discretization order on preconditioning and convergence of a high-order unstructured Newton-GMRES solver for the Euler equations. J. Comp. Physics., 2008, 227:2366-2386.
    [142] J. Straubhaar. Parallel preconditioners for the conjugate gradient algorithm using Gram-Schmidt and least squares methods. Parallel Computing., 2008, 34:551-569.
    [143] Z.H. Cao. Positive stable block triangular preconditioners for symmetric saddle point problems. Appl.Numer.Math., 2007, 57: 899-910.
    [144] C.D. Riyanti, A. Kononov. parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation. J. Comp. Physics., 2007, 224: 431-448.
    [145] M.H. Koulaei, F. Toutounian. On computing of block ILU preconditioner for block tridiagonal systems. J. Comp. Appl. Math., 2007, 202:248-257.
    [146] J.A. Vogel. Flexible BiCG and flexible Bi-CGSTAB for nonsymmetric linear systems. Appl.Math.Comput., 2007, 188: 226-233.
    [147] T.X. Gu, X.Y. Zuo. An improved parallel hybrid bi-conjugate gradient method suitable for distributed parallel computing. J. Comp. Appl. Math., 2009, 226:55-65.
    [148] R. Beauwens. Iterative Solution Methods. Appl.Numer. Math., 2004, 51:437-450.
    [149] 黄廷祝,杨传胜.特殊矩阵分析及应用.科学出版社,北京,2007.
    [150] 王国荣(译),J.W.Demmel(著).应用数值线性代数.人民邮电出版社,北京,2007.