OGP对奶牛成骨细胞、骨髓基质干细胞的作用及其微囊化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成骨生长肽(Osteogenic growth peptide,OGP)是一种高效促成骨及造血刺激因子。普遍存在于哺乳动物的血液中,对促进骨形成、松质骨密度及骨折的愈合具有重要的意义。有研究发现,OGP通过自分泌及旁分泌途径,促进人及啮齿目动物的成骨细胞及骨髓基质干细胞分化、碱性磷酸酶(Alkaline phosphatase,ALP)活性及基质矿化。本试验从以下五个方面探讨了OGP对奶牛骨髓基质干细胞及成骨细胞作用及调控机制,并对OGP转基因细胞微囊生物学特性进行研究。
     1.奶牛骨钙素抗体制备
     以奶牛骨组织提取的RNA为模板,利用RT-PCR技术扩增出奶牛骨钙素(Bonecalcium protein,BGP)全长cDNA,然后将扩增产物重组到PMD-18T载体中,测定了全基因的核苷酸序列。序列分析表明,奶牛骨钙素全长cDNA为303bp,编码100个氨基酸,与GenBank中的X53699的序列完全相同。通过重叠延伸PCR技术连接单链DNA片段人工定点同义突变,将奶牛骨钙素成熟蛋白基因中的大肠杆菌稀有密码子同义突变成大肠杆菌常用密码子并亚克隆到PET-32a表达载体,转化到宿主菌BL_(21)(DE_3),经IPTG诱导后,成功表达出奶牛骨钙素融合蛋白,并成功制备奶牛骨钙素多抗血清,为后续试验提供了抗体。
     2.OGP对奶牛骨髓基质干细胞增殖、分化及矿化的影响及其调控机制研究
     本试验研究了OGP对奶牛体外培养的骨髓基质干细胞增殖及分化特性的作用。结果发现,成骨生长肽能促进奶牛骨髓基质干细胞的增殖,并能促进奶牛骨髓基质干细胞ALP活性及矿化的形成,另外能刺激BGP mRNA的表达。OGP能刺激奶牛骨髓基质干细胞内皮一氧化氮合成酶(Endothelial nitric oxide synthases,eNOS)的表达,当eNOS表达受到抑制时,OGP对奶牛骨髓基质干细胞的促分化活性受到抑制。由此认为,OGP能刺激奶牛骨髓基质干细胞的增殖及向成骨细胞分化,并且是通过eNOS介导。
     3.OGP对奶牛成骨细胞增殖、分化及矿化的影响及其调控机制研究
     本试验研究了外源性OGP对体外培养的奶牛成骨细胞增殖、分化及矿化的影响。组织块移行法分离奶牛成骨细胞,通过形态观察及碱性磷酸酶活性鉴定。MTT法检测不同浓度OGP对成骨细胞生长的作用。细胞质碱性磷酸酶活性及骨钙素水平分别通过比色法检测及放射免疫法测定。硒素红染色观察矿化结节。结果显示,成骨生长肽能明显促进奶牛成骨细胞的增殖,最大效应浓度为10~(-9)M;并且能促进成骨细胞ALP活性、骨钙素及矿化结节的形成;当抑制osterix基因表达,成骨生长肽促进奶牛成骨细胞ALP活性及骨钙素分泌相应受到抑制。由此揭示,OGP对奶牛成骨细胞增殖及分化具有促进,并且是通过上调osterix介导。
     4.体内氧自由基对移植细胞微囊活性的影响
     为了揭示细胞微囊移植过程中宿主体内氧自由基的动态变化特征。将细胞微囊、空微囊以及生理盐水在移植小鼠体内后1、4、7天,检测血清自由基,MDA及SOD水平。过氧化氢及MDA水平在空微囊移植后瞬时升高,后又降低到正常水平,但是细胞微囊移植组,移植后持续升高。NO及SOD水平在空微囊及细胞微囊移植组均升高,但是生理盐水注射组无明显变化。细胞微囊在移植7天后回收,通过AO/EB染色发现,细胞具有良好的活性。由此认为,NO是微囊特异性的刺激形成因子,氧自由基在微囊移植早期迅速升高,但是由于体内抗氧化物酶升高从而能有效清除。
     5.OGP转基因细胞微囊体内及体外增殖及分泌特性
     研究为OGP转基因细胞微囊在体内及体外的增殖及分泌特征。本试验检测了OGP转基因细胞微囊在体外培养条件下的增殖及OGP分泌活性,并将微囊细胞移植入骨质疏松疾病模型体内,检测微囊内细胞增殖及OGP分泌活性,并对骨质疏松疾病模型体内氧自由基及抗氧化物酶的活性进行了检测。结果显示,OGP转基因细胞微囊在体外培养条件下具有良好的增殖及分泌活性,而在骨质疏松疾病模型体内细胞大量死亡,宿主动物血清OGP含量无明显变化。骨质疏松模型血清氧自由基含量明显升高,抗氧化物酶活性降低,当注射抗氧化剂后,能明显降低血清自由基含量。由此认为,OGP转基因细胞微囊具备治疗移植的潜力,在骨质疏松疾病模型体内移植失败,主要原因是,骨质疏松模型体内氧自由基含量高,导致微囊内细胞坏死或凋亡。
Osteogenic growth peptide (OGP) is highly effect to promote bone and blood-stimulating factor. It could promote bone formation, cancellous bone mineral density and fracture healing. Some studies have been found that OGP, through autocrine and paracrine way, could stimulat human and rodents osteoblasts and bone marrow stromal stem cell differentiation, alkaline phosphatase activity and matrix mineralization. In this study, the following five aspects of OGP on the cow bone marrow stromal cells and osteoblastic cells and its mechanism and characteristics of microcapsulated OGP genetically modified cells were studied.
     1. Preparation of dairy osteocalcin antibody
     Bovine osteocalcin cDNA gene was amplified from bone of bovine by RT-PCR. PCR product was cloned into PMD-18T plasmid. Sequencing analysis showed that bovine osteocalcin cDNA gene was 303 bp and encoded 100 amino acids, which completely matched with X53699 in GenBank. Through connecting three artificial single strands DNA which contain fixed-point mutated sites by Gene splicing by overlap extension PCR, we changed some rare codons to that Escherichia coli frequently used in mature bovine osteocalcin gene, then recombined the connected production into PET-32a plasmid and transformed into the competent expressive cells of E.coli BL21(DE3). Recombinant E.coli BL21 was induced by IPTG and osteocalcin fusion protein was successfully expressed, and successfully to expressed bovine BGP anti-body.
     2. Osteogenic actions of the osteogenic growth peptide on bovine marrow mesenchymal stromal cells in culture
     The OGP regulated marrow mesenchymal stem cells which derived from human and rodent proliferation and differentiation into osteoblasts. Whether OGP directly regulates the bovine marrow mesenchymal stem cells differentiating into osteoblasts remains unknown. In this study, we evaluated the effect of OGP on the growth and differentiation of bovine marrow mesenchymal stem cells in culture. Our results showed that OGP promoted differentiation of the bovine stem cells. OGP increased alkaline phosphatase (ALP) activity and mineralized nodule formation, and stimulated osteoblast-specific mRNA expression of Osteocalcin (BGP). On the other hand, OGP dose-dependently stimulated the expression of endothelial nitric oxide synthases. These results show for the first time a direct osteogenic effect of OGP on bovine marrow stromal cells in culture, which could be mediated by the induction of endothelial nitric oxide synthases.
     3. The stimulating effect of OGP on the proliferation, differentiation, and mineralization of osteoblastic cells from Holstein cattle
     This study investigated the effect of exogenous osteogenic growth peptide on proliferation, differentiation and mineralization of osteoblastic cells from Chinese Holstein cattle. The osteoblastic cells were isolated and cultured, then identified through morphological observation and alkaline phosphatase staining methods. The effect of the different concentrations of osteogenic growth peptide on cell growth was assessed by MTT assay. Cytoplasmic alkaline phosphatase activity and osteocalcin levels were measured by colorimetric assay and radioimmunoassay, respectively.calcium nodules were observed using alizarin red S stain. The results showed that osteogenic growth peptide can significantly promote osteoblasts proliferation, and also stimulate the alkaline phosphatase activity and osteocalcin secretion.the max effect of concentration is 10-9M. when osterix expression was inhibited, the promotion of osteogenic growth peptide to alkaline phosphatase activity and osteocalcin secretion was inhibited accordingly. This revealed that osteogenic growth peptide can promote dairy osteoblast proliferation and differentiation and is mediated by up-regulating osterix.
     4. Responses of free radicals to subcutaneous implantation of alginate—chitosan-alginate (ACA) microcapsules in mice
     Our objective was to characterize the kinetics of free radicals when responding to encapsulated cell implantations in vivo. Cell viability and serum free radical, malondialdehyde and superoxide dismutase levels were evaluated at 1, 4 and 7 days after either saline injection or the implantation of empty microcapsules or encapsulated cells. Hydrogen peroxide and malondialdehyde levels showed an initial rise in the recipients of the empty microcapsules, before decreasing to the basal level. However, in rats receiving the encapsulated cells, the levels were higher at the end of study. Nitric oxide and superoxide dismutase increased after the implantation of microcapsules with or without the BHK-21 cells, but did not alter in response to the saline injection. The viability of encapsulated cells was high in vivo and some microcapsules had broken by day 7 post-implantation. These results suggest that nitric oxide played a role in the specific response to microcapsules. Free radicals increased rapidly immediately following microcapsule transplantation, but they caused only slight cellular damage before the microencapsulated cells were exposed.
     5. Release of OGP from microencapsulated engineered cells and proliferation characteristics in vivo and in vitro
     For the study of engineered cells microcapsules in vivo and in vitro characteristics of the proliferation and secretion. Secretory of OGP and engineered cells proliferation in microcapsule cultured in vitro and in vivo was tested. Serum antioxidant enzyme activities, lipid peroxidation and nitric oxide levels in rabbit with glucocorticoid-induced osteoporosis were also assessed. The results demonstrated that OGP engineered cells microcapsules have good secretion and cell proliferation. But when transplanted into Osteoporosis model, a large number of cells in microcapsule dead. Serum free radicals in Osteoporosis model were significantly higher, but antioxidant activity decreased. The injection after anti-oxidants can significantly reduce the serum concentration of free radicals. Thus that, OGP microencapsulated genetically modified cells have the potential for the treatment of transplantation, in vivo model of osteoporosis disease transplant failure, mainly due to osteoporosis in vivo model of high levels of oxygen free radicals, leading to Microcystis necrosis or apoptosis within the cell.
引文
1.韩炎福,宋建星,刘军等.微囊化血管内皮细胞生长因子基因修饰NIH3T3细胞的制备及体外培养.第二军医大学学报.2008,5(29),491-494
    2.何亚峰,邓廉夫.骨髓基质干细胞的研究进展.国外医学骨科学分册.2004;2(25),104-107
    3.李默漪,施德源,俞超,陈统一,陈中伟,崔大敷.成骨生长肽的合成及药效学的实验研究.中华医学杂志.2001,81(21):1336-1337.
    4.李群,王智兴,朱亚萍.成骨生长肽调节鼠胚颅盖骨成骨细胞样细胞酶活性的观察.中国骨质疏松杂志,2000,6(4):16-19.
    5.李秀森,郭子宽,杨靖清,等.骨髓间充质干细胞的生物学特性.解放军医学杂志,2000,25(5):346-348
    6.刘桂琴,李堂.宫内生长迟缓新生儿的骨钙素、V_D及钙磷镁代谢的研究.中国儿童保健杂志.2006(4):284-286
    7.刘海英,张林清,等.Ⅱ型糖尿病患者血清骨钙素测定80例.实用医药杂志.2006(7):879-881
    8.罗进贤,吉坤美等.用加端PCR技术改造hIGF-I cDNA.中山大学学报.1996(3):79-83
    9.彭英芳.成骨生长肽与骨质疏松症.生物技术通讯.2002,1(13):90-92
    10.施德源,俞超,陈统一等.成骨生长肽促进人鼠骨量增加的作用.上海医科人学学报,1999,26(3):187-190.
    11.王大章,费伟,郑虎,翁玲玲,邓力.XW630对大鼠成骨细胞雌激素受体基因表达的影响.生物医学工程学杂志,2003,20(2):260-263.
    12.王海强,黄耀添.成骨生长肽.国外医学:创伤与外科基本问题分册,1998,19(2):88-90.
    13.王智兴,李群,张玥等.成骨生长肽对成骨细胞样细胞的分化和成骨作用.上海第二医科人学学报,2000,20(3):227-251.
    14.王智兴,李群,张珥等.成骨生长肽对成骨细胞样细胞的分化和成骨作用.上海第二医科人学学报,2000,20(3):227-251.
    15.郑明才.骨质疏松研究的现状和展望.中华医学杂志,2001,81(4):833-5.
    16.郑晓辉,方秀斌.骨钙素的基础研究与应用研究进展.解剖科学进展.1999,6(4):327-329.
    17.Afzal F.,Polak J.,Buttery L.(2004):Endothelial nitric oxide synthase in the control of osteoblastic mineralizing activity and bone integrity.J Pathol,202(4),503-510.
    18.Aguirre J.,Buttery L.,O'Shaughnessy M.,Afzal F.,Fernandez de Marticorena I.,Hukkanen M.,Huang P.,MacIntyre I.,Polak J.Endothelial nitric oxide synthase gene-deficient mice demonstrate marked retardation in postnatal bone formation,reduced bone volume,defects in osteoblast maturation and activity.Am J Pathol,2001,158:247-250.
    19.Ahdioudj S,Lasmoles F,Holy X,et al.Transforming growth factor beta-2 inhibits adipocyte differentiation induced by skeletal unloading in rat bone marrow stroma.J Bone Miner Res.2002,17:668-677.
    20.Amsel S,Maniatis A,Tavassoli M,et al.The significance of intramedullary cancellous bone formation in the repair of bone marrow tissue.Anat Rec.1969,164:101-111.
    21.Angelova MB,Pashova SB,Slokoska LS.Comparison of antioxidant enzyme biosynthesis by free and immobilized Aspergillus niger cells,Enzyme Microb Technol.2000,26:544-549
    22.Armour KE,Armour KJ,Gallagher ME,Godecke A,Helfrich MH,Reid DM,Ralston S H.Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase.Endocrinology.2001,142:760-766.
    23.Ashique AM,Fu K,Richman JM.Signalling via type A and type B bone morphogenetic protein receptors(BMPR) regulates intramembranousbone formation,chondrogenesis and feather formation in the chicken embryo[J].Int J Dev Biol,2002,46:243
    24.Avish H,Bab I,Tartakovsky A,et al.Human alpha 2-macroglobulin is anosteogenicgrowthpeptide-bindingprotein.Biochemistry.1997,36(48):14883-14888.
    25.Bab I,Gazit D,Massarawa A,et al.Removal of tibial marrow induces increased formation of bone and cartilage in rat mandibular condyle.Calcif tissue Int.1985,37:551-555.
    26.Bab I,Gazit D,Muhlrad A,et al.Regenerating bone marrow produces a potent growth factor activity to osteogenic cells.Endocrinology.1988,123:345-352.
    27. Bab I, Gazit D, Chorev M, et al. Histone H4-related osteogenic growth peptide (OGP): a novel circulating stimulator of osteoblastic activity. EMBO J. 1992,11: 1867-1873.
    28. Bab I, Einhom T. Isolation of osteogenic growth peptide from osteoblastic MC3T3E1 cell cultures and demonstration of osteogenic growth peptide binding proteins. J Cell Biochem. 1994, 55(3): 358-365
    29. Bab I. Regulatory role of osteogenic growt h peptide in proliferation, osteogenesis ,and hemopoiesis. Clin Ort hop. 1995, 313 :64-68.
    30. Bab I, Gavish H, Namdar-Attar M, et al. Isolation of mitogeni- cally active C-terminal truncated pentapeptide of osteogenic growth peptide from human plasma and culture medium of murine os-teoblastic cells [J]. J Peptide Res. 1999, 54: 408-414.
    31. Bab I, Smith E, Gavish H, et al. Biosvnthesis of osteogenic growth peptide via alternative translational initiation ai AUG85 of histone H4 mRNA, J Biol Chem. 1999, 14(274): 14474-14481.
    32. Bab I, Chorev M. Osteogenic growth peptide: from concept to drug design.Biopolymers. 2002, 66(1): 33-48.
    33. Bain G, Muller T, Wang X, et al. Activated beta-catenin induces osteoblast differentiation of C3H10T1 /2 cells and participates in BMP2 mediated signal transduction [J]. Biochem Biophys Res Commun. 2003, 301(1): 84
    34. Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, et al. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kB. Biochem Biophys Res Commun. 2004, 314: 197-207.
    35. Bakalkin GY, Rakhmaninova AB, Akparov VK, et al. Amino acid sequence pattern in the regulatory peptides. International Journal of Peptide and Protein Research. 1991, 38(6):505-510
    36. Balasundaram G, Sato M, Webster TJ.Using hydroxyl apatitenano particle sand decreased crystallinity to promote oteoblast adhesion similar to functionalizing with RGD. Biomaterials. 2006, 27(14): 2798
    37. Barsoum SC, Milgram W, Mackay W, Coblentz C, Delaney KH, Kwiecien JM, Kruth SA and Chang PL. Delivery of recombinant gene product to canine brain with the use of microencapsulation, J. Lab. Clin. Med. 2003, 142: 399-413.
    38. Beresford JN, Joyner CJ, Devlin C, et al. The effects of dexamethasone and 1, 25-dihydroxyvitamine D3 on osteogenic differentiation of human marrow stromal cells in vitro. Arch Oral Biol.1994,39:941-947
    39. Beresford JN, Bennett JH, Devlin C, et al. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures J Cell Sci. 1992, 102(2): 341-351
    40. Beattie GM, Rubin JS, Mally MI, Otonkoski T, Hayek A. Regulation of proliferation and differentiation of human fetal pancreatic islets cells by extracellular matrix, hepatocyte growth factor, and cell-cell contact, Diabetes. 1996,45: 1223-1228.
    41. Bianco P, Riminucci M, Gronthos S, et al. Bone marrow stromal stem cells: nature, biology, and potential applications.Stem Cell. 2001, 19(3): 180-192
    42. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science. 1999, 283: 534-537.
    43. Bianco P,Riminucci M, Gronthos S, et al. Bone marrow stromal stem cells:nature, biology,and potential applications. Stem Cells. 2001, 19: 180-192.
    44. Brager MA, Patterson MJ, Connolly JF, et al. Osteogenic growth peptide normally stimulated by blood loss and marrow ablation has local and systemic effects on fracture healing in rats [J]. J Orthop Res. 2000, 18(1): 133-139.
    45. Brownlee MA. Radical explanation for glucose-induced P-cell dysfunction, J Clin Invest. 2003,112: 1788-1790
    46. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renawal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subculativation and following cryopreservation. J Cell Biochem. 1997, 64(2): 278-294
    47. Bosnakovski D., Mizuno M., Kim G., Ishiguro T., Okumura M., Iwanaga T., Kadosawa T., Fujinaga T.: Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system. Experimental Hematology. 2004, 32: 502-509.
    48. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72: 248-254.
    49. Brager MA, Patterson MJ, Connolly JF, et al. Osteogenic growth peptide normally stimulated by blood loss and marrow ablation has local and systemic effects on fracture healing in rats [J]. J Orthop Res, 2000, 18(1): 133-139.
    50. Calafiore R, Basta G, Luca G, Calvitti M, Calabrese G, Racanicchi L, Macchiarulo G, Mancuso F, Guido L, and Brunetti P. Grafts of microencapsulated pancreatic islet cells for the therapy of diabetes mellitus in non-immunosuppressed animals, Biotechnol. Appl. Biochem. 2004, 39: 159-164.
    51. Calafiore R, Basta G, Luca G, Lemmi A, Racanicchi L, Mancuso F, Montanucci MP, and Brunetti P. Standard technical procedures for microencapsulation of human islets for graft into nonimmunosuppressed patients with type 1 diabetes mellitus, Transplant. Proc. 2006,38: 1156-1157.
    52. Chae HJ. Carbon monoxide and nitric oxide protect against tumor necrosis factor-a-induced apoptosis in osteoblasts: HO-1 is necessary to mediate the protection. Clinica Chimica Acta, 2006, 365: 270 - 278
    53. Chang TMS. Semipermeable microcapsules, Science. 1964, 146: 524-525.
    54. Cheng SL, Yang JW, Rifas L, et al. Differention of human bone marrow osteogenic stromal cells in vitro induction of the osteoblast phenotupe by dexamethasone. Endocrinology. 1994, 134:277-286.
    55. Chen Y, Bah I, Mansur M, et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. J Pept Res. 2000, 56(3): 147-156
    56. Chen XL, Li ZL, Zhang WB, Ye ZC, Ke SN. Effects of osteogenic growth peptide on bone density adjacent to implant in irradiated tibia of the rabbits. Shanghai Kou Qiang Yi Xue. 2007; 16(1):52-5.
    57. Chen ZX, Chang M, Peng YL, Zhao L, Zhan YR, Wang LJ, Wang R. Osteogenic growth peptide C-terminal pentapeptide [OGP (10-14)] acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Regul Pept. 2007, 142(1-2): 16-23.
    58. Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. Lancer Neurol. 2002; 1(2): 92-100
    59. Colter DC, Class R, DiGirolamo CM, et al. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA. 2000, 97(7): 3213-3218
    60. Colter DC, Sekiya I, Prockop DJ. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA. 2001, 98(14): 7841-7845
    61. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol. 1999, 181(1): 67-73
    62. Corbett JA, McDaniel ML. Does nitric oxide mediates autoimmune destruction of b-cells? Possible therapeutic interventions in IDDM, Diabetes. 1992, 41: 897-903.
    63. Cui Q, Wang GJ, Balian G. Steroid-induced adipogenesis in a pluripotential cell line from bone marrow. J Bone Joint Surg. 1997,79:1054-1063
    64. Dai Y, Xu M.f, Wang Y.G, Pasha Z.S, Li T.Y, Ashraf M.H. HIF-1α induced-VEGF over-expression in bone marrow stem cells protects cardiomyocytes against ischemia, J Mol Cell Cardiol. 2007, 42: 1036-1044.
    65. Damoulis P.D., Drakos D.E., Gagarib E., Kaplan D.L. Osteogenic Differentiation of Human Mesenchymal Bone Marrow Cells in Silk Scaffolds Is Regulated by Nitric Oxide. Skeletal Biology and Medicine, Part B. 2007, 1117: 367-376.
    66. Dang ZC, Van Bezooijen RL, Karperien M, et al. Exposure of KS483 cells to estrogen enchances osteogenesis and inhibits adipogenesis. J Bone Miner Res.2002,17:394-405
    67. Debiais F. Efficacy data on teriparatide (parathyroid hormone) in patients with post-menopausal osteoporosis. Joint Bone Spine, 2003, 70(6):465-470.
    68. de Groot M, Schuurs TA, Leuvenink HG, van Schilfgaarde R. Macrophage overgrowth affects neighboring nonovergrown encapsulated islets, J Surg Res. 2003,1152: 35-41.
    69. Deng W, Obrocka M, Fischer I, et al. In Vitro Differentiation of Human Marrow Stromal Cells into Early Progenitors of Neural Cells by Conditions That Increase Intracellular Cyclic AMP. Biochem Biophys Res Commun. 2001, 282(1): 148-152
    70. Dennis J.E. and Caplan A.I. Porous ceramic vehicles for rat-marrow-derived (Rattus norvegicus) osteogenic cell delivery: effects of pre-treatment with fibronectin or laminin. J Oral Implantol. 1993, 19: 106-115.
    71. Ebeling PR, Russell RG. Teriparatide (rhPTH 1-34) for the treatment of osteoporosis. Int J Clin Pract. 2003, 57(8):710-718.
    72. Einhorn TA. Enhancement of freacture-healing. J Bone Joint Surg. 1995, 77A(6): 940-956
    73. Encina NR, Billotte WG, Hofmann MC. Immunomagnetic isolation of osteoprogenitors from human bone marrow stroma. Lab Invest. 1999, 79(4): 449-457
    74. Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. In:Packer L, Glazer AN, eds. Methods in Enzymology, vol. 186, Oxygen Radicals in Biological Systems. San Diego: Academic Press. 1990, 186:407-421.
    75. Falck P. Characterization of human neutrophils adherent to organic polymer, Biomaterials. 1995,16: 61-63.
    76. Fazzi R, Galimberti S, Testi R,et al. Bone and bone marrow in- teractions: hematological activity of osteoblastic growth peptide (OGP)-derived carboxy-terminal pentapeptide II Action on human hematopoietic stem cells [J]. Leuk Res. 2002, 26: 839-848.
    77. Fazzi R, Testi R, Trasciatti S,et al. Bone and bone-marrow in- teractions: haematological activity of osteoblastic growth peptide (OGP)-derived carboxy-terminal pentapeptide. Mobilizing proper- ties on white blood cells and peripheral blood stem cells in mice [J]. Leuk Res. 2002, 26(1): 19-27.
    78. Francesco Paolo, Cantatore, Enrico Crivellato, Beatrice Nico. Osteocalcin is angiogenic in vivo.cell biology international. 2005, 29: 583-585
    79. Franklin HE. Bone marrow, cytokines and bone remodeling. N Engl Med. 1995, 332:305.
    80. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organ [J].Exp Hemator. 1976, 4: 267-274
    81. Foldes J, Naparstek E, Statter M, et al. Osteogenic response to marrow aspiration: increased serum osteocalcin and alkaline phosphatase in human bone marrow donors. J Bone Miner Res. 1989, 4: 643-646.
    82. Gabarin N, Gavish H, Muhlrad A,et al. Mitogenic Gi protein-MAP kinase signaling cascade in MC3T3-E1 osteogenic cells: acti-vation by C-terminal pentapeptide of osteogenic growth peptide[OGP(10-14)] and attenuation of activation by cAMP [J]. J Cell Biochem. 2001, 81: 594-603.
    83. Gabriel M, Sharmin S, Joseph P, et al. β- Catenin and BMP-2 Synergize to Promote Osteoblast Differentiation and New Bone Formation[J]. Cellular Biochemistry, 2005, 94: 403
    84. Gao Y, Jheon A, Nourkeyhan IH, et al. Molecular cloning, structure, exp ression, and chromosomal localization of the human Oterix(SP7) gene. Gene, 2004, 341 : 1012-1101
    85. Gavish H, Bab I, Tartakovsky A, et al.Human alpha 2-macroglobulin is anosteogenic growth peptide-binding protein. Biochemistry. 1997,36(48): 14883-14888.
    86. Gimble JM, Morgan C, Kelly K, et al. Bone morphogenetic proteins inhibit adipocyte differentiation by bone marrow stromal cells.J Cell Biochem. 1995, 58:393-402.
    87. Gori F, Thomas T, Hicok KC, et al. Differentiation of human marrow stromal precursor cells bone morphogenetic protein-2 increases OSF2\CBFA1, enchances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res. 1999,14: 1522-1535.
    88. Greenberg Z, Chorev M, Muhlrad A, et al. Structural and func- tional characterization of osteogenic growth peptide from human serum: identity with rat and mouse homologs [J]. J Clin En- docrinol Metabol, 1995, 80(8): 2330-2335.
    89. Greenberg Z, Chorev M, Muhlrad A, et al. Mitogenic action of osteogenic growth peptide(OGP):a role of amino and carboxy-terminal regions and charge.Biochim Biophys Acta. 1993,13(1178): 273-280.
    90. Greenberg Z, Gavish H, Muhlrad A, et al. Isolation of osteogenic growth peptide from osteoblastic MC3T3E 1cell culture sand demonstration of osteogenic growth peptide binding proteins. J Cell Biochem, 1997, 65(3): 359-367.
    91. Gronthos S, Graves SE, Ohta S, et al. The Stro21 fraction of adult human bone marrow contains the osteogenic precursors. Blood. 1994, 84 (8): 4164—4173
    92. Gurevitch O., Slavin S., Muhlrad A., Shteyer A., Gazit D., Chorev M., Vidson M., Namdar-Attar M., Berger E., Bleiberg I., Bab I. Osteogenic growth peptide increases blood and bone marrow cellularity and enhances engrafment of bone marrow transplants in mice. Blood, 1996, 88: 4719-4724.
    93. Guido B, Romano D., Anna F., Mario D. The effect of osteogenic growth peptide on proliferation and adhesion of hemc-1 human endothelial cells. Pharmacological Research, 2002,45: 20-26.
    94. Gyurkoa R., Shojia H., Battaglinob R.A., Boustanya G., Gibson III F.C., Gencoacd C.A., Stashenkob P, Van Dyke TE. Inducible nitric oxide synthase mediates bone development and P. gingivalis-induced alveolar bone loss. Bone. 2005, 36: 472- 479.
    95. Haskins KA., Schlauder SM., Holda JH. Prednisolone inhibits LPS-induced bone marrow suppressor cell activity in vitro but not in vivo. Int. J. Immunopharmacol. 2003; 3: 169-178.
    96. Hasse C, Klock G, Schlosser A. Zimmermann U and Rothmund M, Parathyroid allotransplantation without immunosuppression. Lancet. 1997, 351: 1296-1297.
    97. Hauschks PV, Lian JB, Gallop PM, et al. Direct identification of calcium binding am ino acid r-carboxyglutam ate in m ineralize tissue. Proe Natl A Cad Sci USA. 1975, 72: 3925-3930
    98. Haynesworth SE, Baber MA, Caplan A.I. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone. 1992, 13: 69-80.
    99. Herbertson A and Aubin JE. Cell sorting enriches osteogenic populations in rat bone marrow stromal cell cultures.Bone, 1997; 21(6): 491-500
    100.Holzer G, Einhorn TA, Majeska RJ. Estrogen regulation of growth and alkaline phosphatase expression by cultured human bone marrow stromal cells. J Orthop Res. 2002, 20: 281-288.
    101.Hui Z, Yu L, Xiaoli Y, Xiang H, Fan Z, Ningbo H, Zhigang Y, Ping L, Yanhong Z, Qingjun M. C-terminal pentapeptide of osteogenic growth peptide regulates hematopoiesis in early stage. J Cell Biochem. 2007 Aug 15, 101(6): 1423-9.
    102.Ishizuyz T, Yokose S, Hori M, et al. Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J Clin Inv. 1997,99:2961-2970.
    103.Isogai Y, Akatsu T, Ishizuya T, et al. Parathyroid hormine regulates osteoblast differentiation positively or negatively depending on the differentiation stages. J Bone Miner Res. 1996, 11: 1384-1393
    104.Ingram RT, Bonde SK, Riggs BL, et al. Effects of transforming growth factor beta and 1, 25-dihydroxyvitamine D3 on the function, cytochemistry and morphology of mormal human osteoblast-like cells. Differention. 1994, 55: 153-156.
    105.Iwata H, Takagi T, Amemiya H. Agarose microcapsule applied in islet xenografts(hamster to mouse). Transplant Proc. 1992. 24: 952
    106.Jacobson MD, Raff MC. Programmed cell death and Bcl-2 protection in very low oxygen, Nature. 1995, 374: 814-816.
    107.Joki T, Machluf M, Anthony Atala et al., Continuous release of endostatin from microencapsulated engineered cells for tumor therapy, nature. 2001,19: 35-39.
    108.Kadiyala S, Young RG, Thiede MA, Bruder SP. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant. 1997, 6: 125-134.
    109.Kadner A, Hoerstrup SP, Zund G, et al. A new source for cardiovascular tissue engineering: human bone marrow stromal cells. Eur J Cardiothorac Surg. 2002, 21(6): 1055-1060
    110.Katagir IT, Yamaguch IA, Komaks El. Bone morphogenetic p rotein22 converts the differentiation pathway of C2C12 myoblast into the osteoblast lineage. [J] J cell Biol, 1994, 127 : 17552-17661
    111.Kelly KA, Gimble JM. 1, 25-dihydroxyvitamine D3 inhitits adipocyte differentiation and gene expression in mice bone marrow stromal cell clones and primary cultures. Endocrinology. 1998,139:2622-2628
    112.Kim YM, Jeon YH, Jin GC, Lim JO and Baek WY. Immunoisolated chromaffin cells implanted into the subarachnoid space of rats reduce cold allodynia in a model of neuropathic pain: A novel application of microencapsulation technology, Artif. Organs.2004, 28: 1059-1066.
    113.Koc ON, Peters C. Aubourg P, et al. Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol. 1999,27(11): 1675-1681
    114.Kundu B, Khare SK, Singh G. Role of polypeptides in the treatment and diagnosis of osteoporosis [J]. Peptides. 1999, 20: 523
    115.Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med. 2000, 6(11): 1229-1234
    116.Lanzi R, Losa M, Villa. GH replacement therapy increase plasma OPG levels in GH-deficient adults.Eur J Endocrinol. 2003, 148(2): 185-191
    117.Leboy PS, Beresford JN, Devlin C, et al. Dexamethasone induction of osteoblast mRNA in rat marrow stromal cell cultures. J cell physiol. 1991, 146: 370-378
    118.Leeanda F, Aviod LV, Cheng SL. Regulation of bone matrix protein expression and induction of differentiation of human osteoblasts and human bone marrow stromal cells by bone morphogenetic protein-2. J Cell Biochem.1997, 67: 386-396.
    119.Lennin DP, Edmison JM, Caplan AI. Cultivation of rat marrow derived mesenchymal stem cells in reduced oxygen osteochondrogenosis. J Cell Physiol. 2001,187: 345-355
    120.Lim F and Sun AM. Microencapsulated islet as bioartificial eendocrine pancreas. Science. 1980,210: 908-910.
    121.Liu BY, Wu PW, Hsu YT, et al. Estrogen blocks parathyroid hormone stimulated osteoclast-like cell formation in modulating differentiation of mouse marrow stromal cells in vitro. J Formos Med Assoc. 2002, 101: 24-33
    122.Locklin RM, Williamson MC, Beresford JN, et al. In vitro effects of growth factors and dexamethasone on ratmarrow stromal cells [J]. Clin Orthop, 1995, 3 13: 27
    123.Locklin RM, oreffo RO, triffitt JT. Effects OF TGF beta and bFGF on the differentiation of human bone marrow stromal fibroblasts. Cell Biol Int. 1999, 23:185-194.
    124.Lou W, Qin X and Wu Z, Xenotransplantation of alginate-chitosan-polyethyleneglycol microencapsulated rat islets in the treatment of mice diabetes mellitus, Minerva Biotechnol. 2003, 15:185-189.
    125.Lucas TS, Bab IA, Lian JB, etal. Stimulation of systemic bone formation induced by experimental blood loss.Clin Orthop. 1997, 340: 267-275.
    126.Luca G, Basta G, Calafiore R, Rossi C, Giovagnoli S, Esposito E, Nastruzzi C. Multifunctional microcapsules for pancreatic islet cell entrapment: design, preparation and in vitro characterization, Biomaterials. 2003, 24: 3101-3114.
    127.Lynch M P, Stein JL , Stein GS, et al. The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracllularmatrixm ineralization. Exp Cell Res, 1995; 216 (1): 35-45
    128.Martin D.R., Cox N.R., Hathcock T.L., Niemeyer G.P., Baker H.J. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol. 2002, 30: 879-886.
    129.Martin L, Muraglia A, Campanile G, et al. Fibroblast growth factor-2 supports ex vitro expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology. 1997, 138: 4456-4462
    130.Maggio D, Barabani B, Pierandrei M, Polidori M C, Catani M,Mecocci P, et al. Marked decrease in plasma antioxidants in aged osteoporotic women. Results of a cross-sectional study. JCEM 2003, 88: 1523-1527.
    131.Mastrogiacomo M., Cancedda R., Quarto R. Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells. Osteoarthritis Cartilage. 2001, 9: 36-40.
    132.Moshage H. Nitric oxide determinations: much ado about NO-ing? Clin Chem. 1997, 43: 553-556.
    133.Morrison NA, Yeoman R, Kelly PJ, et al. Contribution oftransacting faction to normal physiological variability: vitamin D receptor gene polym orphism and ciradation osteocalcin. Proc Natl Acad Sci USA. 1992, 89: 6665-6669
    134.Molinuevo M.S., Barrio D.A., Cortizo A.M., Etcheverry S.B. Antitumoral properties of two new vanadyl (IV) complexes on osteoblasts in culture. Role of apoptosis and oxidative stress. Cancer Chemother. Pharmacol. 2004, 53: 163-172.
    135.Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model J Cell Sci. 2000. 113(7): 1161-1166
    136.Nakagawa N, Kinosaki M. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastgenesis. Biochem Biophs Res commun. 1998, 253: 395-400
    137.Nakayama T, Cui Y, Christian JL. Regulation of BMP /Dpp signaling during embryonic development [J]. Cell Mol Life Sci. 2000, 57: 943
    138.Nefussi JR, Bram iG, Modrowski D, et al. Sequential expression of bone matrix proteins during rat calvaria osteoblast differentiation and bone nodule formation in vitro. J Histochem Cytochem, 1997 Apr, 45: 4, 493—503
    139.Okazaki R, Inoue D, Shibata M, et al. Estrogen promotes early osteoblast differention and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor alpha or beta. Endocrinology. 2002,143:2349-2356
    140.Omae H., Mochizuki Y., Yokoya S., Adachi N., Och M. Augmentation of tendon attachment to porous ceramics by bone marrow stromal cells in a rabbit model, International Orthopaedics (SICOT). 2007, 31: 353-358.
    141.Orive G, Hernandez RM, Gascon AR, Igartua M, Pedraz JL. Survival of different cell lines in alginate-agarose microcapsules, European Journal of Pharmaceutical Sciences. 2003, 18: 23-30.
    142.Oyama M, Chibal J, Kato Y, et al. Distribution and exp ression ofmRNAs for the p roto - oncogenes c-fos and c-jun in bone cells in vivo [J]. Histol Histopathol. 1998, 13: 671
    143.Oyanagui Y. Reevaluation of assay methods and establishment of kit for Superoxide dismutase activity, Analytical Biochemistry. 1984,142: 290-296.
    144.Owen TA, A ronow M, Shalhoub V, et al. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast p ro liferation and differentiation during formation of the bone extracellular matrix. J Cell Physio. 1990 Jun; 143 (3) : 420-430
    145.Phinney DG. Building a consensus regarding the nature and origin of mesenchymal stem cells J Cell Biochem Suppl. 2002; 38: 7-12
    146.Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells.Science,1999, 284(5411): 143-147
    147.Power MJ, Fottell PF. Osteocalcin Diagnostic methods and clinical applications, Crit. Rev. Clin. Lab. sci. 1991,28: 287-335
    148.Price PA, Satora K, Nishimoto P, et al. Radioimmunoassay for the V itam in Kdependent protein of bone and its discoveryin plasma. Proc Natl Acad Sci USA, 1980, 77: 2234-2236
    149.Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997, 276(5309): 71-74
    150.Qu Q, Perala Heape M, Kapanen A, eral. Estrogen Enhances differentiation of osteoblast in mouse bone Marrow culrure [J].Bone. 1998, 22: 201-209.
    151.Rahnert J., Fan X., Case N., Murphy T.C., Grassi F., Sen B., Rubin J. (2008): The role of nitric oxide in the mechanical repression of RANKL in bone stromal cells, Bone, 10, 3-6.
    152.Riggs BL, Melton LJ. The prevention and treatment of osteoporosis [J]. New Eng J Mcd. 1992, 327: 620
    153.Ringe J., Kaps C, Schmitt B., Buscher K., Bartel J., Smolian H., Schultz O., Burmester G.R., Haupl T., Sittinger M. Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell Tissue Res, 2002, 307: 321-327.
    154.Robinson D, Bab I, Nevo Z. Osteogenic growth peptide regulates proliferation and osteogenic maturation of human and rabbit bone marrow stromal cells [J]. J Bone Miner Res, 1995, 10(5): 690-696.
    155.Robitaille R, Dusseault J, Henley N, Desbiens K, Labrecque N, Halle JP. Inflammatory response to peritoneal implantation of alginate-poly-L-lysine microcapsules, Biomaterials. 2005,26: 4119-4127.
    156.Rob J, Hof V, Ralston S.H. Nitric oxide and bone. Immunology, 2001, 103: 255-261
    157.Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyper-glycemia and oxidative stress, Toxicol Appl Pharmacol. 212 (2006) 167-178
    158.Rombouts WJ, Ploemacher RE. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture .Leukemia, 2003; 17(1):160-170
    159.Salih Ozgocmen, et al. Effects of Calcitonin, Risedronate, and Raloxifene on Erythrocyte Antioxidant Enzyme Activity, Lipid Peroxidation, and Nitric Oxide in Postmenopausal Osteoporosis. Archives of Medical Research 2007; 38: 96-205.
    160.Sarkis R, Benoist S, Honiqer J, et al. Transplanted cryopreserved encapsulated porcine hepatocytes are as effective as fresh hepatocytes in preventing death from acute liver failure in rats. Transplantation. 2000: 70:58-64
    161.Smyth G P, Stapleton P P, Freeman T A.,Concannon EM, Mestre JR., DuV M, Maddali S, Daly JM. Glucocorticoid pretreatment induces cytokine over expression and nuclear factor-P activation in macrophages. J. Surg. Res 2004; 11: 6253-261.
    162.Sontakke A N, Tare R S. A duality in the roles of reactive oxygen species with respect to bone metabolism. Clin Chim Acta. 2002; 318: 145-148.
    163.Soon-Shiong P, Heintz RE, Merideth N, Yao QX, Yao Z, Zheng T, Murphy M, Moloney MK, Schmehl M, Harris M. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet. 1994, 343: 950-951.
    164.Spreafico A, Frediani B, Capperucci C, Leonini A, Gambera D, Ferrata P, Rosini S, Di Stefano A, Galeazzi M, Marcolongo R. Osteogenic growth peptide effects on primary human osteoblast cultures: potential relevance for the treatment of glucocorticoid-induced osteoporosis. J Cell Biochem. 2006 Jul 1; 98(4): 1007-20.
    165.S.Y. Chae, M. Lee, S.W. Kim, Y.H. Bae, Protection of insulin secreting cells from nitric oxide induced cellular damage by crosslinked hemoglobin, Biomaterials. 2004, 25: 843-850.
    166.Sanna-Maria KaKonen, JuKKa Hellman.Purification and characterization of recombinant Osteocalcin Fusion protein Expressed in Escherichia coli. Protein Expreesion and Purification. 1996(8): 137-144
    167.Shi D Y, Yu C, Chen T Y, Cui D F, Chen Z W. Experimental study of osteogenic growth peptide promoting bone mass in rats' osteoporosis. International Chinese Peptide Symposium,Huang-shan, China, 1998, 56: 14-17
    168.Simmons PJ , Gronthos S , annettino A , et al. Isolation , characterization and functional activity of human marrow stromal progenitors in hemopoiesis. Prog Clin Biol Res. 1994, 389 (2): 271-277
    169.Sodek J, Chen J, Nagata T, et al. Regulation of osteopontin expression in osteoblasts. A nn-N -Y-A cad-Sci.1995; 760: 223-41
    170.Spees JL, Olson SD,Ylostalo J, et al. One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues.Proc Natl Acad Sci USA. 2003; 100(5): 2397-2402
    171.Spreafico A., Frediani B., Capperucci C, Leonini A., Gambera D., Ferrata P., Rosini S., Di Stefano A., Galeazzi M., Marcolongo R. Osteogenic growth peptide effects on primary human osteoblast cultures: potential relevance for the treatment of glucocorticoid-induced osteoporosis. Journal of Cellular Biochemistry.2006, 98: 1007-1020.
    172.Spreafico A, Frediani B, Capperucci C, Leonini A, Gambera D, Ferrata P, Rosini S, Di Stefano A, Galeazzi M, Marcolongo R. Osteogenic growth peptide effects on primary human osteoblast cultures: potential relevance for the treatment of glucocorticoid-induced osteoporosis.J Cell Biochem. 2006 Jul 1; 98(4): 1007-1020.
    173.Stein GS, L ian JB, Owen2TA, Bone cell differentiation: a functionally coupled relationship between expression of cell-growth-and tissue-specific genes. Curr-Opin-Cell-Biol, 1990; 2 (6) 1018-227
    174.Sun YQ and Ashhurst DE. Osteogenic growth peptide enhances the rate of fracture healing in rabbits [J]. Cell Biol Int. 1998, 22(4): 313-319.
    175.Sun ZJ, Lv GJ, Li SY, Yu WT, Wang W, Xie YB, Ma X. Differential role of microenvironment in microencapsulation for improved cell tolerance to stress, Appl Microbiol Biotechnol. 2007, 75:1419-1427
    176.Taipale J, Keski-Ota J. Growth factors in the extracellular matrix, FASEB J. 1997,11: 51-59.
    177.Takeshita N, Ishida H, Yamamoto T, et al.circulating levels and bone contents of bone recardboxyglutamic acid containing protein in rat models of ZIDDM. Acta Endoce\rinol, 1993, 128: 69-72
    178.Taylor B.C., Schreiner P.J., Zmuda J.M., Li J., Moffett S.P., Beck T.J., Cummings S.R, Lee J.M., Walker K, Kristine E. Association of endothelial nitric oxide synthase genotypes with bone mineral density, bone loss, hip structure, and risk of fracture in older women: The SOF study. Bone. 2006, 39: 174-180.
    179.Thomas T, Gori F, Spelsberg TC, et al. Response of bipotential human marrow stromal cells to insulin-like growth factors: effect on binding protein production, proliferation, and commiment to osteoblasts and adipocytes. Endocrinology. 1999,140:5036-5044.
    180.Thomas T, Gori F, Spelsberg TC, et al. Leptin acts on human marrow stromal cells to ehhance differentiation to osteoblasts and to inhibit differentiation to adipocytes.Endocrinology.1999, 140: 1630-1638.
    181 .Thies RS, Bauduy M, Ashton BA, et al. Recombinant human bone morphogenetic protei n- induces osteoblastic differentiation in W-20-17 stromal cells. Endocrinology. 1992, 130: 13-18.
    182.Ueno A, Kitase Y, Moriyama K, Inoue H. MC3T3E1-conditioned medium-induced mineralization by clonal rat dental pulp cells. Matrix Biol, 2001, 20: 347-355.
    183.Vajkoczy P, Lehr HA, Hybner C, Arfors KE, Menger MD. Prevention of pancreatic islet xenograft reaction by dietary Vitamin E, Am J Pathol. 1997,150: 1487-1495.
    184.van't Hof RJ, Macphee J, Libouban H, Helfrich MH, Ralston SH: Regulation of bone mass and bone turnover by neuronal nitric oxide synthase. Endocrinology, 2004, 145: 5068-5074.
    185.Vlasselaer PV, Falla N, Snoeck H, et al. Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti-sca I monoclonal antibody and wheat germ agglutinin.Blood, 1994, 84:753
    186.Vu D, Ong JM, Clements TL, et al. 1, 25-dihydroxyvitamine D3 induces lipoprotein lipase expression in 3t3-Ll cells in association with adinocyte differention. Endocrinology. 1996, 137:1540-1544.
    187.Waller EK, Olwens J, Lund Johansen F, et al. The common stem cell hypothesis reevaluated: human fetal bone marrow contaons separate population of hematopoiefic and stromal progenitiors. Blood ,1995 ,85 (5): 2422—2430
    188.Walsh S, Jefferiss C, Stewart K, et al. Exp ression of the developmentalmarkers stro-1 and alkaline phosphatase in cultures of human marrow stromal cells: regulation by fibroblast growth factor( FGF) - 2 and relationship to the expression of FGF receptorsl - 4 [J]. Bone, 2000,27(2): 185
    189. White AM, Holda JH. Decreasing endogenous glucocorticoids alters the ability of bone marrow cells to produce nitric oxide in response to stimulating agents. Cellular Immunology. 2004; 232: 3 2-37
    190.Williamson DR, Lapointe M. The hypothalamic-pituitary-adrenal axis and low-dose glucocorticoids in the treatment of septic shock. Phamacotherapy. 2003, 23: 514-525.
    191.Wiegand F, Kroncke KD, Kolb-Bachofen V. Macrophage generated nitric oxide as cytotoxic factor in destruction of alginate-encapsulated islets, Transplantation. 1993, 56: 1206-1212.
    192.Woodbury D, Schwarz FJ, Prochop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000:61(4): 1055-1060
    193.Worster AA, Nixon AJ, Brower-Toland BD, Williams J. Effect of transforming growth factor β1 on chondrogenic differentiation of cultured equine mesenchymal stem cells. Am J Vet Res, 2000, 61: 1003-1010.
    194.Xu W, Liu L and Charles IG, Microencapsulated iNOS-expressing cells cause tumor suppression in mice, FASEB J. 2002,16: 213-215.
    195.Yamaguchi A, Komori T, Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfal[J]. Endocr Rev, 2000, 21: 393
    196.Yang X, Ji X, Shi X, et al. Smadldomains interacting with Hoxc - 8 induce osteoblast differentiation [J]. J Biol Chem, 2000, 275 (2): 1065
    197.Yan Qun Sun, Ashhurst DE. Osteogenic growth peptide enhances rate of fracture healing rabbits [J]. Cell Biology International, 1998, 22: 313
    198.Y Jiang, BN Jahagirdar,RL Reinhardt,et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature.2002,418: 41-49
    199.Yue J, Mulder KM. Transforming growth factor - [beta] signal transduction in epithelial cells[J]. Pharmacol Ther, 2001, 91: 1
    200.Zhang Y, Wang W, Zhou J, Yu WT, Zhang XL, Guo X, X.J. Ma. Tumor Anti-angiogenic Gene Therapy with Microencapsulated Recombinant CHO Cells, Annals ofBiomedical Engineering. 2007, 10: 1043-1053.
    201.Zamora R, Vodovotz Y, Billiar T R. Inducible nitric oxide synthase and inflammatory diseases. Mol. Med. 2000, 6: 347-373.
    202.Zhang XM, Ramalho-Santos M, McMahon AP. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node [J]. Cell, 2001, 106 (2): 781
    203 .Zhang X, Sobue T, Hurley MM. FGF-2 increases colony foration, PTH recceptor, and IGF-1 mRNA in mouse marrow stromal cells. Biochem Biophys Res Commun.2002, 290: 526-531.
    204.Zheng MH, Wood DJ, Papadimitrion JM. What's new in the role of cytokines on osteobl ast proliferation and differentiation. Pathol Res Pract, 1992, 188:1104.
    205 .Zhou S, Zilbennan Y, Wassermaun K, et al. Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells of osteoporotic mice. Cell Biochem Suppl.2001, 36:144-155
    206.Zimmerman CM, Padgett RW. Transforming growth factor [beta] signaling mediators and modulators [J]. Gene, 2000, 249: 17
    207.Zimmermann S, Voss M, Kaiser S, et al. Lack of telomerase activity in human mesenchymal stem cells. Leukemia. 2003, 17: 1146-1149
    208.Zohar R, Sodek J, Mcculloch CA.Characterization of stromal progenitor cells enriched by flow cytometry. Blood. 1997, 90(9): 3471-3481