基于轮廓波变换的图像统计建模及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
边缘、纹理等几何结构是图像的重要特征。传统的小波变换只能表达点奇异的位置和特性,不能最优地表示图像中的线奇异特征;同时,二维可分离小波变换只有有限个方向,无法有效地捕捉图像的轮廓信息。为克服小波变换的上述局限性,近年逐步发展起来一种多尺度几何分析理论。该理论是一系列分析方法的总称,其目的是设计高维函数的最优表示方法,捕捉图像内在的几何结构如轮廓、边缘和纹理等方向信息,从而更有效地处理图像数据。其中,轮廓波变换(Contourlet变换及其非下采样形式)直接定义在离散域,用类似于线段的基结构逼近图像,是一种真正意义上的二维图像表示方法。轮廓波变换不仅具有多尺度和良好的时(空)频局部特性,还具有多方向和各向异性,能够有效捕捉图像中的高维奇异性,因而在图像处理领域具有广阔的应用前景。
     图像的轮廓波系数在尺度间、方向间以及子带的空间邻域内都表现出了较强的相关性。而现有轮廓波系数的统计模型都是由小波统计模型简单推广而来的,没有考虑轮廓波变换与小波变换在各向异性和多方向选择性上的差异。因此,为了充分发挥轮廓波变换的方向捕捉能力,非常有必要在多尺度统计模型的基础上融合图像的几何结构信息,建立具有方向特征的轮廓波系数统计模型。本文以轮廓波系数的统计建模为主要研究问题,通过分析轮廓波系数的内在关联,对构建具有方向特征的轮廓波系数统计模型及其在图像去噪、图像分割中的应用进行了深入、系统的研究,提出了一些有效的理论和方法,可以进一步推广到图像融合、图像重建等其它图像处理领域,具有重要的理论意义和广泛的应用前景。
     本文的主要工作和创新点概括如下:
     1.从图像的稀疏表示特性和人类视觉系统的反应特点入手,分析了小波变换的局限性,研究并给出了轮廓波变换能够高效表示和处理图像信息的原因,并对当今国内外基于轮廓波变换的图像处理的研究进展进行了总结。
     2.研究了图像的轮廓波表示法。
     阐述了Contourlet变换的基本原理、滤波器构成和基本性质,利用基函数的形状及非线性逼近效率讨论了Contourlet变换的稀疏性,并用泛函的知识对Contourlet变换所具有的多尺度、多方向框架进行了理论分析;为探讨轮廓波变换的平移不变性,又进一步研究了非下采样Contourlet变换(Nonsubsampled Contourlet Transform,NSCT),讨论了其非下采样滤波器的设计方法。
     3.分析了图像轮廓波系数的统计特性,提出了一种基于局部上下文隐马尔可夫模型(Local Contextual Hidden Markov Model,LCHMM)的轮廓波系数统计模型。
     根据轮廓波子带具有的非高斯分布统计特性,分别使用广义高斯模型和高斯混合模型来建模子带系数的边缘分布。通过联合分布直方图,定性分析了轮廓波系数分布在尺度间、方向间和空间邻域内的相关性。针对现有的轮廓波系数统计模型无法全面描述上述三种系数相关性以及不符合图像非平稳特征的缺陷,提出了一种具有局部特征的、可全面捕捉上述三种相关性的统计模型——LCHMM模型。LCHMM模型首先使用基于局部数据的高斯混合场来建模轮廓波系数的非高斯分布,与子带同分布的假设相比,更加符合图像的非平稳特征;然后在高斯混合场的基础上,利用上下文来综合相邻尺度间、同一尺度相邻方向间和同一尺度同一方向子带的空间邻域内的系数相关性,结合隐马尔可夫模型,构建了一个全面的相关模型框架,充分表达了轮廓波变换的尺度间持续性、尺度内多方向选择性和邻域内的能量聚集特性,为图像多尺度几何变换域统计建模提供了新的理论思路。本文详细阐述了LCHMM模型框架的数学定义,设计了上述三种相关信息的融合方法。此外,通过合理的设置初始化参数集合,利用迭代最大期望算法,给出了鲁棒、有效的模型训练方法,保证了模型的可行性。
     4.提出了一种基于椭圆方向窗信号估计的NSCT域空间自适应Bayes阈值去噪方法。
     通过对图像信号在NSCT子带内各向异性的能量聚集的分析,得出NSCT系数在空间邻域内的相关性不具有各向同性,而是满足各向异性和特定方向选择性的结论。为此,抛弃传统的方形窗口,专门设计了能够自适应于各子带分解方向的椭圆方向窗来捕捉存在较强依赖关系的邻域相关系数进行信号方差的估计,结合局部Bayes阈值,提出了一种基于椭圆方向窗信号估计的NSCT域空间自适应Bayes去噪阈值。该阈值不仅自适应于尺度、方向和空间位置,而且能够自动调整椭圆邻域方向以自适应于子带能量的聚集方向,是一个自适应程度更高的Bayes阈值。本文详细阐述了椭圆方向窗的定义、基于椭圆方向窗的信号估计方法和噪声方差的估计方法,给出了基于该阈值的去噪算法的具体步骤,并进行了仿真实验。实验结果表明,与当前一些典型的轮廓波阈值去噪算法相比,该算法的峰值信噪比(Peak Signal-to-noise Ratio,PSNR)和去噪视觉效果都有明显的提高和改善。
     5.提出了一种基于NSCT域LCHMM模型的图像去噪方法,适用于去除强噪声。
     图像信号经NSCT分解后,其系数在相邻尺度、相邻方向和空间邻域内都有较强的相关性;而高斯白噪声经NSCT变换后仍为白噪声;利用信、噪这种统计相关性上的差异可以实现对图像的去噪处理,尤其适用于去除强噪声。为充分利用NSCT系数的三种相关信息,以信息论中的互信息作为量化工具,确定了LCHMM模型中NSCT系数三种相关性信息具体的融合方案;结合去噪应用背景,制定了融合后相关信息与上下文数据的映射关系;利用LCHMM模型捕捉的相关性先验知识,提出了一种基于NSCT域LCHMM模型的图像去噪算法。本文详细阐述了LCHMM模型中相关信息的融合设计、上下文与相关信息的度量准则以及基于该模型的具体的去噪步骤。通过仿真实验分析,与现有的基于相关性模型的去噪算法相比,该算法显著提高了去噪图像的PSNR值;在视觉效果上,既可以改善平坦区域的伪吉布斯现象,又可以有效地保持边缘细节和纹理信息。
     6.提出了一种基于Contourlet域隐马尔可夫树(Hidden Markov Tree,HMT)模型和改进上下文结构的图像分割技术。
     研究了多尺度贝叶斯图像分割的基本原理,分析了基于小波HMT模型的图像分割存在边缘模糊和奇异性扩散现象的原因。一方面,小波变换不能有效的表达边缘等高维特征;另一方面,该方法使用的上下文仅考虑了较粗尺度上的类标相关性,虽然保证了分割主体轮廓的可靠性,但是缺乏尺度内相邻节点类标的依赖关系,使得边缘部位的分割不够平滑和准确。为此,本文提出了一种基于Contourlet域HMT模型和改进上下文结构的图像分割技术。该分割技术首先利用Contourlet域HMT模型得到与图像各个尺度上数据块相对应的不同纹理的相似度,通过相似度大小的比较获得各个尺度上的初始分割;在多尺度贝叶斯分割的基础上,设计了一种新的上下文结构来捕捉尺度间和尺度内相邻节点的类标相关性,通过简单投票推举,为相邻尺度间的初始分割融合提供先验知识:利用该先验知识逐步由粗尺度到细尺度融合相邻两尺度的初始分割结果,最终得到像素级的分割结果。由于新设计的上下文综合考虑了尺度间和尺度内初始分割的依赖关系,因而,在获取可靠的主体轮廓的基础上,更为有效地保留了局部边缘细节,提高了边缘分割的准确性。本文详细阐述了上下文的定义,给出了具体的算法实现。仿真实验表明,与小波HMT分割技术相比较,本文算法有效减少了均质区域的孤立误分类现象,提高了不同纹理区域边缘的分割精度,获得了很好的分割效果。
Geometrical structures such as edges and textures are key features in natural images. The traditional wavelet transform only represents point-singularities efficiently, but is less efficient for line-singularities and curve-singularities that always exist in images. Moreover, the separable two-dimensional wavelet cannot capture contour information of images accurately due to the very limited directionality. These limitations of wavelet have led to the development of multiscale geometric analysis (MGA) theory, which includes a serial of MGA tools. The goal of MGA theory is to find the optimal representation for multidimensional signals to capture and process the intrinsic geometrical structures such as contours, edges and textures of images efficiently. Among these tools, contourlet transform and the nonsubsampled contourlet transform (NSCT) distinguish themselves with their excellent efficiencies and flexible structures. In this thesis, both contourlet transform and NSCT are referred as contourlets transforms. The contourlets transforms are directly defined in discrete-domain and use rectangular-shapes for their basis elements to follow the contours, thus forming "true" two-dimensional sparse representations. Contourlets transforms not only possess the features of multiscale and time-frequency localization, but also offer a high degree of directionality and anisotropy, which have proven to be very promising in various image processing applications.
     The contourlets coefficients of images show strong dependencies across scales, directions and locations (or space). However, the current statistical models of contourlets coefficients are mostly simple extension of those of wavelet coefficients, disregarding the difference in multi-directionality and anisotropy. To take advantage of captured directional information of contourlets transforms, exploring how to integrate the geometrical information into the multiscale statistical model to statistically characterize contourlets coefficients is greatly in need. Therefore, the thesis focuses on the contourlets-based statistical modeling for images. By investigating the statistical correlation of contourlets coefficients, the thesis studies the directional multiscale statistical modeling based on contourlets transforms and develops some new denosing and segmentation method based on the proposed statistical model. In addition, the proposed statistical model can be further extended to image fusion, image reconstruction and other image processing areas, which provides important theoretical significance and wide application prospects.
     The main contributions of the thesis are as follows:
     1. The limitation of wavelet transform is first discussed from the views of image sparse representation and receptive characteristics of human visual system. Then the capability of contourlets transforms in capturing the directional information of the natural images is analyzed. Moreover, the current progresses of image processing based on the contourlets transforms are summarized.
     2. The contourlets representations for images are studied.
     After reviewing the contourlet transform theory, including its basic principle, filter bank structure and basic characteristics, the thesis discusses the sparsity of contourlet transform by analyzing the shapes of basis functions and their nonlinear approximation rate, and sets up the directional multiresolution frame by functional analysis. To discuss the shift-invariant property, the NSCT transform especially the design of the nonsubsampled filter is studied.
     3. The statistics of the contourlets coefficients is discussed in detail and described by a newly local contextual hidden Markov model (LCHMM).
     The thesis adopts the generalized Gaussian distributed (GGD) model and Gaussian mixture model (GMM) respectively to approximate the highly non-Gaussian marginal distributions of contourlets subbands. By joint distribution histogram, the strong interlocation, interscale and interdirection dependencies of contourlets coefficients are analyzed qualitatively. However, the current statistical models of contourlets coefficients do not consider all three dependencies. Moreover, those methods cannot fit the nonstationary properties of images due to the lack of spatial adaptability. To overcome these problems, a new LCHMM framework that statistically characterizes contourlets coefficients is proposed. In the LCHMM model, the Gaussian mixture field (GMF) where each coefficient follows a local Gaussian mixture distribution determined by their neighborhoods is introduced to approximate the non-Gaussian density. Compared to the GMM, the GMF is more suitable for the non-stationary properties of images. To integrate all interscale, interdirection and interlocation dependencies of these corresponding coefficients, a context variable is associated with each coefficient. Based on the GMF, the HMM model combined by context, which called LCHMM model, may describe the complex dependencies between contourlets coefficients effectively and completely. The LCHMM model, which reveals the properties of persistence across scales, multi-directional selectivity within scales and energy clustering in the subbands of contourlets transforms to the full, provides a new theoretical idea for the MGA-domain statistical modeling. The thesis gives the mathematical description of LCHMM model in detail and develops the fusion method of three dependencies. To obtain a LCHMM from an image, typically a training procedure based on the iterative expectation maximization algorithm is utilized. The robustness of training process is achieved by providing a good initial parameter setting.
     4. A spatially adaptive BayesShrink thresholding algorithm with elliptic directional windows'estimation in the NSCT domain is proposed for image denoising.
     The anisotropic energy clusters in NSCT subbands reveal that the distribution of correlated coefficients in the neighborhood is not isotropic, but exhibits anisotropic and specific directional features. Therefore, instead of the traditional square windows, the elliptic directional windows, which match the direction of the energy clusters' distribution in each subband, are used to select the neighboring coefficients with strong dependency for signal estimation. Reasonably, based on Bayesian estiamtion, the spatially adaptive BayesShrink thresholding algorithm with elliptic directional windows' estimation in the NSCT domain is proposed for image denoising. The proposed threshold that explores the anisotropic and directional features of NSCT deeply obtains the adaptability in anisotropic neighborhood as well as in scale and direction. The thesis discusses the definition of elliptic directional windows, the signal estimation method based on elliptic directional windows and noise variance estimation in detail. Experimental results show that, compared with some current outstanding denoising algorithms based on the contourelts transforms, the proposed algorithm gains the better denoising performance in both the value of peak signal-to-noise ratio (PSNR) and the visual quality.
     5. An image denoising algorithm based on the proposed LCHMM model in the NSCT domain is developed, which is particularly used to remove the noise with high level.
     The NSCT coefficients of an image display strong dependencies not only across scales, but also across directions and space. By contrast, the NSCT transform of zero-mean white Gaussian noise is still zero-mean white Gaussian noise of the same power. Thus, the statistical correlation difference between NSCT coefficients of signal and those of noise can be used to remove noise, especially for the noise with high level. To take full use of three correlation information, the weight combination for integrating three dependencies of NSCT coefficients is studied by using mutual information as a measuring tool. Then the mapping function from the correlation information to context variable is determined for the denoising application. Based on the prior information captured by LCHMM model, the denoised image is obtained by the Bayesian estimation. The thesis presents the fusion method of correlation information, the context construction method and the denoising steps based on the LCHMM model in detail. Simulation experiments show that the proposed algorithm outperforms the denoising algorithms based on both the wavelet-domain contextual hidden Markov model and the contourlet-domain hidden Markov tree model (HMT) in terms of PSNR value and visual appearance. The proposed algorithm reduces the Gibbs artifacts obviously and preserves edges and texture information of original images effectively.
     6. A new texture image segmentation algorithm based on the contourlet-domain HMT model with a modified context scheme is proposed.
     The thesis studies the multiscale image segmentation based on Bayesian criterion, especially the image segmentation based on the wavelet-domain HMT. However, the blurry edges and singular diffusion often occur in wavelet-domain HMT segmentation results. By analyzed, the reason lies in that (1) the wavelet can not represents contours and edges efficiently; and (2) the context model mainly describe interscale dependencies and encourage the formation of large uniformly classified regions with less consideration on directional and texture characters. To solve these problems, the context scheme is modified for the contourlet-domain HMT and applied to the texture image segmentation. Firstly, the likelihoods of all dyadic squares of the image given the different texture classes are obtained during the model training of contourlet-domain HMT. According to the maximum likelihood classification, direct block-by-block comparison of the likelihoods yields the multiscale raw segmentations. Then, to capture the interscale and neighboring dependencies of class labels, the new contextual design is proposed by voting the correlated class labels. Using the contextual prior, the interscale fusions of multiscale raw segmentations proceed in a multiscale, coarse-to-fine manner and achieve the final pixel-level segmentation. Since the proposed contextual scheme strengthens the boundary dependency, it can improve the accuracy of segmentation around boundaries, as well as provides the reliable outline segmentations. The thesis discusses the context construction and gives the detail segmentation steps. Experiments show that the proposed algorithm outperforms the wavelet-domain HMT segmentation and produces an accurate segmentation of texture images,by improving misclassification and boundary localization.
引文
[1]冈萨雷斯.数字图像处理(第二版)[M].北京:电子工业出版社,2003.
    [2]罗四维等.视觉感知系统信息处理理论[M].北京:电子工业出版社,2006.
    [3]B. A. Olshausen, D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J]. Nature,1996, 381(6583):607-609.
    [4]M. N. Do. Directional multiresolution image representation [D]. Zurich:Swiss Federal Institute of Technology,2001.
    [5]M. N. Do, M. Vetterli. The contourlet transform:an efficient directional multiresolution image representation [J]. IEEE Trans.on Image Processing, 2005,14(12):2091-2106.
    [6]彭玉华.小波变换与工程应用[M].北京:科学出版社,1999.
    [7]焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,33(12A):1975-1981.
    [8]E. J. Candes. Ridgelets:theory and applications [D]. Stanford:Stanford University,1998.
    [9]E. J.Candes, D. L. Donoho. Curvelets-A surprisingly effective nonadaptive representation for objects with edges [A]. In Proceedings of Curves and Surfaces IV [C], Saint-Malo:Vanderbilt University Press,1999,105-121.
    [10]D. L. Donoho. Wedgelets:Nearly minmax estimation of edges [R]. Stanford University, Technical report,1997.
    [11]E. L. Pennec, S. Mallat. Sparse geometric image representation with bandelets [J]. IEEE Trans.on Image Processing,2005,14(4):423-438.
    [12]E. J. Candes. Harmonic analysis of neural networks [J]. Applied and Computational Harmonic Analysis,1999,6(2):197-218.
    [13]D. L. Donoho. Orthonormal ridgelets and linear singularities [R]. Stanford University, Technical report,1998.
    [14]E. J. Candes. Monoscale ridgelets for the representations of images with edges [R]. Stanford University, Technical report,1999.
    [15]E. J. Candes, F. Guo. New multiscale transforms, minimum variation synthesis: applications to edge-preserving image reconstruction [J]. Signal Processing, 2002,82(11):1519-1543.
    [16]E. J. Candes, D. L. Donoho. New tight frames of curvelets and optimal representations of objects with C2 singularities [J]. Communications on Pure and Applied Mathematic,2004,57(2):219-266.
    [17]E. J. Candes, L. Demanet, D. L. Donoho. Fast discrete curvelet transform [J]. SIAM Multiscale Model Simulation,2006,5(3):861-899.
    [18]E. L. Pennec, S. Mallat. Sparse geometric image representation with bandelets [J]. IEEE Trans. on Image Processing,2005,14(4):423-438.
    [19]P. J. Burt, E. H. Adelson.The laplacian pyramid as a compact image code [J]. IEEE Trans.on Communication,1983,31(4):532-540.
    [20]R. H. Bamberger, M. J. T. Smith. A filter bank for the directional decomposition of images:Theory and design [J]. IEEE Trans. on Signal Processing,1992,40(4):882-893.
    [21]A. L. Cunha, J. Zhou, M. N. Do. The nonsubsampled contourlet transform: Theory, design, and applications [J]. IEEE Trans. on Image Processing,2006, 15(10):3089-3101.
    [22]T.H. Lei, J. K. Udupa. Performance evaluation of finite normal mixture model-based image segmentation techniques [J]. IEEE Trans. on Image Processing,2003,12(10):1153-1169.
    [23]D. Donoho, I. Johnstone, Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika,1994,81:425-455.
    [24]R. Eslami, H. Radha. The Contourlet transform for image denoising using cycle-spinning [A]. In Proceedings of Asilomar Conference on Signals, Systems and Computers [C], Pacific Grove, USA,2003,1982-1986.
    [25]D. D. Y. Po, M. N. Do. Directional multiscale modeling of images using the contourlet transform [J]. IEEE Trans.on Image Processing,2006,15(6): 1610-1620.
    [26]E. Ramin, R. Hayder. Image denoising using translation-invariant Contourlet transform [A]. In Proceedings of International Conference on Acoustics, Speech and Signal Processing [C], Philadelphia, PA,2005,557-560.
    [27]Y. Lu, M. N. Do. A new contourlet transform with sharp frequency localization [A]. In Proceedings of IEEE International Conference on image processing [C], USA:Atlanta,2006,1629-1632.
    [28]戴维,于盛林,孙栓.基于Contourlet变换自适应阐值的图像去噪算法[J].电 子学报,2007,35(10):1939-1943.
    [29]贾建,焦李成.利用方向特性实现非下采样Contourlet变换阈值去噪[J].西安电子科技大学学报(自然科学版),2009,36(2):270-273.
    [30]曲怀敬.Contourlet变换在纹理图像检索和医学图像分割中的应用研究[D].山东大学,2009.
    [31]郭旭静,王祖林.基于尺度间相关的非下采样Contourlet图像降噪算法[J].光电子·激光,2007,18(9):1116-1119.
    [32]贾建,焦李成,项海林.基于双变量阈值的非下采样Contourlet变换图像去噪[J].电子与信息学报,2009,31(3):532-536.
    [33]梁栋,沈敏,高清维等.一种基于Contourlet递归CycleSpiuning的图像去噪方法[J].电子学报,2005,33(11):2044-2046.
    [34]边策,钟桦,焦李成.基于非下采样Contourlet变换和双变量模型的图像去噪[J].电子与信息学报,2009,31(3):561-565.
    [35]武晓玥,郭宝龙,李雷达.一种新的基于非下采样Contourlet变换的图像去噪方法.光电子·激光[J],2009,20(5):657-661.
    [36]冯鹏,魏彪,潘英俊等.基于拉普拉斯塔型变换的Contourlet变换频谱混叠特性分析[J].光学学报,2008,28(11):2090-2096.
    [37]冯鹏,魏彪,潘英俊等.基于方向滤波器组的Contourlet变换频谱混叠特性研究[J].光电子·激光,2008,19(12):1670-1674.
    [38]冯鹏.高分辨图像处理用抗混叠Contourlet变换的若干关键问题研究[D].重庆大学,2007.
    [39]E. P. Simoncelli. Modeling the joint statistics of images in the wavelet domain [A]. In Proceedings of SPIE [C], Denver,1999,3813:188-195.
    [40]章毓晋.图像分割[M].北京:科学出版社,2001.
    [41]B. S. Raghavendra, P. S. Bhat. Contourlet based multiresolution texture segmentation using contextual hidden Markov models [A]. In Proceedings of International Conference on Information Technology [C]. Hyderabad, India: Springer,2004,336-343.
    [42]H. Choi, R. G. Baraniuk. Multiscale image segmentation using wavelet-domain hidden Markov models [J]. IEEE Trans, on Image Processing,2001,10(9): 1309-1321.
    [43]Y. Q. Li, M. Y. He. Texture-based segmentation of high resolution SAR images using contourlet transform and mean shift [A]. In Proceeding of IEEE International Conference on Information Acquisition [C],2006,201-206.
    [44]W. L. Huang, L. C. Jiao. Artificial immune kernel clustering network for unsupervised image segmentation [J]. Progress in Natural Science,2008, 18(4):455-461.
    [45]沙宇恒,丛琳,孙强等.基于Contourlet:域HMT模型的多尺度图像分割[J].红外与毫米波学报,2005,24(12):472-476.
    [46]Z. H. He, M. BystromM. Color texture retrieval through contourlet-based hidden markov model [A]. In Proceedings of International Conference on Image processing [C], Italy:Genova,2005,1:513-516.
    [47]久文.方向性多分辨率图像分析研究:理论和应用[D].兰州大学,2009.
    [48]李海峰,宋巍巍,王树勋.基于Contourlet变换的稳健性图像水印算法[J],通信学报,2006,27(4):87-94.
    [49]N. Baaziz. Adaptive watermarking schemes based on a redundant contourlet transform [A]. In Proceedings of IEEE International Conference on Image Processing [C], USA:IEEE Computer Society,2005,1:221-224.
    [50]余好好.Contourle变换在图像分析处理中的应用研究[D].上海交通大学,2007.
    [51]李杰.图像的方向多尺度分析及其应用研究[D].电子科技大学,2007.
    [52]杨鏐,郭宝龙,倪伟.基于区域特性的Contourlet域多聚焦图像融合算法[J].西安交通大学学报,2007,41(4):448-452.
    [53]倪伟,郭宝龙,杨鏐.基于Contourlet区域对比度的遥感图像融合算法[J].宇航学报,2007,28(2):364-369.
    [54]R. Eslami, H. Radha. On low bit-ratecoding using the contourlet transform [A]. In Proceedings of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers [C],2003,2:1524-1528.
    [55]R. Eslami, H. Radha. Wavelet-based contourlet transform and its application to image coding [A]. In Proceedings of the 2004 International Conference on Image Processing [C],2004,5:3189-3192.
    [56]倪伟.基于多尺度几何分析的图像处理技术研究[D].西安电子科技大学,2007.
    [57]S. Mallat. Multiresolution approximation and wavelet orthonormal bases of L2(R) [J]. Trans. American Mathematical Society.1989,315:69-87.
    [58]M. N. Do, M. Vetterli. Framing Pyramids [J]. IEEE Trans.on Signal Proeessing,2003,51(9):2329-2342.
    [59]R.E.克劳切,LR.拉宾纳著,邓广增译.多抽样率数字信号处理[M].北 京:人民邮电出版社,1988.
    [60]M. Vetterli. Multidimensional subband coding:Some theory and algorithms [J]. Signal Processing,1984,6(2):97-112.
    [61]C. H. Park, J. J. Lee, M. J. T. Smith. Directional filter bank-based fingerprint feature extraction and matching [J]. IEEE Trans.on Circuits and Systems for Video Technology,2004,14(1):74-85.
    [62]J. G. Rosiles, M. J. T. Smith. Texture classification with a biorthogonal directional filter bank [A]. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing [C], Salt Lake, USA,2001, 3:1549-1552.
    [63]M. N. Do, M. Vetterli. Pyramidal direetional filter banks and curvelets [A]. In Proceedings of International Conference on Image Proeessing [C], Greece: Thessalonik,2001,3:158-161.
    [64]刘盛鹏.基于Contourlet变换的图像稀疏分量分析[D].上海大学,2007.
    [65]S. Mallat. A wavelet tour of signal processing [M]. New York, NY:Academic Press,1999.
    [66]R. R. Coifman, Y. Meyer, M. V. Wickerhauser. Wavelets and Their Applications [M]. Boston, MA:Jones and Barlett,1992,153-178.
    [67]M. N. Do, M. Vetterli. Contourlets [A]. In Beyond Wavelets [M]. New York, NY:Academic Press,2003.
    [68]R. R. Coifman, D. L. Donoho. Translation invariant de-noising [A]. In Wavelets and Statistics, Springer Lecture Notes in Statistics 103 [C]. New York:Springer-Verlag,1995,125-150.
    [69]M. J. Shensa. The discrete wavelet transform:Wedding the atrous and Malla algorithms [J]. IEEE Trans, on Signal Processing,1992,40(10):2464-2482.
    [70]A. L. Cunha, J. Zhou, M. N. Do. Nonsubsampled contourlet transform:Filter design and application in denoising [A]. In Proceedings of IEEE Internation Conference on Image Processing [C], Genoa, Italy,2005,749-752.
    [71]J. Zhou, A. L. Cunha, M. N. Do. Nonsubsampled contourlet transform: Construction and application in enhancement [A]. In Proceedings of IEEE Internation Conference on Image Processing [C], Genoa, Italy,2005,469-472.
    [72]J. H. McClellan. The design of two-dimensional digital filters by transformation [A]. In Proceedings of 7th Annual Conf. Information Sciences and Systems[C],1973.
    [73]Z. Cvetkovic, M. Vetterli. Oversampled filter banks [J]. IEEE Trans.on Signal Processing,1998.46(5):1245-1255.
    [74]S. M. Phoong, C. W. Kim. A new class of two-channel biorthogonal filter banks and wavelet bases [J]. IEEE Trans. on Signal Processing.1995,43(3), 649-661.
    [75]张强.基于多尺度几何分析的多传感器图像融合研究[D].西安电子科技大学,2008.
    [76]T. Cooklev, T. Yosbida, A. Nishihara. Maximally flat half-band diamond-shaped FIR filters using Bernstein polynomial [J]. IEEE Trans. on Circuits SystemⅡ,1993,40(11):749-751.
    [77]王文,芮国胜,王晓东等.图像多尺度统计模型综述[J].中国图象图形学报,2007,12(6):961-969.
    [78]练秋生.基于视觉特性的多方向小波构造及其应用研究[D].燕山大学,2006.
    [79]S. G. Mallat. A theory for multiresolution signal decomposition:the wavelet representation [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1989,11(7):674-693.
    [80]M. Hansen, Y. Bin. Wavelet thresholding via MDL for Natural Images [J]. IEEE Trans.on Information Theory,2000,46(5):1778-1788.
    [81]Z. Long, N. H. Younan. Contourlet image modeling with contextual hidden Markov models [A]. In Proceedings of the 2006 IEEE Southwest Symposium on Image Analysis and Interpretation [C],2006,173-177.
    [82]K. Sharifi, A. Leon-Garcla. Estimation of shape parameter for generalized Gaussian distributions in subband decompositions of video [J].IEEE Trans, on Circuits and Systems for Video Technology,1995,5(1):52-56.
    [83]H. Chipman, E. Kolaczyk, R. McCulloch. Adaptive Bayesian wavelet shrinkage [J]. Journal of the American Statistical Association,1997,440(92): 1413-1421.
    [84]J. Liu, P. Mouli. Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients [J]. IEEE Trans.on Image Processing,2001,10(11):1647-1658.
    [85]田勇.多分辨率隐马尔可夫模型图像去噪研究[D].兰州大学,2009.
    [86]M. S. Crouse, R. D. Nowak, R. G. Baraniuk. Wavelet-based statistical signal processing using hidden Markov models [J]. IEEE Trans.on Signal Processing, 1998,46(4):88-902.
    [87]A. P. Dempster, N. M. Laird, D, B. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm [J]. Journal of the Royal Statistical Society, Series B (Methodological),1977,39(1):1-38.
    [88]张骥祥.小波变换和马尔可夫随机场在图像处理中的应用研究[D].天津大学,2007.
    [89]B. Everitt. Finite Mixture Distribution [M], London, U.K.:Chapman and Hall, 1981.
    [90]X. H. Shen, Y. L. Zhang, G. S. Wang. Local multi-contextual hidden markov model in the nonsubsampled contourlet domain for image denoising [J]. ICIC Express Letters, Part B:Applications,2011,2(1):137-142.
    [91]G. Fan, X. G. Xia. Image denoising using a local contextual hidden Markov model in the wavelet domain [J]. IEEE Signal Processing Letters,2001,8(5): 125-128.
    [92]M. S. Crouse, R. G. Baraniuk. Contextual hidden Markov models for wavelet-domain signal processing [A]. In Proceedings of 31st Asilomar Conf. Signals, Systems and Computers [C], Pacific Grove, CA,1997,1,95-100.
    [93]B. W. Silverman. Density Estimation for Statistics and Data Analysis [M]. London, U.K.:Chapman & Hall,1986.
    [94]郭旭静.方向性数字图像表示及去噪算法研究[D].天津大学,2005.
    [95]D. L. Donoho. De-noising by soft-thresholding [J]. IEEE Trans.on Information Theory,1995,41(3):613-627.
    [96]S. G. Chang, B. Yu, M. Vetterli. Adaptive wavelet thresholding for image denoising and compression [J]. IEEE Trans. on Image Processing,2000,9(9): 1532-1546.
    [97]刘盛鹏,方勇.基于贝叶斯估计的Contourlet域图像降噪方法[J].计算机工程,2007,33(18):31-33.
    [98]X. H. Shen, Y. L. Zhang, C. M. Zhang. Spatially adaptive BayesShrink thresholding with elliptic directional windows in the nonsubsampled contourlet domain for image denoising [J]. ICIC Express Letters,2010,4(5B):1913-1918.
    [99]P. L. Shui. Image denoising algorithm via doubly local wiener filtering with directional windows in wavelet domain [J]. IEEE Signal Process Letters,2005, 12(10):681-684.
    [100]Z. F. Zhou, P. L. Shui. Contourlet-based image denoising algorithm using directional windows [J]. Electronics Letters,2007,43(2):92-93.
    [101]D. L. Donoho, I. M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage [J]. Journal of the American Statistical Association,1995.90(432): 1200-1224.
    [102]http://decsai.ugr.es/~javier/denoise/test_images/.
    [103]Contourlet Toolbox, Matlab code available at http://www.ifp.uiuc.edu/-minhdo/software/.
    [104]J. K. Romberg. H. Choi, R. Baraniuk. Bayesian tree-structured image modeling using wavelet-domain hidden Markov model [A]. In Proceedings of SPIE [C], 1999,3816,31-44.
    [105]J. Beirlant, E. J. Dudewicz, etc.. Nonparametric entropy estimation:An overview [J], International Journal of Mathematical and Statistical Sciences, 1997,6(1):17-39.
    [106]R. Moddemeijer. On estimation of entropy and mutual information of continuous distributions [J]. Signal Processing,1989,16(3):233-246.
    [107]R. Haralick, L. Shapiro. Image segmentation techniques [J]. Computer vision, Graphics and Image Processing.1985,29:100-132.
    [108]王鹏伟.基于多尺度理论的图像分割方法研究[D].中国科学技术大学,2007.
    [109]M. Sonka, V. Hlavac, R. Boyle. Image Proeessing, Analysis and Machine Vision [M]. Beijing:Posts and Telecom Press,2003.
    [110]P. K. Sahoo, et al. A Survey of Thresholding Techniques [J]. Computer Vision, Graphics and Image Processing,1988,41:233-260.
    [111]J. N. Kapur, P. K. Sahoo, A. K. C. Wong. A new method for graylevel picture thresholding using the entropy of the histogram [J]. Computer Vision, Graphics and Image Processing,1985,29:273-285.
    [112]A. S. Abutaleb. Automatic thresholding of gray-level pictures using two-dimensional entropies [J]. Computer Vision, Graphics and Image Processing,1989,47:22-32.
    [113]G. Chen, H. F. Zuo.2-D maximum entropy method of image segmentation based on genetic algorithm [J]. Joural of Computer-aided Design & Computer graphics,2002,14:530-533.
    [114]Z. H. Cao, Y. Z. Li, K. Zhang. Two Dimensional Maximum Entropy Segmentation Based on Ant Colony Optimization [J]. Acta Photonica Sinica, 2007,12:2377-2380.
    [115]X. H. Shen, Y. L. Zhang. F. Z. Li. An improved two-dimensional entropic thresholding method based on ant colony genetic algorithm [A]. In Proceedings of the 2009 WRI Global Congress on Intelligent Systems [C],2009,1:163-167.
    [116]X. H. Shen, Y. L. Zhang, F. Z. Li. A hybrid method of GA and ACO for 2-D entropic automatic thresholding of digital images [A]. In Proceedings of 2009 International Workshop on Intelligent Systems and Applications [C],2009.
    [117]颖明,朱枫.2维otsu自适应阈值的快速算法[J].中国图象图形学报,2005,10(4):484-488.
    [118]N. Pamarkos, C. P. Stroutho, L. Andreadis. Multi-thresholding of color and gray-level images through a neural network technique [J]. IEEE Trans. on Image and Vision Computing,2000,18:213-222.
    [119]Palsk, R. A. King, A. A. Hashim. Automatic graylevel thresholding through index of fuzziness and entropy [J]. IEEE Trans. on Pattern Recognition Letters, 1983,1:141-146.
    [120]金立左,夏良正,杨世周.图像分割的自适应模糊阈值法[J].中国图象图形学报,2000,5(5):390-395.
    [121]D. C. Marr, E. C. Hildreth. Theory of edge detection [A]. In Proceedings of the Royal Society of London [C],1980,207(B):187-217.
    [122]R. G. Aamink, et al. Edge detection in prostatic ultrasound images using integrated edge maps [J]. IEEE Trans. on Ultrasonics,1998,36:635-642.
    [123]I. GuPta, T. A. Sortrakul. Gaussian-mixture-based image segmentation algorithm[J]. IEEE Trans. on Pattern Recognition,1998,31(3):315-326.
    [124]C. L. Yung, P. T. Yu, P. H. Yi, et al. Comparision between immersion based and toboggan based watershed image segmentation [J]. IEEE Trans. on image Processing,2006,15(3):632-639.
    [125]A. B. Simon, Image segmentation using Markov random field models [D]. University of Cambridge,1998.
    [126]冯衍秋,陈武凡,梁斌等.基于Gibbs随机场与模糊C均值聚类的图像分割新算法[J].电子学报,2004,32(4):645-647.
    [127]尤建洁,周则明,王平安等.基于模拟退火的简化Snake弱边界医学图像分割[J].中国图象图形学报,2004,9(1):11-17.
    [128]R. P. Grzeszczuk, D. N. Levin. Brownian strings:segmenting images with stochastically deformable contours [J]. IEEE Trans.on PAMI,1997,19(10): 1100-1113.
    [129]H. T. Luo, Y. J. Zhang. Evaluation based segmentation algorithm optimization: idea and system [J]. Journal of Electronics,1999,16(2):109-116.
    [130]李旭超.小波变换和马尔可夫随机场在图像降噪与分割中的应用研究[D].浙江大学,2006.
    [131]刘慧.医学图像处理中的分割与检索关键技术研究[D].山东大学,2008
    [132]H. Choi, R. G. Baraniuk. Multiscale image segmentation using wavelet-domain hidden Markov models [J], IEEE Trans.on Image Processing,2001,10(9): 1309-1321.
    [133]P. E. Le, S. Mallat. Image compression with geometrical wavelets [A]. In Proceedings of IEEE International Conference on Image Processing [A]. Vancouver, Canada:IEEE Society Press,2000.661-664.
    [134]Z. Long. Statistical image modeling in the contourlet domain with application to texture segmentation [D]. MS State University, Starkville, MS,2007.
    [135]侯彪,刘凤,焦李成,包慧东.基于小波域隐马尔科夫树模型的图像分割[J].红外与毫米波学报,2009,28(2):156-160.
    [136]C. A.Bouman, M. Shapiro. A multiscale random field model for Bayesian image segmentation [J]. IEEE Trans.on Image Processing,1994,3(2): 162-177.
    [137]G. L. Fan, X. M. Song. A study of contextual modeling and texture characterization for multiscale Bayesian segmentation [A]. In Proceedings of IEEE International Conference on Image Processing [C],2002,3: Ⅲ/309-Ⅲ/312.
    [138]G. L. Fan, X. G. Xia. On context-based Bayesian image segmentation:Joint multi-context and multiscale approach and wavelet-domain hidden Markov models [A]. In Proceedings of Conference Record of the Asilomar Conference on Signals, Systems and Computers [C],2001,2:1146-1150.
    [139]汪西莉,焦李成.融合上下文信息的多尺度贝叶斯图像分割[J].计算机学报,2005,28(3):386-391.
    [140]X. H. Shen, C. M. Zhang, Y.L. Zhang. Texture image segmentation based on Contourlet-domain contextual hidden Markov tree model [J]. ICIC Express Letters, Part B:Applications, accepted.