基于外周血多参数联合分析作为恶性肿瘤辅助诊断方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究旨在证明Illumina450K芯片可以作为一种有效的血清甲基化谱筛选工具,同时以期能够得到原发性肝细胞癌相关甲基化位点。探索基于外周血的原发性肝癌诊断模型和基于血清多参数联合诊断用于鉴别健康对照组和疾病组,良性疾病组和恶性疾病组的诊断价值,为临床诊断提供一种辅助诊断方法。
     方法:利用Illumina450K甲基化芯片对原发性肝癌和正常对照组血清甲基化水平进行检测,亚硫酸盐甲基化测序验证DBX2和THY1甲基化位点;利用Affymetrix基因芯片对原发性肝癌和正常对照组外周血mRNA表达进行检测,然后从中筛选肝癌相关基因建立GeXP检测系统,通过多参数联合分析,以期能够建议一套基于外周血mRNA、GeXP检测平台和多参数联合分析的标准化诊断模型,用于原发性肝癌的临床辅助诊断。生化项目在日立7600全自动生化分析仪检测和罗氏Modular全自动生化分析仪上检测,免疫项目在罗氏E170EE全自动免疫分析仪和雅培i2000全自动免疫发光分析仪上检测,经标准品和质控品校准仪器后,检测试剂盒检测。细胞因子的10项指标在Luminex200液态芯片检测仪上检测。受试者工作曲线用来评价指标的诊断价值。多参数联合分析使用二元Logistic回归分析、判别分析、分类树分析和人工神经网络分析。
     结果:在本研究中,我们发现原发性肝癌组血清的全基因组甲基化水平显著低于正常对照组。与健康对照组相比,原发性肝细胞癌组的差异甲基化位点为7333个,约占450K芯片检测位点的1.5%。在这7333个差异甲基化位点当中,与健康对照组相比,甲基化水平降低的甲基化位点为6953个,甲基化水平升高的甲基化位点为380个。差异甲基化位点在每条染色体上的分布及比率不一致,可能导致染色体不稳定从而导致肿瘤的发生。差异甲基化位点主要位于启动子区域和CpG岛,尤其是甲基化水平升高的差异甲基化位点。我们将β值大于0.5定义为超甲基化,而β值小于0.2定义为超低甲基化。我们筛选出453个健康对照组和37个原发性肝细胞癌组的超甲基化位点,分别对这些超甲基化位点进行基因本体轮和功能富集分析后,在原发性肝细胞癌组中,我们筛选出3个基因功能富集的基因,在健康对照组中,我们筛选出28个基因功能富集的基因。基因相互关系分析后,我们选择DBX2超甲基化位点和THY1超甲基化位点进行验证。DBX2对于健康对照组和原发性肝细胞癌组的诊断灵敏性和特异性分别为89%和87%,而THY1分别为81%和85%。本研究通过对原发性肝癌和正常对照组外周血mRNA表达进行检测,基因芯片质量检测合格后,从中筛选肝癌相关的上调和下调各40个基因,然后从中选择15个相关基因,基于GeXP检测系统,经过基因特异性检测和引物浓度调节后,建立GeXP检测方法,建立最佳诊断模型(CALR、PFN1、SPAG9、ANXA1、HGF、FOS、GPC3和HPSA1B基因)区分正常对照组、乙肝组、肝硬化组、肝癌组和其他组的诊断准确率分别为80.57%,78.17%,84.48%,73.24%和85.85%,然后对模型进行验证,其区分正常对照组、乙肝组、肝硬化组、肝癌组和其他组的平均准确率分别是83.33%,73.33%,100%,75.00%和95.24%。通过多参数联合分析,能够建议一套基于外周血mRNA、GeXP检测平台和多参数联合分析的标准化诊断模型,用于原发性肝癌的临床辅助诊断。本研究通过检测61项指标在多种肿瘤中的含量,在区分健康对照组和疾病组时,发现受试者工作曲线下面积大于0.9以上的有CRP和IL-8两项指标,当CRP的检测阈值为0.29mg/L时,其检测灵敏性和特异性分别为89.90%和97.00%。当IL-8的检测阈值为25.38pg/mL时,检测灵敏性和特异性分别为83.90%和85.50%。CRP用于区分健康对照组和疾病组的诊断价值最好,联合诊断分析用于区分健康对照组和疾病组的诊断价值优于单项指标检测,但由于单项指标CRP的诊断灵敏性和特异性已经较高,因此,联合检测的诊断价值优势不明显。在区分良性疾病组和恶性疾病组时,受试者工作曲线下面积最大的指标CA724,其AUC值仅为0.589,当其诊断阈值为1.685时,其检测灵敏性和特异性分别为56.80%和59.00%。诊断价值非常有限。人工神经网络的诊断价值最好,将样品的70%用于训练,30%用于测试。进行ROC曲线分析,我们发现人工神经网络分析良性疾病组和肿瘤组的受试者工作曲线下面积为0.941。验证集的正确率为81.30%,肿瘤组在训练集中的正确率为88.70%,总体正确率为85.40%。
     结论:本研究证实450K芯片可以作为一种非常有前景的血清甲基化差异位点筛选工具,并且证明原发性肝细胞癌相关差异甲基化位点可能会作为一种临床原发性肝细胞癌的辅助诊断手段。基于外周血、GeXP技术和多参数联合分析技术,可以有效提高原发性肝癌的诊断价值。当CRP可有效用于区分健康对照组和疾病组时。当CA724用于区分良性疾病组和肿瘤组时,诊断价值有限,人工神经网络用于区分良性疾病组和肿瘤组时诊断价值最好。多参数联合分析结合了多个参数,可有效提高灵敏性和特异性,是一种非常有前景的临床辅助诊断方法。
Objective: We aimed to demonstrate Illumina450K chips can beuseful and effective serum methylation profile screening tool and getsome methylation sites which was related to primary hepatocellularcarcinoma. We aimed to explore the primary hepatocellular carcinomadiagnostic model based on peripheral blood and multi-parameter jointdiagnosis. Based on the serum indicators, we aimed to identify thediagnostic value of healthy controls and disease groups, benigndisease and malignant disease groups which may provide acomplementary diagnostic method for clinical diagnosis.
     Methods: Illumina450K methylation chip was used to detect theserum methylation levels of hepatocellular carcinoma and normalcontrol group. Bisulfite methylation sequencing was used to validatethe methylation levels of DBX2and THY1sites. Affymetrix GeneChip was used to detect the peripheral blood mRNA expressionin hepatocellular carcinoma and normal control group, and then thescreened genes which were related to hepatocellular carcinoma wereused to establish GeXP detection system. Based on multi-parameterjoint diagnosis, peripheral blood mRNA and GeXP detection platform,a standardized diagnostic model which were used for clinicalcomplementary diagnosis was built. Biochemical indicators weredetected by Hitachi7600automatic biochemical analyzer and RocheModular automatic biochemical analyzer detection. Immunizationindicators were detected by Roche E170EE automatic immunoassayanalyzer and the Abbott i2000automatic immune luminescenceanalyzer.10cytokines indicators were detected by Luminex200liquid chip detector. The receiver operating curve was used to evaluatethe diagnostic value of the index. Multi-parameter joint analysis wasevaluated by the binary Logistic regression analysis, discriminant analysis, classification tree analysis and artificial neural networkanalysis.
     Results: In our study, we found that the serum level of wholegenome-wide methylation in primary liver cancer group wassignificantly lower than the healthy control group. Compared withhealthy control group, the number of differentially methylation siteswas7333in hepatocellular carcinoma group, accounting for1.5%of450K microarray. In the7333differentially methylated sites, thenumber of reduced methylation sites was6953, the number ofincreased methylation sites was380. Distribution and percentage ofdifferentially methylated loci on each chromosome was inconsistent, itmay be related to chromosome instability which leaded tohepatocellular carcinoma. Differentially methylated sites locatedmainly in the promoter region and CpG islands. Beta value greaterthan0.5was defined as hypermethylation. Beta value which was less than0.2is defined as hypomethylation. We had screened453hypermethylation sites in healthy controls group and37hypermethylation sites in hepatocellular carcinoma group. After geneontology and functional enrichment analysis, we screened28genefunction enrichment of genes in the healthy control group and3genefunction enrichment of genes in the hepatocellular carcinomagroup. After gene interaction analysis, we selected DBX2and THY1hypermethylation sites for validation. The diagnostic sensitivity andspecificity of DBX2for differentiating healthy control group and thethe hepatocellular carcinoma group were89%and87%, while THY1were81%and85%respectively. In our study, we detected the mRNAexpression in peripheral blood of primary hepatocellular carcinomaand healthy normal control group. After the quality of gene chip wasevaluated. We selected40up-regulated genes and40down-regulatedgenes in hepatocellular carcinoma group, and then15genes were selected and detected by GeXP detection system, after the adjustmentof the gene-specific detection and primer concentration. We built theGeXP detection methods for hepatocellular carcinoma diagnosis. Thebest diagnostic model was CALR, PFN1, SPAG9, ANXA1, HGF,FOS, GPC3and HPSA1B gene. The diagnostic accuracy rate ofdistinguishing the normal control group, hepatitis B group group, livercirrhosis, liver cancer group and other groups were80.57%,78.17%,84.48%,73.24%and85.85%, and then the model was validated, thediagnostic accuracy rate of distinguishing the normal control group,hepatitis B group group, liver cirrhosis, liver cancer group and othergroups were83.33%,73.33%,100%,75.00%and95.24%,respectively. We had built a standardized diagnostic model based onperipheral blood mRNA, GeXP detection platform andmulti-parameter for the clinical diagnosis of primary liver cancer. Inour study, we detected61indicators in serum of tumors to distinguish between healthy control group and disease group. We found the areaunder the receiver operating curve of CRP and IL-8were greater than0.9. When the threshold value of CRP detection was0.29mg/L, thediagnostic sensitivity and specificity were89.90%and97.00%. Whenthe threshold of IL-8detection was25.38pg/mL, the sensitivity andspecificity were83.90%and85.50%. CRP was the best indicator todistinguish the healthy controls and disease groups when the indicatorwere detected alone. The joint diagnostic analysis to distinguishbetween healthy controls and disease groups can increase diagnosticvalue when compared to the single indicator detection, however, thediagnostic sensitivity and specificity of CRP were high enough,therefore, the diagnostic value of joint detection showed no obviousadvantages. The largest area under the receiver operating curve fordistinguishing between benign disease and malignant disease groupwas CA724, but the value of area under curve was only0.589. When the diagnostic threshold was1.685, the diagnostic sensitivity andspecificity were56.80%and59.00%. The diagnostic value was verylimited. The artificial neural network diagnostic method divided70%of the samples used for training,30%used for testing. After areaunder curve analysis, we found that the area under the receiveroperating curve analyzed by artificial neural network analysis fordifferentiating the benign disease group and tumor group was0.941. The overall correct rate of the validation set was81.30%,88.70%in the tumor training group and85.40%in the healthy controlgroup.
     Conclusion: Our study demonstrated that the450K chip was a verypromising serum methylation screening tool. The methylated siteswhich were related to primary hepatocellular carcinoma may serve asa complementary diagnostic method for clinical primaryhepatocellular carcinoma diagnosis. When we combined the peripheral blood, GeXP technology and multi-parameter analysistechniques together, it can effectively improve the diagnostic value ofprimary hepatocellular carcinoma. CRP was an effectively indicatorfor distinguishing between healthy controls and diseasegroups. When CA724was used for distinguishing between thebenign disease group and tumor group, the diagnostic value waslimited. The artificial neural network which was used fordistinguishing the benign disease group and tumor group had the bestdiagnostic value. Multi-parameter joint analysis which combinedmultiple parameters can effectively improve the diagnostic sensitivityand specificity, it may be a very promising clinical complementarydiagnosis.
引文
1. Parkin D.M., F.I. Bray, and S.S. Devesa, Cancer burden in theyear2000. The global picture. Eur J Cancer,2001.37Suppl8: p.S4-66.
    2. El-Serag H.B., J.A. Marrero, L. Rudolph, et al., Diagnosis andtreatment of hepatocellular carcinoma. Gastroenterology,2008.134(6):p.1752-1763.
    3. Tamkovich S.N., A.V. Cherepanova, E.V. Kolesnikova, et al.,Circulating DNA and DNase activity in human blood. Annals of theNew York Academy of Sciences,2006.1075: p.191-196.
    4. Chen J.A., S. Meister, V. Urbonaviciute, et al., Sensitive detectionof plasma/serum DNA in patients with systemic lupus erythematosus.Autoimmunity,2007.40(4): p.307-310.
    5. Fleischhacker M. and B. Schmidt, Circulating nucleic acids(CNAs) and cancer--a survey. Biochimica et biophysica acta,2007.1775(1): p.181-232.
    6. Li J., L. Harris, H. Mamon, et al., Whole genome amplification ofplasma-circulating DNA enables expanded screening for allelicimbalance in plasma. J Mol Diagn,2006.8(1): p.22-30.
    7. Paci M., S. Maramotti, E. Bellesia, et al., Circulating plasma DNAas diagnostic biomarker in non-small cell lung cancer. Lung cancer(Amsterdam, Netherlands),2009.64(1): p.92-97.
    8. Bischoff F.Z., D.E. Lewis, and J.L. Simpson, Cell-free fetal DNAin maternal blood: kinetics, source and structure. Human reproductionupdate,2005.11(1): p.59-67.
    9. Widschwendter M. and U. Menon, Circulating methylated DNA: anew generation of tumor markers. Clin Cancer Res,2006.12(24): p.7205-7208.
    10. Gormally E., E. Caboux, P. Vineis, et al., Circulating free DNA inplasma or serum as biomarker of carcinogenesis: practical aspects andbiological significance. Mutation research,2007.635(2-3): p.105-117.
    11. Zitt M., H.M. Muller, M. Rochel, et al., Circulating cell-free DNAin plasma of locally advanced rectal cancer patients undergoingpreoperative chemoradiation: a potential diagnostic tool for therapymonitoring. Disease markers,2008.25(3): p.159-165.
    12. Pathak A.K., M. Bhutani, S. Kumar, et al., Circulating cell-freeDNA in plasma/serum of lung cancer patients as a potential screeningand prognostic tool. Clinical chemistry,2006.52(10): p.1833-1842.
    13. Wang B.G., H.Y. Huang, Y.C. Chen, et al., Increased plasmaDNA integrity in cancer patients. Cancer research,2003.63(14): p.3966-3968.
    14. Skvortsova T.E., E.Y. Rykova, S.N. Tamkovich, et al., Cell-freeand cell-bound circulating DNA in breast tumours: DNAquantification and analysis of tumour-related gene methylation.British journal of cancer,2006.94(10): p.1492-1495.
    15. Papadopoulou E., E. Davilas, V. Sotiriou, et al., Cell-free DNAand RNA in plasma as a new molecular marker for prostate and breastcancer. Annals of the New York Academy of Sciences,2006.1075: p.235-243.
    16. Zhu J. and X. Yao, Use of DNA methylation for cancer detection:promises and challenges. The international journal of biochemistry&cell biology,2009.41(1): p.147-154.
    17. Wong I.H., Y.M. Lo, J. Zhang, et al., Detection of aberrant p16methylation in the plasma and serum of liver cancer patients. Cancerresearch,1999.59(1): p.71-73.
    18. Wong I.H., Y.M. Lo, W. Yeo, et al., Frequent p15promotermethylation in tumor and peripheral blood from hepatocellularcarcinoma patients. Clin Cancer Res,2000.6(9): p.3516-3521.
    19. Laird P.W., The power and the promise of DNA methylationmarkers. Nature reviews,2003.3(4): p.253-266.
    20. Esteller M., CpG island hypermethylation and tumor suppressorgenes: a booming present, a brighter future. Oncogene,2002.21(35):p.5427-5440.
    21. Tao R., J. Li, J. Xin, et al., Methylation profile of singlehepatocytes derived from hepatitis B virus-related hepatocellularcarcinoma. PloS one,2011.6(5): p. e19862.
    22. Lee H.S., B.H. Kim, N.Y. Cho, et al., Prognostic implications ofand relationship between CpG island hypermethylation and repetitiveDNA hypomethylation in hepatocellular carcinoma. Clin Cancer Res,2009.15(3): p.812-820.
    23. Widschwendter A., H.M. Muller, H. Fiegl, et al., DNAmethylation in serum and tumors of cervical cancer patients. ClinCancer Res,2004.10(2): p.565-571.
    24. Ellinger J., K. Haan, L.C. Heukamp, et al., CpG islandhypermethylation in cell-free serum DNA identifies patients withlocalized prostate cancer. The Prostate,2008.68(1): p.42-49.
    25. Zhong S., M.W. Tang, W. Yeo, et al., Silencing of GSTP1gene byCpG island DNA hypermethylation in HBV-associated hepatocellularcarcinomas. Clin Cancer Res,2002.8(4): p.1087-1092.
    26. Sozzi G., D. Conte, M. Leon, et al., Quantification of freecirculating DNA as a diagnostic marker in lung cancer. J Clin Oncol,2003.21(21): p.3902-3908.
    27. Fujiwara K., N. Fujimoto, M. Tabata, et al., Identification ofepigenetic aberrant promoter methylation in serum DNA is useful forearly detection of lung cancer. Clin Cancer Res,2005.11(3): p.1219-1225.
    28. Deneberg S., P. Guardiola, A. Lennartsson, et al., Prognostic DNAmethylation patterns in cytogenetically normal acute myeloidleukemia are predefined by stem cell chromatin marks. Blood,2011.118(20): p.5573-5582.
    29. Cottrell S.E., Molecular diagnostic applications of DNAmethylation technology. Clinical biochemistry,2004.37(7): p.595-604.
    30. Ballestar E., M.F. Paz, L. Valle, et al., Methyl-CpG bindingproteins identify novel sites of epigenetic inactivation in humancancer. The EMBO journal,2003.22(23): p.6335-6345.
    31. Fuks F., P.J. Hurd, D. Wolf, et al., The methyl-CpG-bindingprotein MeCP2links DNA methylation to histone methylation. TheJournal of biological chemistry,2003.278(6): p.4035-4040.
    32. Cokus S.J., S. Feng, X. Zhang, et al., Shotgun bisulphitesequencing of the Arabidopsis genome reveals DNA methylationpatterning. Nature,2008.452(7184): p.215-219.
    33. Kristensen L.S., T. Mikeska, M. Krypuy, et al., Sensitive MeltingAnalysis after Real Time-Methylation Specific PCR (SMART-MSP):high-throughput and probe-free quantitative DNA methylationdetection. Nucleic acids research,2008.36(7): p. e42.
    34. Suzuki N., A. Kamataki, J. Yamaki, et al., Characterization ofcirculating DNA in healthy human plasma. Clinica chimica acta;international journal of clinical chemistry,2008.387(1-2): p.55-58.
    35. van der Vaart M., D.V. Semenov, E.V. Kuligina, et al.,Characterisation of circulating DNA by parallel tagged sequencing onthe454platform. Clinica chimica acta; international journal of clinicalchemistry,2009.409(1-2): p.21-27.
    36. Suzuki M. and J.M. Greally, DNA methylation profiling usingHpaII tiny fragment enrichment by ligation-mediated PCR (HELP).Methods (San Diego, Calif,2010.52(3): p.218-222.
    37. Tetzner R., D. Dietrich, and J. Distler, Control of carry-overcontamination for PCR-based DNA methylation quantification usingbisulfite treated DNA. Nucleic acids research,2007.35(1): p. e4.
    38. Dahl C. and P. Guldberg, High-resolution melting for accurateassessment of DNA methylation. Clinical chemistry,2007.53(11): p.1877-1878.
    39. Wojdacz T.K. and A. Dobrovic, Methylation-sensitive highresolution melting (MS-HRM): a new approach for sensitive andhigh-throughput assessment of methylation. Nucleic acids research,2007.35(6): p. e41.
    40. Maaroufi Y., N. Ahariz, M. Husson, et al., Comparison ofdifferent methods of isolation of DNA of commonly encounteredCandida species and its quantitation by using a real-time PCR-basedassay. Journal of clinical microbiology,2004.42(7): p.3159-3163.
    41. Izzi B., B. Decallonne, K. Devriendt, et al., A new approach toimprinting mutation detection in GNAS by Sequenom EpiTYPERsystem. Clinica chimica acta; international journal of clinicalchemistry,2010.411(23-24): p.2033-2039.
    42. Ragoussis J., G.P. Elvidge, K. Kaur, et al., Matrix-assisted laserdesorption/ionisation, time-of-flight mass spectrometry in genomicsresearch. PLoS genetics,2006.2(7): p. e100.
    43. Sun X. and B. Guo, Genotyping single-nucleotide polymorphismsby matrix-assisted laser desorption/ionization time-of-flight-basedmini-sequencing. Methods in molecular medicine,2006.128: p.225-230.
    44. Coolen M.W., A.L. Statham, M. Gardiner-Garden, et al., Genomicprofiling of CpG methylation and allelic specificity using quantitativehigh-throughput mass spectrometry: critical evaluation andimprovements. Nucleic acids research,2007.35(18): p. e119.
    45. Hernandez-Vargas H., M.P. Lambert, F. Le Calvez-Kelm, et al.,Hepatocellular carcinoma displays distinct DNA methylationsignatures with potential as clinical predictors. PLoS One,2010.5(3):p. e9749.
    46. Gitan R.S., H. Shi, C.M. Chen, et al., Methylation-specificoligonucleotide microarray: a new potential for high-throughputmethylation analysis. Genome research,2002.12(1): p.158-164.
    47. Shames D.S., L. Girard, B. Gao, et al., A genome-wide screen forpromoter methylation in lung cancer identifies novel methylationmarkers for multiple malignancies. PLoS medicine,2006.3(12): p.e486.
    48. Sandoval J., H.A. Heyn, S. Moran, et al., Validation of a DNAmethylation microarray for450,000CpG sites in the human genome.Epigenetics,2011.6(6): p.692-702.
    49. Hansen K.D. and M.J. Aryee, The minfi user's guide analyzingIllumina450k methylation arrays. Bioconductor package,2011.
    50. Dedeurwaerder S., M. Defrance, E. Calonne, et al., Evaluation ofthe Infinium Methylation450K technology. Epigenomics,2011.3(6):p.771-784.
    51. Taylor K.H., R.S. Kramer, J.W. Davis, et al., Ultradeep bisulfitesequencing analysis of DNA methylation patterns in multiple genepromoters by454sequencing. Cancer research,2007.67(18): p.8511-8518.
    52. Maricic T. and S. Paabo, Optimization of454sequencing librarypreparation from small amounts of DNA permits sequencedetermination of both DNA strands. BioTechniques,2009.46(1): p.51-52,54-57.
    53. Lo Y.M. and R.W. Chiu, Next-generation sequencing ofplasma/serum DNA: an emerging research and molecular diagnostictool. Clinical chemistry,2009.55(4): p.607-608.
    54. Llovet J.M., J. Fuster, and J. Bruix, The Barcelona approach:diagnosis, staging, and treatment of hepatocellular carcinoma. LiverTranspl,2004.10(2Suppl1): p. S115-120.
    55. Liu J., Z. Zhang, M. Bando, et al., Genome-wide DNAmethylation analysis in cohesin mutant human cell lines. Nucleic acidsresearch,2010.38(17): p.5657-5671.
    56. Bolstad B., Probe Level Quantile Normalization of High DensityOligonucleotide Array Data. Division of Biostatistics, University ofCalifornia, Berkley,2001.
    57. Martin-Subero J.I., M. Kreuz, M. Bibikova, et al., New insightsinto the biology and origin of mature aggressive B-cell lymphomas bycombined epigenomic, genomic, and transcriptional profiling. Blood,2009.113(11): p.2488-2497.
    58. Barrio S., M. Gallardo, E. Albizua, et al., Epigenomic profiling inpolycythaemia vera and essential thrombocythaemia shows low levelsof aberrant DNA methylation. J Clin Pathol,2011.64(11): p.1010-1013.
    59. Wang D., L. Yan, Q. Hu, et al., IMA: An R package forhigh-throughput analysis of Illumina's450K Infinium methylationdata. Bioinformatics (Oxford, England),2012.
    60. Du P., W.A. Kibbe, and S. Lin, Using lumi, a package processingIllumina Microarray. Bioconductor package,2007.
    61. Du P., X. Zhang, C.C. Huang, et al., Comparison of Beta-valueand M-value methods for quantifying methylation levels bymicroarray analysis. BMC bioinformatics,2010.11: p.587.
    62. Etcheverry A., M. Aubry, M. de Tayrac, et al., DNA methylationin glioblastoma: impact on gene expression and clinical outcome.BMC genomics,2010.11: p.701.
    63. Zheng Q. and X.J. Wang, GOEAST: a web-based software toolkitfor Gene Ontology enrichment analysis. Nucleic acids research,2008.36(Web Server issue): p. W358-363.
    64. Huttenhower C., E.M. Haley, M.A. Hibbs, et al., Exploring thehuman genome with functional maps. Genome research,2009.19(6):p.1093-1106.
    65. Huttenhower C., S.O. Mehmood, and O.G. Troyanskaya, Graphle:Interactive exploration of large, dense graphs. BMC bioinformatics,2009.10: p.417.
    66. Feinberg A.P., R. Ohlsson, and S. Henikoff, The epigeneticprogenitor origin of human cancer. Nat Rev Genet,2006.7(1): p.21-33.
    67. Ehrlich M., DNA methylation in cancer: too much, but also toolittle. Oncogene,2002.21(35): p.5400-5413.
    68. Karpf A.R. and S. Matsui, Genetic disruption of cytosine DNAmethyltransferase enzymes induces chromosomal instability in humancancer cells. Cancer research,2005.65(19): p.8635-8639.
    69. Clark S.J. and J. Melki, DNA methylation and gene silencing incancer: which is the guilty party? Oncogene,2002.21(35): p.5380-5387.
    70. Mehus J.G., P. Deloukas, and D.O. Lambeth, NME6: a newmember of the nm23/nucleoside diphosphate kinase gene familylocated on human chromosome3p21.3. Hum Genet,1999.104(6): p.454-459.
    71. Perina D., M.H. Bosnar, A. Mikoc, et al., Characterization ofNme6-like gene/protein from marine sponge Suberites domuncula.Naunyn Schmiedebergs Arch Pharmacol,2011.384(4-5): p.451-460.
    72. Cox J.J., F. Reimann, A.K. Nicholas, et al., An SCN9Achannelopathy causes congenital inability to experience pain. Nature,2006.444(7121): p.894-898.
    73. Diss J.K., D. Stewart, F. Pani, et al., A potential novel marker forhuman prostate cancer: voltage-gated sodium channel expression invivo. Prostate Cancer Prostatic Dis,2005.8(3): p.266-273.
    74. Nakajima T., N. Kubota, T. Tsutsumi, et al., Eicosapentaenoicacid inhibits voltage-gated sodium channels and invasiveness inprostate cancer cells. Br J Pharmacol,2009.156(3): p.420-431.
    75. Kis-Toth K., P. Hajdu, I. Bacskai, et al., Voltage-gated sodiumchannel Nav1.7maintains the membrane potential and regulates theactivation and chemokine-induced migration of a monocyte-deriveddendritic cell subset. J Immunol,2011.187(3): p.1273-1280.
    76. Stein C., V. Gieselmann, J. Kreysing, et al., Cloning andexpression of human arylsulfatase A. The Journal of biologicalchemistry,1989.264(2): p.1252-1259.
    77. Liu Y., Y. Chen, A. Momin, et al., Elevation of sulfatides inovarian cancer: an integrated transcriptomic and lipidomic analysisincluding tissue-imaging mass spectrometry. Molecular cancer,2010.9: p.186.
    78. Abeysinghe H.R., Q. Cao, J. Xu, et al., THY1expression isassociated with tumor suppression of human ovarian cancer. CancerGenet Cytogenet,2003.143(2): p.125-132.
    79. Abeysinghe H.R., S.J. Pollock, N.L. Guckert, et al., The role of theTHY1gene in human ovarian cancer suppression based ontransfection studies. Cancer Genet Cytogenet,2004.149(1): p.1-10.
    80. Lung H.L., A.K. Cheung, Y. Cheng, et al., Functionalcharacterization of THY1as a tumor suppressor gene withantiinvasive activity in nasopharyngeal carcinoma. Internationaljournal of cancer,2010.127(2): p.304-312.
    81.Paterlini-Brechot P. and N.L. Benali, Circulating tumor cells (CTC)detection: clinical impact and future directions. Cancer letters,2007.253(2): p.180-204.
    82. Mostert B., S. Sleijfer, J.A. Foekens, et al., Circulating tumor cells(CTCs): detection methods and their clinical relevance in breastcancer. Cancer treatment reviews,2009.35(5): p.463-474.
    83. Kaushik N., D. Fear, S.C. Richards, et al., Gene expression inperipheral blood mononuclear cells from patients with chronic fatiguesyndrome. J Clin Pathol,2005.58(8): p.826-832.
    84. Zilliox M.J., W.J. Moss, and D.E. Griffin, Gene expressionchanges in peripheral blood mononuclear cells during measles virusinfection. Clin Vaccine Immunol,2007.14(7): p.918-923.
    85. Aaroe J., T. Lindahl, V. Dumeaux, et al., Gene expressionprofiling of peripheral blood cells for early detection of breast cancer.Breast Cancer Res,2010.12(1): p. R7.
    86. Schaecher K., S. Kumar, A. Yadava, et al., Genome-wideexpression profiling in malaria infection reveals transcriptionalchanges associated with lethal and nonlethal outcomes. Infect Immun,2005.73(9): p.6091-6100.
    87. Borovecki F., L. Lovrecic, J. Zhou, et al., Genome-wideexpression profiling of human blood reveals biomarkers forHuntington's disease. Proc Natl Acad Sci U S A,2005.102(31): p.11023-11028.
    88. Chu T., B. Burke, K. Bunce, et al., A microarray-based approachfor the identification of epigenetic biomarkers for the noninvasivediagnosis of fetal disease. Prenatal diagnosis,2009.
    89. Prabhakar U., E. Eirikis, and H.M. Davis, Simultaneousquantification of proinflammatory cytokines in human plasma usingthe LabMAP assay. J Immunol Methods,2002.260(1-2): p.207-218.
    90. Tefferi A., R. Vaidya, D. Caramazza, et al., Circulating Interleukin(IL)-8, IL-2R, IL-12, and IL-15Levels Are Independently Prognosticin Primary Myelofibrosis: A Comprehensive Cytokine Profiling Study.J Clin Oncol,2011.29(10): p.1356-1363.
    91. Vistnes M., G. Christensen, and T. Omland, Multiple cytokinebiomarkers in heart failure. Expert Rev Mol Diagn,2010.10(2): p.147-157.
    92. Khan S.S., M.S. Smith, D. Reda, et al., Multiplex bead arrayassays for detection of soluble cytokines: comparisons of sensitivityand quantitative values among kits from multiple manufacturers.Cytometry B Clin Cytom,2004.61(1): p.35-39.
    93. Gabriel S., L. Ziaugra, and D. Tabbaa, SNP genotyping using theSequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet,2009. Chapter2: p. Unit212.
    94. Allegue C., R. Gil, P. Sanchez-Diz, et al., A new approach to longQT syndrome mutation detection by Sequenom MassARRAY system.Electrophoresis,2010.31(10): p.1648-1655.
    95. Ollikainen M., K.R. Smith, E.J. Joo, et al., DNA methylationanalysis of multiple tissues from newborn twins reveals both geneticand intrauterine components to variation in the human neonatalepigenome. Hum Mol Genet,2010.19(21): p.4176-4188.
    96. Rothberg J.M. and J.H. Leamon, The development and impact of454sequencing. Nat Biotechnol,2008.26(10): p.1117-1124.
    97. Rougemont J., A. Amzallag, C. Iseli, et al., Probabilistic basecalling of Solexa sequencing data. BMC Bioinformatics,2008.9: p.
    431.
    98. Wu H., R.A. Irizarry, and H.C. Bravo, Intensity normalizationimproves color calling in SOLiD sequencing. Nat Methods,2010.7(5):p.336-337.
    99. McCarthy A., Third generation DNA sequencing: pacificbiosciences' single molecule real time technology. Chem Biol,2010.17(7): p.675-676.
    100. Li J., N.Y. Mao, M. Qin, et al.,[A GeXP based multiplexRT-PCR assay for simultaneous detection of twelve human respiratoryviruses]. Bing Du Xue Bao,2011.27(6): p.526-532.
    101. Rai A.J., R.M. Kamath, W. Gerald, et al., Analytical validationof the GeXP analyzer and design of a workflow for cancer-biomarkerdiscovery using multiplexed gene-expression profiling. Anal BioanalChem,2009.393(5): p.1505-1511.
    102. Pinto J.P., P. Ramos, S.F. de Almeida, et al., Protective role ofcalreticulin in HFE hemochromatosis. Free Radic Biol Med,2008.44(1): p.99-108.
    103. Zou L., M. Jaramillo, D. Whaley, et al., Profilin-1is a negativeregulator of mammary carcinoma aggressiveness. Br J Cancer,2007.97(10): p.1361-1371.
    104. Ding Z., A. Lambrechts, M. Parepally, et al., Silencingprofilin-1inhibits endothelial cell proliferation, migration and cordmorphogenesis. J Cell Sci,2006.119(Pt19): p.4127-4137.
    105. Engstrom W., A. Ward, and K. Moorwood, The role ofscaffold proteins in JNK signalling. Cell Prolif,2010.43(1): p.56-66.
    106. Kanojia D., M. Garg, S. Gupta, et al., Sperm-associatedantigen9, a novel biomarker for early detection of breast cancer.Cancer Epidemiol Biomarkers Prev,2009.18(2): p.630-639.
    107. Garg M., D. Kanojia, S. Salhan, et al., Sperm-associatedantigen9is a biomarker for early cervical carcinoma. Cancer,2009.115(12): p.2671-2683.
    108. Gerke V., C.E. Creutz, and S.E. Moss, Annexins: linking Ca2+signalling to membrane dynamics. Nat Rev Mol Cell Biol,2005.6(6):p.449-461.
    109. Ahn S.H., H. Sawada, J.Y. Ro, et al., Differential expression ofannexin I in human mammary ductal epithelial cells in normal andbenign and malignant breast tissues. Clin Exp Metastasis,1997.15(2):p.151-156.
    110. Masaki T., M. Tokuda, M. Ohnishi, et al., Enhancedexpression of the protein kinase substrate annexin in humanhepatocellular carcinoma. Hepatology,1996.24(1): p.72-81.
    111. Shiota G., D.B. Rhoads, T.C. Wang, et al., Hepatocyte growthfactor inhibits growth of hepatocellular carcinoma cells. Proc NatlAcad Sci U S A,1992.89(1): p.373-377.
    112. Tsubouchi H., Y. Niitani, S. Hirono, et al., Levels of thehuman hepatocyte growth factor in serum of patients with variousliver diseases determined by an enzyme-linked immunosorbent assay.Hepatology,1991.13(1): p.1-5.
    113. Benn J. and R.J. Schneider, Hepatitis B virus HBx proteinactivates Ras-GTP complex formation and establishes a Ras, Raf,MAP kinase signaling cascade. Proc Natl Acad Sci U S A,1994.91(22): p.10350-10354.
    114. Anatelli F., S.T. Chuang, X.J. Yang, et al., Value of glypican3immunostaining in the diagnosis of hepatocellular carcinoma onneedle biopsy. Am J Clin Pathol,2008.130(2): p.219-223.
    115. Ito Y., A. Ando, H. Ando, et al., Genomic structure of thespermatid-specific hsp70homolog gene located in the class III regionof the major histocompatibility complex of mouse and man. JBiochem,1998.124(2): p.347-353.
    116. Chen Y., G. Stamatoyannopoulos, and C.Z. Song,Down-regulation of CXCR4by inducible small interfering RNAinhibits breast cancer cell invasion in vitro. Cancer Res,2003.63(16):p.4801-4804.
    117. Uchida D., N.M. Begum, A. Almofti, et al., Possible role ofstromal-cell-derived factor-1/CXCR4signaling on lymph nodemetastasis of oral squamous cell carcinoma. Exp Cell Res,2003.290(2): p.289-302.
    118. Schimanski C.C., R. Bahre, I. Gockel, et al., Dissemination ofhepatocellular carcinoma is mediated via chemokine receptor CXCR4.Br J Cancer,2006.95(2): p.210-217.
    119. Ortiz J., C.G. Ghefter, C.E. Silva, et al., One-year mortalityprognosis in heart failure: a neural network approach based onechocardiographic data. J Am Coll Cardiol,1995.26(7): p.1586-1593.
    120. Bizios D., A. Heijl, and B. Bengtsson, Trained artificial neuralnetwork for glaucoma diagnosis using visual field data: a comparisonwith conventional algorithms. J Glaucoma,2007.16(1): p.20-28.
    121. Peters J.M. and M.Q. Ansari, Multiparameter flow cytometryin the diagnosis and management of acute leukemia. Arch Pathol LabMed,2011.135(1): p.44-54.
    122. Carpelan-Holmstrom M., J. Louhimo, U.H. Stenman, et al.,CEA, CA19-9and CA72-4improve the diagnostic accuracy ingastrointestinal cancers. Anticancer research,2002.22(4): p.2311-2316.
    123. Carpelan-Holmstrom M., J. Louhimo, U.H. Stenman, et al.,CEA, CA242, CA19-9, CA72-4and hCGbeta in the diagnosis ofrecurrent colorectal cancer. Tumour Biol,2004.25(5-6): p.228-234.
    124. Sturgeon C., Practice guidelines for tumor marker use in theclinic. Clinical chemistry,2002.48(8): p.1151-1159.
    125. Aziz K.J. and P.E. Maxim, The FDA's perspective on theevaluation of tumor marker tests. Clinical chemistry,1993.39(11Pt2): p.2439-2443.
    126. Banfalvi G., Role of parathymic lymph nodes in metastatictumor development. Cancer Metastasis Rev,2011.
    127. van der Gaast A., C.H. Schoenmakers, T.C. Kok, et al.,Evaluation of a new tumour marker in patients with non-small-celllung cancer: Cyfra21.1. British journal of cancer,1994.69(3): p.525-528.
    128. Molina R., J. Navarro, X. Filella, et al., S-100protein serumlevels in patients with benign and malignant diseases: false-positiveresults related to liver and renal function. Tumour Biol,2002.23(1): p.39-44.
    129. Montagnana M., G. Lippi, O. Ruzzenente, et al., The utility ofserum human epididymis protein4(HE4) in patients with a pelvicmass. J Clin Lab Anal,2009.23(5): p.331-335.
    130. Zhu C.S., P.F. Pinsky, D.W. Cramer, et al., A framework forevaluating biomarkers for early detection: validation of biomarkerpanels for ovarian cancer. Cancer Prev Res (Phila),2011.4(3): p.375-383.
    131. Berger R.P., S.R. Beers, R. Richichi, et al., Serum biomarkerconcentrations and outcome after pediatric traumatic brain injury. JNeurotrauma,2007.24(12): p.1793-1801.
    132. Lin K.C., H.P. Wu, C.Y. Huang, et al., Discriminant analysisof serum inflammatory biomarkers which differentiate pediatricappendicitis from other acute abdominal diseases. Acta PaediatrTaiwan,2007.48(3): p.125-130.
    133. Navaglia F., P. Fogar, D. Basso, et al., Pancreatic cancerbiomarkers discovery by surface-enhanced laser desorption andionization time-of-flight mass spectrometry. Clin Chem Lab Med,2009.47(6): p.713-723.
    134. Liu Z., S. Lin, and M.T. Tan, Sparse support vector machineswith Lp penalty for biomarker identification. IEEE/ACM TransComput Biol Bioinform,2010.7(1): p.100-107.
    135. Bicciato S., Artificial neural network technologies to identifybiomarkers for therapeutic intervention. Curr Opin Mol Ther,2004.6(6): p.616-623.
    136. Krechler T., J. Horejs, J. Ulrych, et al.,[Current status ofpancreatic cancer diagnosis]. Cas Lek Cesk,2011.150(11): p.587-593.
    137. Wolfgang C.L., F. Corl, P.T. Johnson, et al., Pancreaticsurgery for the radiologist,2011: an illustrated review of classic andnewer surgical techniques for pancreatic tumor resection. AJR Am JRoentgenol,2011.197(6): p.1343-1350.
    138. Steinberg W., The clinical utility of the CA19-9tumor-associated antigen. Am J Gastroenterol,1990.85(4): p.350-355.
    139. Heinemann V., M.M. Schermuly, P. Stieber, et al., CA19-9: apedictor of response in pancreatic cancer treated with gemcitabine andcisplatin. Anticancer research,1999.19(4A): p.2433-2435.
    140. Shi S., W. Yao, J. Xu, et al., Combinational therapy: new hopefor pancreatic cancer? Cancer letters,2012.317(2): p.127-135.
    141. Mandong B.M. and J.A. Ngbea, Cancer prevention strategies.Niger J Med,2011.20(4): p.399-405.
    142. Sekimoto M., M. Ikeda, Y. Doki, et al.,[Principle andindication of surgical treatment of locally recurrent rectal cancer].Nihon Rinsho,2011.69Suppl3: p.405-408.
    143. Iwasa S. and Y. Shimada,[Treatment strategy ofchemotherapy for unresectable metastatic or recurrent colorectalcancer]. Nihon Rinsho,2011.69Suppl3: p.427-432.
    144. Duffy M.J., A. van Dalen, C. Haglund, et al., Tumour markersin colorectal cancer: European Group on Tumour Markers (EGTM)guidelines for clinical use. Eur J Cancer,2007.43(9): p.1348-1360.
    145. Kirac I., M. Sekerija, I. Simunovic, et al., Incidence andmortality trends of gastric and colorectal cancers in Croatia,1988-2008. Croat Med J,2012.53(2): p.124-134.
    146. Goral V., H. Yesilbagdan, A. Kaplan, et al., Evaluation of CA72-4as a new tumor marker in patients with gastric cancer.Hepatogastroenterology,2007.54(76): p.1272-1275.
    147. Gartner U., M.E. Scheulen, C. Conradt, et al.,[Value oftumor-associated antigens CA72-4vs. CEA and CA19-9in thefollow-up after stomach cancer]. Dtsch Med Wochenschr,1998.123(4): p.69-73.
    148. Tocchi A., G. Costa, L. Lepre, et al., The role of serum andgastric juice levels of carcinoembryonic antigen, CA19.9and CA72.4in patients with gastric cancer. J Cancer Res Clin Oncol,1998.124(8):p.450-455.
    149. Schroedl C. and R. Kalhan, Incidence, treatment options, andoutcomes of lung cancer in patients with chronic obstructivepulmonary disease. Curr Opin Pulm Med,2012.18(2): p.131-137.
    150. Spira A. and D.S. Ettinger, Multidisciplinary management oflung cancer. The New England journal of medicine,2004.350(4): p.379-392.
    151. Rastel D., A. Ramaioli, F. Cornillie, et al., CYFRA21-1, asensitive and specific new tumour marker for squamous cell lungcancer. Report of the first European multicentre evaluation. CYFRA21-1Multicentre Study Group. Eur J Cancer,1994.30A(5): p.601-606.
    152. Xu X. and J. Wang,[Advances of medical treatment inadvanced non-small cell lung cancer in2011American Society ofClinical Oncology Annual Meeting]. Zhongguo Fei Ai Za Zhi,2011.14(12): p.943-948.
    153. Sahasrabuddhe V.V., P. Luhn, and N. Wentzensen, Humanpapillomavirus and cervical cancer: biomarkers for improvedprevention efforts. Future Microbiol,2011.6(9): p.1083-1098.
    154. Diaz-Padilla I., E. Amir, S. Marsh, et al., Geneticpolymorphisms as predictive and prognostic biomarkers ingynecological cancers: a systematic review. Gynecologic oncology,2012.124(2): p.354-365.
    155. Loning T., L. Riethdorf, and M. Kobel,[Diagnosis anddifferential diagnosis of cervical adenocarcinoma]. Pathologe,2011.32(6): p.505-513.
    156. Noordhuis M.G., J.J. Eijsink, F. Roossink, et al., Prognosticcell biological markers in cervical cancer patients primarily treatedwith (chemo)radiation: a systematic review. Int J Radiat Oncol BiolPhys,2011.79(2): p.325-334.
    157. Kacerovsky M. and J. Tosner,[Proteomics and biomarkers fordetection of cervical cancer]. Ceska Gynekol,2009.74(5): p.335-338.
    158. Xu X., A.S. Strimpakos, and M.W. Saif, Biomarkers andpharmacogenetics in pancreatic cancer. Highlights from the "2011ASCO Annual Meeting". Chicago, IL, USA; June3-7,2011. JOP,2011.12(4): p.325-329.
    159. Gonda T.A., A. Lucas, and M.W. Saif, Screening anddetection of pancreatic cancer. Highlights from the "2011ASCOAnnual Meeting". Chicago, IL, USA; June3-7,2011. JOP,2011.12(4): p.322-324.
    160. Xu Q., T.P. Zhang, and Y.P. Zhao, Advances in earlydiagnosis and therapy of pancreatic cancer. Hepatobiliary PancreatDis Int,2011.10(2): p.128-135.
    161. Bershtein L.M. and V.F. Semiglazov,[Breast cancer subtypesand their endocrine-metabolic basis; practical aspects]. Vopr Onkol,2011.57(5): p.559-566.
    162. Duffy M.J., S. Shering, F. Sherry, et al., CA15-3: a prognosticmarker in breast cancer. The International journal of biologicalmarkers,2000.15(4): p.330-333.
    163. Ludovini V., S. Gori, M. Colozza, et al., Evaluation of serumHER2extracellular domain in early breast cancer patients: correlationwith clinicopathological parameters and survival. Ann Oncol,2008.19(5): p.883-890.
    164. Kostler W.J., G.G. Steger, A. Soleiman, et al., Monitoring ofserum Her-2/neu predicts histopathological response to neoadjuvanttrastuzumab-based therapy for breast cancer. Anticancer research,2004.24(2C): p.1127-1130.
    165. Sliwowska I., Z. Kopczynski, and S. Grodecka-Gazdecka,Diagnostic value of measuring serum CA15-3, TPA, and TPS inwomen with breast cancer. Postepy Hig Med Dosw (Online),2006.60:p.295-299.
    166. Thorgeirsson S.S. and J.W. Grisham, Molecular pathogenesisof human hepatocellular carcinoma. Nat Genet,2002.31(4): p.339-346.
    167. Yazici H., M.B. Terry, Y.H. Cho, et al., Aberrant methylationof RASSF1A in plasma DNA before breast cancer diagnosis in theBreast Cancer Family Registry. Cancer Epidemiol Biomarkers Prev,2009.18(10): p.2723-2725.
    168. Bastian P.J., G.S. Palapattu, S. Yegnasubramanian, et al., CpGisland hypermethylation profile in the serum of men with clinicallylocalized and hormone refractory metastatic prostate cancer. J Urol,2008.179(2): p.529-534; discussion534-525.
    169. Ren N., Q.H. Ye, L.X. Qin, et al., Circulating DNA level isnegatively associated with the long-term survival of hepatocellularcarcinoma patients. World J Gastroenterol,2006.12(24): p.3911-3914.
    170. Lippman Z., A.V. Gendrel, V. Colot, et al., Profiling DNAmethylation patterns using genomic tiling microarrays. Nat Methods,2005.2(3): p.219-224.
    171. Chang J.W., T.H. Huang, and Y.C. Wang, Emerging methodsfor analysis of the cancer methylome. Pharmacogenomics,2008.9(12):p.1869-1878.
    172. Shen L., M. Toyota, Y. Kondo, et al., Integrated genetic andepigenetic analysis identifies three different subclasses of colon cancer.Proceedings of the National Academy of Sciences of the United Statesof America,2007.104(47): p.18654-18659.
    173. Gaudet F., J.G. Hodgson, A. Eden, et al., Induction of tumorsin mice by genomic hypomethylation. Science,2003.300(5618): p.489-492.
    174. Wang J., Y. Qin, B. Li, et al., Detection of aberrant promotermethylation of GSTP1in the tumor and serum of Chinese humanprimary hepatocellular carcinoma patients. Clin Biochem,2006.39(4):p.344-348.
    175. Y Benjamini Y.H., Controlling the false discovery rate: apractical and powerful approach to multiple testing. Journal of theRoyal Statistical Society Series B Methodological1995.57(1): p.12.
    176. Smyth G.K., Linear models and empirical bayes methods forassessing differential expression in microarray experiments. Stat ApplGenet Mol Biol,2004.3: p. Article3.
    177. Tu Y., G. Stolovitzky, and U. Klein, Quantitative noiseanalysis for gene expression microarray experiments. Proceedings ofthe National Academy of Sciences of the United States of America,2002.99(22): p.14031-14036.
    178. Juan H.F. and H.C. Huang, Bioinformatics: microarray dataclustering and functional classification. Methods in molecular biology(Clifton, N.J,2007.382: p.405-416.
    179. Feng D., J. Wei, S. Gupta, et al., Acute ablation of PERKresults in ER dysfunctions followed by reduced insulin secretion andcell proliferation. BMC Cell Biol,2009.10: p.61.
    180. Paczesny S., O.I. Krijanovski, T.M. Braun, et al., A biomarkerpanel for acute graft-versus-host disease. Blood,2009.113(2): p.273-278.
    181. Rainen L., U. Oelmueller, S. Jurgensen, et al., Stabilization ofmRNA expression in whole blood samples. Clin Chem,2002.48(11):p.1883-1890.
    182. Kuzman M.R., V. Medved, J. Terzic, et al., Genome-wideexpression analysis of peripheral blood identifies candidatebiomarkers for schizophrenia. J Psychiatr Res,2009.43(13): p.1073-1077.
    183. Alonso V., A.F. Neves, K. Marangoni, et al., Gene expressionprofile in the peripheral blood of patients with prostate cancer andbenign prostatic hyperplasia. Cancer Detect Prev,2009.32(4): p.336-337.
    184. Livak K.J. and T.D. Schmittgen, Analysis of relative geneexpression data using real-time quantitative PCR and the2(-DeltaDelta C(T)) Method. Methods,2001.25(4): p.402-408.
    185. Ren Y., R.T. Poon, H.T. Tsui, et al., Interleukin-8serum levelsin patients with hepatocellular carcinoma: correlations withclinicopathological features and prognosis. Clin Cancer Res,2003.9(16Pt1): p.5996-6001.
    186. Tachibana Y., Y. Nakamoto, N. Mukaida, et al., Intrahepaticinterleukin-8production during disease progression of chronichepatitis C. Cancer Lett,2007.251(1): p.36-42.
    187. Yoong K.F., S.C. Afford, R. Jones, et al., Expression andfunction of CXC and CC chemokines in human malignant livertumors: a role for human monokine induced by gamma-interferon inlymphocyte recruitment to hepatocellular carcinoma. Hepatology,1999.30(1): p.100-111.
    188. Harimoto N., K. Shirabe, T. Abe, et al., Interleukin-8producing hepatocellular carcinoma with pyrexia. HPB Surg,2009.2009: p.461492.
    189. Avantaggiati M.L., G. Natoli, C. Balsano, et al., The hepatitisB virus (HBV) pX transactivates the c-fos promoter through multiplecis-acting elements. Oncogene,1993.8(6): p.1567-1574.
    190. Zhou M.X., M. Watabe, and K. Watabe, The X-gene of humanhepatitis B virus transactivates the c-jun and alpha-fetoprotein genes.Arch Virol,1994.134(3-4): p.369-378.
    191. Li W., E. Gomez, and Z. Zhang, Immunohistochemicalexpression of stromal cell-derived factor-1(SDF-1) and CXCR4ligand receptor system in hepatocellular carcinoma. J Exp Clin CancerRes,2007.26(4): p.527-533.
    192. Liu Y., X. Zhu, J. Zhu, et al., Identification of differentialexpression of genes in hepatocellular carcinoma by suppressionsubtractive hybridization combined cDNA microarray. Oncol Rep,2007.18(4): p.943-951.
    193. Welch C., M.K. Santra, W. El-Assaad, et al., Identification ofa protein, G0S2, that lacks Bcl-2homology domains and interactswith and antagonizes Bcl-2. Cancer Res,2009.69(17): p.6782-6789.
    194. Chen B., W.H. Piel, L. Gui, et al., The HSP90family of genesin the human genome: insights into their divergence and evolution.Genomics,2005.86(6): p.627-637.