基于基因诊断的遗传性耳聋预防与干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耳聋基因诊断的诞生对耳聋的诊断及预防产生了重大影响及革命性进步。以全国性聋病分子流行病学研究数据作为理论基础,即中国相当一部分综合征性和非综合征性耳聋仅由为数不多的几个基因突变(GJB2,SLC26A4,线粒体C1494T和A1555G)所致,耳聋基因诊断在我国实现了“基础→临床”的顺利转化,新的耳聋整体预防思路和方法逐步形成与建立。本课题通过规模化多层次的遗传性耳聋预防与干预研究,包括:对聋人群体婚配前的基因检测与遗传指导;对聋人夫妇的生育前基因检测与后代听力情况的预测;对分子病因和后代患病风险明确的家庭生育/再生育前的基因检测和产前诊断;以及对孕期女性的耳聋基因普遍性筛查预防耳聋出生缺陷;为建立我国遗传性耳聋预防与干预策略提供理论基础和依据,并进一步推动耳聋基因诊断、遗传咨询和耳聋产前诊断工作的广泛开展,从而实现减少耳聋出生缺陷,提高人口素质的目标。
     第一部分耳聋遗传高风险人群的遗传性耳聋预防与干预研究第一节青年聋人的遗传咨询与婚配指导
     在我们对青年聋人的调查中,有40%的聋人表示希望配偶同为耳聋者,处于婚恋年龄的青年聋人是潜在的巨大的同证婚配群体。由于同证婚配会导致同基因型耳聋者婚配机率增加,如果没有干预,同基因型耳聋患者间的婚配持续发展会导致遗传性耳聋新生儿数的增加。这种同基因型的结合可以通过对聋人婚配前进行分子病因筛查并提供后续的正确婚配指导有效避免,从而防止耳聋垂直传递。本研究中,我们为293名16-27岁的青年聋人进行了婚配前耳聋基因检测,发现39.9%的青年聋人携带常见耳聋基因突变,其中20.1%的青年聋人携带GJB2突变,12.3%青年聋人携带SLC26A4基因突变,7.5%青年聋人携带线粒体A1555G突变(其中54.5%为女性)。确诊为GJB2/SLC26A4耳聋的患者,在择偶时避免选择致聋基因相同的聋人以及携带者,可有效降低生育聋儿的风险率,同时携带线粒体A1555G突变的女性,其后代通过用药指导,可避免药物性耳聋的发生。
     第二节聋人夫妇的遗传咨询与生育指导
     虽然聋人群体中同证婚配即“聋-聋”婚配最为常见,但中国绝大部分聋人夫妇希望生育正常听力后代,因此后代听力状态是聋人夫妇最为关心的问题。本研究中,我们为100对聋人夫妇进行了生育前耳聋基因检测并对后代耳聋风险进行了预测,结果发现58对夫妇(58%)至少一方为遗传性耳聋患者,总共34对夫妇(34%)耳聋存在基因型冲突,其中22对夫妇(22%)为相同耳聋基因突变致聋,后代耳聋风险为100%,8对夫妇(8%)后代耳聋风险为50%,1对夫妇(1%)后代耳聋风险为25%,3对夫妇(3%)的后代会携带线粒体基因突变,出生后需要严格用药指导。通过后续的遗传咨询与产前诊断,成功预防2例耳聋后代出生,指导帮助18对聋人夫妇生育正常听力后代。聋人夫妇生育前进行耳聋基因检测可有效降低聋儿出生率。
     第三节规模化遗传性耳聋家庭的产前诊断
     耳聋基因诊断配合产前诊断是保障耳聋家庭生育/再生育的关键技术,我们从2005年起开始进行耳聋产前诊断·临床应用,并建立了严谨规范的诊断流程与策略。本研究中,我们为213个通过耳聋基因诊断明确了分子病因与后代患病风险的遗传性耳聋家庭,成功实施了226例次耳聋产前诊断(11个家庭共行2次产前诊断,1个家庭共行3次产前诊断),有效预防46例聋儿出生,其余已出生的141个后代听力100%正常,将隐性遗传耳聋家庭再生育风险25%-50%降至接近于零。在准确的耳聋基因诊断基础上的产前诊断,可从根本上预防和阻断遗传性耳聋,成为实现预防耳聋出生缺陷目标的重要手段。
     第二部分孕期女性常见耳聋基因筛查和耳聋出生缺陷干预的前瞻性研究
     先期耳聋流行病学调查数据初步显示,中国人常见耳聋基因突变的携带率高达6%,依赖聋人的筛查和干预尚不足以从根本上阻断遗传性耳聋在整个人群中的传递和发病。如果年轻夫妇在婚检或生育前进行耳聋基因筛查,可避免双方均为同一耳聋突变基因携带者的夫妇生育聋儿,并可及早地发现药物性耳聋敏感个体,通过早期干预,可有效预防耳聋发生。本研究在3000名孕妇中进行了常见耳聋基因筛查,发现146人携带耳聋基因突变,其中91人携带GJB2突变,49人携带SLC26A4突变,6人携带mtDNAA1555G突变,总携带率为4.9%。进一步分析发现12个家庭的夫妇同为GJB2或SLC26A4突变携带者,生育遗传性耳聋的风险为25%,经过后续的遗传指导和产前诊断,避免了这些家庭生育耳聋后代。随后,我们在3000名孕妇生育后进行随访,没有发现耳聋后代出生。这是我们第一次通过基因诊断在正常生育人群实现耳聋出生缺陷预防,这一策略可实现遗传性耳聋的一级预防。
Genetic testing exerted a great influence and brought evolutionary progress on diagnosis and prevention for deafness. Based on the results of the national epidemiological study for deafness that a large proportion of both syndromic and nonsyndromic forms of deafness are caused by a small number of genes, genetic testing has been implemented clinically and the followed is coming up with the new idea of prevention for deafness. This study focused on the thoroughly prevention and intervention for hereditary hearing loss, including genetic testing and counseling for deaf youth before marriage; genetic testing and prediction of offspring's hearing status for deaf couples; genetic testing and prenatal diagnosis for couples who have a deaf child; carrier screening of common deaf genes in pregnant women, in order to provide evidence and theory for the national strategy of prevention for deafness, promote the application of genetic testing in China and eventually reduce the birth rate of deaf children.
     Part I:The prevention and intervention for hereditary in population with high deaf recurrence risk
     Chapter I Genetic Counseling and Instruction for Deaf Youth Directed by Genetic Testing
     In our survey,40% deaf youth are willing to have a deaf spouse and that means the deaf youth is the potential population with "deaf-deaf" marriage mode.This marriage mode will increase the possibility of marriage between the deaf youth caused by same deaf genes,and the deaf couples caused by same deaf genes will increase the number of newborn babies if without the intervention. To decrease the risk of having the deaf offspring,the deaf youth caused by GJB2 or SLC26A4 mutations need to avoid the deaf spouses or carriers caused by same deaf genes, and this can be realized by means of genetic testing before marriage.In this study,293 deaf youth,age 16-27,received the genetic testing. The carrier rate of GJB2, SLC26A4 and mtDNA A1555G mutation were 20.1%,12.3% and 7.5% retrospectively, and 54.5% mtDNAA1555G mutation carriers were female. Then the genetic information and instruction before marriage were offered to them based on results.
     ChapterⅡGenetic Counseling and Instruction for Deaf Couples Directed by Genetic Testing
     The marriage mode of 'deaf—deaf' is very common in deaf population. Most of deaf couples are eager to receive effective genetic counseling to avoid having a deaf offspring. By means of genetic testing, we analyzed the molecular pathogenesis of 100 deaf couples (200 individuals altogether).118 individuals (58%) were confirmed to be hereditary deafness caused by GJB2, SLC26A4 or mtDNA mutation. There were high deaf recurrence risk in 34 deaf couples.22 of them confronted recurrence risk as high as 100%, as each couple were caused by same deaf genes(GJB2 or SLC26A4).8 of them were with 50% recurrence risk. The offspring in 3 couples with deaf wives caused by mtDNAA1555G mutation would be the same mutation carriers and the the instruction for them was to strictly avoid the administration of aminoglycoside antibiotics. The following visit showed that 2 deaf offspring were avoided and 18 deaf couples gave the birth to normal hearing babies.
     ChapterⅢ. Prenatal Diagnosis for hereditary deaf families assisted by genetic testing
     To be assisted by genetic testing, prenatal diagnosis was carried out in 213 hereditary deaf families.The recurrent risk was 25% in 209 families, including 204 families with one deaf child and 5 families without children, which all couples were GJB2 or SLC26A4 mutation carriers and deaf children were caused by homozygous or compound GJB2/SLC26A4 mutations; The recurrent risk was 50% in 3 families, which one family was of the father and his child with compound SLC26A4 mutations and the mother with heterozygous SLC26A4 mutation, one family was of the wife with POU3F4 c.647G>A heterozygous mutation and the rest one family was of the husband with compound SLC26A4 mutations and the wife with mtDNA A1555G mutation and heterozygous SLC26A4 mutation simultaneously; The recurrent risk was 100% in one family of the deaf couple both caused by GJB2 mutations, and the deaf wife got pregnant by means of artificial insemination with the sperm from the local Human Sperm Bank.226 times of prenatal testing were applied in all 213 families.46 times of prenatal testing showed that the fetuses carried parental mutations simultaneously or the same mutations with probands, and the parents decided to terminate pregnancy; while 180 times of prenatal testing showed that the fetuses carried only one parental mutation or did not carry any mutation from parents, and the following visit showed that 141 families had given birth to babies who were all revealed to have normal hearing by new born hearing screening. Prenatal diagnosis assisted by genetic testing can provide scientific information about offspring's hearing condition, and the normative workflow and precise strategy highly guarantee the safe and favorable implementation of prenatal diagnosis.
     PartⅡ:The Genetic Screening of Common Deaf genes in Pregnant Women and Intervention for deaf birth defect
     Since the carrier rate of common deaf genes in China is as high as 6%, only depending on the prevention and intervention of hereditary deafness in deaf population is not enough to stop the transmitting of deafness in whole population.Genetic screening for young couples can find out the couples who are the same deaf genes' carriers and then avoid to have deaf offspring.In addition, mtDNA mutation carriers who are sensitive to aminoglycoside antibiotics and individuals with late on-set hereditary deafness can be found in time by means of genetic screening of deaf genes in pregnant women and newborn babies. Early intervention and rehabilitation can prevent them from being deaf. In this study, we carried out genetic screening of common deaf genes in 3000 pregnant women.146 women (4.9%) were confirm to carry common deaf gene's mutations.91 women(3.03%) were GJB2 carriers,49(1.63%) were SLC26A4 carriers and 6(0.2%) were mtDNA A1555G carriers. The further analysis showed that 12 couples were the same deaf genes(GJB2/S1C26A4) carriers, which means their offsprings would confront 25% deaf risk. The following genetic instruction and prenatal diagnosis assisted them to avoid deaf offsprings. We also finished the following visit in 3000 women and there was no deaf offspring reported. This is the first time to accomplish the primary prevention for deafness in normal hearing population.
引文
1. Marazita ML, Ploughman L, Rawlings B, et al. Genetic epidemiological studies of early-onset deafness in the U.S. school-age population. Am J Med Genet. 1993,46:486-491.
    2. Kalatzis V, Petit C. The fundamental and medical impacts of recent progress in research on hereditary hearing loss. Hum Mol Genet.1998,7(10):1589-1597.
    3. Morton CC. Genetics, genomics and gene discovery in the auditory system. Hum Mol Genet.2002,11 (10):1229-1240.
    4. Posukh O, Pallares-Ruiz N, Tadinova V, et al. First molecular screening of deafness in the Altai Republic population. BMC Med Genet.2005,6:12-18.
    5. GeneReviews. http://www.genetests.org/servlet/~filename=/profiles/deafness-overview/ index.html
    6. Morton CC.Genetics,genomics and gene discovery in the auditory system.Hum Mol Genet,2002,11(10):1299-1240
    7. Smith RJ. Clinical application of genetic testing for deafness. Am J Med Genet,2004,130A:8-12.
    8. Smith RJ, Robin NH. Genetic testing for deafness—GJB2 and SLC26A4 as causes of deafness. J Commun Disord,2002,35:367-377.
    9. Kelley PM, Harris DJ, Comer BC, et al. Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet,1998,62:792-799.
    10. Zelante L, Gasparini P, Estivill X, et al. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans.Hum Mol Genet,1997,6:1605-1609.
    11.袁慧军,姜泗长,杨伟炎,等.氨基糖甙类抗生素致聋家系线粒体DNA1555G点突变分析.中华耳鼻咽喉科杂志,1998,33:67-70.
    12.郑文波,罗建红,郦云,等.中国人语前非综合征性耳聋患者GJB2基因的突变分析.中华儿科杂志,2000,38:610-613.
    13. Park HJ, Shaukat S, Liu XZ, et al. Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians:global implications for the epidemiology of deafness. J Med Genet,2003,40:242-248.
    14.张素珍,赵承君,于黎明.儿童感音神经性聋77例分析.临床耳鼻咽喉科杂志,1997,11:252—254
    15.戴朴,朱秀辉,袁永一,等Pendred综合征基因热点突变筛查赤峰市聋校大前庭水管综合征患者.中华耳鼻咽喉头颈外科杂志,2006;41:497—500.
    16.戴朴,韩东一,冯勃,等.大前庭水管的基因诊断和SLC26A4基因突变分析.中国耳鼻咽喉头颈外科,2006,13:303-307
    17.刘新,戴朴,黄德亮,等.线粒体DNA A1555G突变大规模筛查及其预防意义探讨.中华医学杂志,2006,86:1318-1322
    18、戴朴,韩冰,袁永一,等.基于基因诊断的耳聋遗传咨询、指导作用的初步观察.中华医学杂志,2007,87:1088-1092
    1、韩冰,戴朴,李琦等.青年聋人对基因检测的态度.中华耳科学杂志.2007,5(4):384-387.
    2、于飞.非综合征型耳聋患者GJB2基因突变筛查和全频谱突变图谱绘制.军医进修学院博士论文,2006.5
    3、Morton, N.E., Genetic epidemiology of hearing impairment. Ann N Y Acad Sci, 1991.630:p.16-31.
    4、Smith RJH, Robin NH. Genetic testing for deafness—GJB2 and SLC26A4 as causes of deafness. J Communication Disorders,2002,35:367-377
    5、Kelley PM, Harris DJ, Comer BC, et al. Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet,1998,62:792-799
    6、Zelante L, Gasparini P, Estivill X, et al. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet,1997,6:1605-1609
    7、袁慧军,姜泗长,杨伟炎,等.氨基糖甙类抗生素致聋家系线粒体DNA1555G点突变分析.中华耳鼻咽喉科杂志,1998,33:67-70
    8、郑文波,罗建红,郦云,等.中国人语前非综合征性耳聋患者GJB2基因的突变分析.中华儿科杂志,2000,38:610-613
    9、Park HJ, Shaukat S, Liu XZ, et al. Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians:global implications for the epidemiology of deafness. J Med Genet,2003,40:242-248
    10. Walter E Nance, Xue-Zhong Liu, Arti Pandya,Relation between choice of parter and high frequency of connexin-26 deafness, Lancet. Vol 256. August 5,2000
    11.戴朴,于飞,康东洋,等.线粒体DNA1555位点和GJB2基因及SLC26A4基因的诊断方法及临床应用.中华耳鼻咽喉头颈外科杂志,2005,40(10):769-773.
    12.戴朴、杨伟炎,韩东一,等Prev-DAF试剂盒分析线粒体基因1555A-G突变.中华耳科学杂志,2004,2:37-41
    13.韩冰,戴朴,王国建等.相同表型不同基因型耳聋夫妇家庭的遗传咨询与指导.中华耳鼻咽喉头颈外科杂志.2007,42(7):499-503
    1、Corlin RJ, Toriello HV, Cohen MM. Hereditary hearing loss and its syndrome.New York:Oxford University Press,1995.
    2、Smith RJ. Clinical application of genetic testing for deafness. Am J Med Genet,2004,130A:8-12.
    3、Smith RJ, Robin NH. Genetic testing for deafness—GJB2 and SLC26A4 as causes of deafness. J Commun Disord,2002,35:367-377.
    4、Kelley PM, Harris DJ, Comer BC, et al. Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet,1998,62:792-799.
    5、Zelante L, Gasparini P, Estivill X, et al. Connexin26 mutations associated with the most common form of non- syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet,1997,6:1605-1609.
    6、袁慧军,姜泗长,杨伟炎,等.氨基糖甙类抗生素致聋家系线粒体DNA1555G点突变分析.中华耳鼻咽喉科杂志,1998,33:67-70.
    7、郑文波,罗建红,郦云,等.中国人语前非综合征性耳聋患者GJB2基因的突变分析.中华儿科杂志,2000,38:610-613.
    8、Park HJ, Shaukat S, Liu XZ, et al. Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians:global implications for the epidemiology of deafness. J Med Genet,2003,40:242-248.
    9、戴朴,于飞,康东洋,等.线粒体DNA1555位点和GJB2基因及SLC26A4基因的 诊断方法及临床应用.中华耳鼻咽喉头颈外科杂志,2005,40:769-773.
    10、戴朴,杨伟炎,韩东一,等Prev-DAF试剂盒分析线粒体基因1555A-G突变.中华耳科学杂志,2004,2:37-41.
    11、Karl R. White. Early hearing detection and intervention programs: opportunities for genetic services. Am J Med Genet,2004,130A:29-36.
    12、于飞.非综合征型耳聋患者GJB2基因突变筛查和全频谱突变图谱绘制.军医进修学院博士论文,2006.5.
    13、Van Camp G, Smith R. The hereditary hearing loss homepage [EB/OL] [2006—02—16]. http://webhost.ua.ac.be/hhh/
    14、戴朴,韩东一,冯勃,等.大前庭水管的基因诊断和SLC26A4基因突变分析.中国耳鼻咽喉头颈外科,2006,13:303-307.
    15、戴朴,朱秀辉,袁永一,等.Pendred综合征基因热点突变筛查赤峰市聋哑学校大前庭水管综合征患者.中华耳鼻咽喉头颈外科杂志,2006,41:497-500.
    16、刘新,戴朴,黄德亮,等.线粒体DNA A1555G突变大规模筛查及其预防意义探讨.中华医学杂志,2006,86:1318-1322.
    17、Nance WE, Liu XZ, Pandya A. Relation between choice of partner and high frequency of connexin-26 deafness, Lancet,2000,356:500-501.
    1.戴朴,韩东一,袁慧军,等.基因诊断-耳科诊断领域的重大进步.中华耳科学杂志,2005,1:62-64.
    2. Corlin RJ, Toriello HV, Cohen MM. Hereditary hearing loss and its syndrome. New York, NY:Oxford University Press.1995.
    3. Karl RW. Early hearing detection and intervention programs:opportunities for genetic services. AJMG,2004,130A:29-36.
    4. Smith RJ. Clinical application of genetic testing for deafness. Am J Hum Genet, 2004,130A:8-12.
    5. Smith RJ, Robin NH. Genetic testing for deafness—GJB2 and SLC26A4 as causes of deafness. J Communication Disorders,2002,35:367-377.
    6. Kelley PM, Harris DJ,Comer BC, et al. Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet, 1998,62:792-799
    7. Zelante L, Gasparini P, Estivill X, et al. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet,1997,6:1605-1609
    8. 袁慧军,姜泗长,杨伟炎,等.氨基糖甙类抗生素致聋家系线粒体DNA1555G点突变分析.中华耳鼻咽喉科杂志,1998,33:67-70
    9.郑文波,罗建红,郦云,等.中国人语前非综合征性耳聋患者GJB2基因的突变分析.中华儿科杂志,2000,38:610-613.
    10. Park HJ, Shaukat S, Liu XZ, et al. Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians:global implications for the epidemiology of deafness. J Med Genet,2003,40:242-248
    11.于飞.非综合征型耳聋患者GJB2基因突变筛查和全频谱突变图谱绘制.军医进修学院博士论文,2006.5
    12.张素珍,赵承君,于黎明.儿童感音神经性聋77例分析.临床耳鼻咽喉科杂志,1997,11:252—254
    13.戴朴,朱秀辉,袁永一,等Pendred综合征基因热点突变筛查赤峰市聋校大前庭水管综合征患者.中华耳鼻咽喉头颈外科杂志,2006;41:497—500.
    14.戴朴,韩东一,冯勃,等.大前庭水管的基因诊断和SLC26A4基因突变分析.中国耳鼻咽喉头颈外科,2006,13:303-307
    15.刘新,戴朴,黄德亮,等.线粒体DNA A1555G突变大规模筛查及其预防意义探讨.中华医学杂志,2006,86:1318-1322;
    16. http://davinci.crg.es/deafness/index.php?seccion=mut db&db=nonsynd&nonsynd =cx26mut
    17. http://www.healthcare.uiowa.edu/labs/pendredandbor/slcMutations.htm
    18. http://www.ebi.ac.uk/clustalw/
    19.胡浩,邬玲仟,梁德生,等.学语前性耳聋疾病相关基因的产前诊断.中华妇产科杂志,2005,40:591-594
    20.贺楚峰、冯永、夏昆等,CX26基因在非综合征型耳聋中的产前诊断及早期干预,临床耳鼻咽喉科杂志,2006,13:579-5
    21. Kuo PL.Frequencied of fetal nucleated red cells in maternal blood during different stages of gestation. Fetal Diag Therap.1998,13:375-379
    22. Wachtel SS, Sammons D, Twitty G, el al. Charge flow separation quantification of maternal blood using flow cytometry. Chin J Med Genet,1998,18,455-463
    23. Kitagawa M, Sugiura K, Omi H, et al. New technique using galactose-specific lectin for isolation of fetal cells from maternal blood. Prenat Diagn.2002,22:17-21
    24. Lim TH, Tan AS, Goh VH, Relationship between gestational age and frequency of fetal trophoblasts and nucleated erythrocytes in maternal peripheral blood. Prenat Diagn,2001,21:14-21
    25. Lo YMD, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum, Lancet,1997,350:485-487
    26. Ng EKO, Tsui NBY, Lau TK, et al. mRNA of placental origin is readily detectable in maternal plasma. Proc Natl. Acad Sci USA,2003,100(8):4748-4753
    27. Ao, A, A. Handyside, et al.. Preimplantation genetic diagnosis of cystic fibrosis (delta F508). Eur J Obstet Gynecol Reprod Biol,1996,65(1):7-10.
    28. Conn, C M, JC. Harper, et al.. "Infertile couples with Robertsonian translocations: preimplantation genetic analysis of embryos reveals chaotic cleavage divisions." Hum Genet,1998,102(1):117-23.
    29. Verlinsky, Y, S. Rechitsky, et al. (1997). Preimplantation diagnosis of single gene disorders by two-step oocyte genetic analysis using first and second polar body. Biochem Mol Med,1997,62(2):182-7.
    30.邱仁宗:《生命伦理学》,1987年,上海人民出版社,116页
    31.袁永一.中国人重度-极重度耳聋分子流行病学及致病机制研究.军医进修学院博士论文,2007.
    1、戴朴,韩东一,袁慧军,等.基因诊断-耳科诊断领域的重大进步.中华耳科学杂志,2005,1:62-64.
    2、Corlin RJ, Toriello HV, Cohen MM. Hereditary hearing loss and its syndrome. New York, NY:Oxford University Press.1995.
    3、Karl RW. Early hearing detection and intervention programs:opportunities for genetic services. AJMG,2004,130A:29-36.
    4、Smith RJ. Clinical application of genetic testing for deafness. Am J Hum Genet, 2004,130A:8-12.
    5、Smith RJ, Robin NH. Genetic testing for deafness—GJB2 and SLC26A4 as causes of deafness. J Communication Disorders,2002,35:367-377.
    6、Kelley PM, Harris DJ,Comer BC, et al. Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet,1998, 62:792-799
    7、Zelante L, Gasparini P, Estivill X, et al. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet, 1997,6:1605-1609
    8、郑文波,罗建红,郦云,等.中国人语前非综合征性耳聋患者GJB2基因的突变分析.中华儿科杂志,2000,38:610-613.
    9、Park HJ, Shaukat S, Liu XZ, et al. Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians:global implications for the epidemiology of deafness. J Med Genet,2003,40:242-248
    10、于飞.非综合征型耳聋患者GJB2基因突变筛查和全频谱突变图谱绘制.军医进修学院博士论文,2006.5
    11、戴朴,朱秀辉,袁永一,等Pendred综合征基因热点突变筛查赤峰市聋校大前庭水管综合征患者.中华耳鼻咽喉头颈外科杂志,2006;41:497—500.
    12、戴朴,韩东一,冯勃,等.大前庭水管的基因诊断和SLC26A4基因突变分析.中国耳鼻咽喉头颈外科,2006,13:303-307
    13、刘新,戴朴,黄德亮,等.线粒体DNAA1555G突变大规模筛查及其预防意义探讨.中华医学杂志,2006,86:1318-1322;
    14.http://davinci.crg.es/deafness/index.php?seccion=mut db&db=nonsynd&nonsynd= cx26mut
    15.http://www.healthcare.uiowa.edu/labs/pendredandbor/slcMutations.htm
    16.http://www.ebi.ac.uk/clustalw/
    17、袁永一.中国人重度-极重度耳聋分子流行病学及致病机制研究.军医进修学院博士论文,2007.
    1、第二次残疾人抽样调查办公室.全国第二次残疾人抽样调查主要数据手册.北京:华夏出版社,2007年,第2页,第38页.
    2、Van Camp G, Willems PJ, Smith RJ. Nonsyndromic hearing impairment:Unparalleled heterogeneity. Am J Hum Genet,1997,60:758-764
    3、Hereditary Hearing Loss Homepage; http://webhost.ua.ac.be/hhh/
    4、杨伟炎.遗传性耳聋研究进展和耳聋基因诊断的临床应用总结.中华医学会第九次全国耳鼻咽喉-头颈外科学术会议论文汇编专题报告.
    5、Hilgert N,Smith RJ,Camp G.Forty-six genes causing nonsyndromic hearing impairment:which ones should be analyzed in DNA diagnostics? Mutation Res,2009,681(2/3):189-190.
    6、A. Kenneson, K. Van Naarden Braun, C. Boyle, GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss:a HuGE review, Genet. Med.4 (2002):258-274.
    7、Smith RJ. Clinical application of genetic testing for deafness. Am J Med Genet,2004,130A:8-12.
    8、郑文波,罗建红,郦云,等.中国人语前非综合征性耳聋患者GJB2基因的突变分析.中华儿科杂志,2000,38:610-613.;
    9、Pu Dai, Fei Yu, Bing Han, et al;GJB2 Mutation Spectrum in 2063 Chinese Patients with Nonsyndromic Hearing Impairment;J Transl Med;2009;7(26):1-12;
    10、P Dai, Q Li, D Huang, Y Yuan,et al. SLC26A4 c.919A>G varies among Chinese ethnic groups as a cause of hearing loss. Genet Med,2008,10:586-592.
    11、P Dai, X Liu, D Han, Y Qian,et al. Extremely low penetrance of deafness associated with the mitochondrial 12S rRNA mutation in 16 Chinese families: implication for early detection and prevention of deafness. Biochem Biophys Res Commun,2006,340(1):194-199.;
    12、刘新,戴朴,黄德亮,等.线粒体DNAA1555G突变大规模筛查及其预防意义探讨.中华医学杂志,2006,86:1318-1322
    13、王国建.耳聋基因诊断的临床实践.军医进修学院博士论文,2008.
    14、柯肖枚,路远,刘玉和,等.Cx26基因突变与国人遗传性无综合征耳聋相关性分析.中华耳鼻咽喉科杂志.2001,36(3):163-165.
    15、P Dai, F Yu, B Han, et al. The prevalence of the 235delC GJB2 mutation in a Chinese deaf population. Genet Med,2007,9:283-289.
    16、戴朴,韩东一,袁慧军,等.基因诊断-耳科诊断领域的重大进步.中华耳科学杂志,2005,1:62-64.
    17、戴朴,韩东一,冯勃,等.大前庭水管的基因诊断和SLC26A4基因突变分析.中国耳鼻咽喉头颈外科,2006,13:303-307
    18、P Dai, Q Li, D Huang, Y Yuan,et al. SLC26A4 c.919A>G varies among Chinese ethnic groups as a cause of hearing loss. Genet Med,2008,10:586-592.
    19、袁永一.中国人重度-极重度耳聋分子流行病学及致病机制研究.军医进修学院博士论文,2007.
    20、W. Reardon, O.M. Cf, R. Trembath, et al, Enlarged vestibular aqueduct:a radiological marker of pendred syndrome, and mutation of the PDS gene, QJM 93 (2000)99-104.
    21、P Dai, Y Yuan, D Huang, et al. Molecular Etiology of Hearing Impairment in Inner Mongolia:mutations in SLC26A4 gene and relevant phenotype analysis. J Transl Med,2008,6:74(1-12).
    22、刘新,戴朴,黄德亮,等.线粒体DNA A1555G突变大规模筛查及其预防意义探讨.中华医学杂志,2006,86:1318-1322
    23、李隽,历建强,王智楠等,678例新生儿听力和聋病易感基因联合筛查结果分析.听力学及言语疾病杂志,2010,18(5):419-421
    24、韩冰,戴朴,戚庆伟,等.缝隙连接蛋白相关性耳聋和大前庭水管耳聋家庭的产前诊断和生育指导.中华耳鼻咽喉头颈外科杂志,2007,42(9):660-663.
    25、 韩冰,戴朴,王国建,等.青年聋人的遗传咨询与婚配指导.中华医学杂志,2009,89(10):677-679.
    26、韩冰,戴朴,王国建,等.相同表型不同基因型耳聋夫妇家庭的遗传咨询与指导.中华耳鼻咽喉头颈外科杂志,2007,42(7):499-502.
    27、戴朴.遗传性耳聋的预防和阻断.中华医学杂志,2007,87:2811-2813.
    28、Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol,2008 Oct,26(10):1135-1145.
    29、Rothberg JM, Leamon JH. The development and impact of 454 sequencing. Nat Biotechnol,2008 Oct,26(10):1117-1124.
    30、Shearer AE, DeLuca AP, Hildebrand MS,et al. Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing. Proc Natl Acad Sci U S A.2010 Dec 7;107(49):21104-9.