软件无线电中的数字信号处理及参数估记
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强调以开放性的最简硬件为通用平台,尽可能地用可升级、可重配置(reconfigurable)的应用软件(发送接收算法)来实现各种无线电功能的软件无线电(Software Radio或Soft-Defined Radio),自1992年Jeo Mitola提出以来,在近几年取得了引人注目的进展,引起了包括军事通信、个人移动通信、微电子以及计算机等电子领域的巨大关注和广泛兴趣,被认为是未来通信技术的一个重要发展方向。
     本文在介绍软件无线电的相关技术前提下,提出了一种适合线性软件无线电的GMSK接收机结构。GMSK调制方式因其良好的频谱效率和恒定包络特性,被广泛应用到无线通信系统中。但是GMSK是连续相位(CPM)调制,其调制相位是非线性的;现在较通用的软件无线电接收机是针对线性调制方式设计。本文依据GMSK的线性近似,提出了适合线性软件无线电的GMSK非相干接收机整体结构,以及匹配滤波器设计方法。
     同步是数字接收机中最重要的组成部分之一,本文利用最大似然准则,提出了一种不需要前导字的前馈GMSK载波相位和时钟误差联合估计算法。这个算法基于GMSK的线性近似,可以用在通用的软件无线电线性结构中。在算法推导后,本文给出了这种算法的性能仿真。从仿真结果可以看出,这个算法的误差方差接近于参数估计的理论下界——修正的Cramer-Rao界,在高信噪比情况下性能比目前的其他算法更优,而且可以工作在更低采样率下,算法复杂度低,可以节省硬件资源,增加软件无线电的信号处理带宽。
     数字通信的发展越来越多的依靠现代信号处理理论。周期平稳的性质被证明可以用来作平坦衰落信道下,信号的载波频偏和时钟恢复。本文在介绍衰落信道的基础上,通过进一步的推导,证明了满足一定条件下,周期平稳的频偏估计方法同样适合于频率选择性衰落信道。仿真的结果证实了这个推导的可行性。在频率选择性衰落信道下的频偏估计的性能,只比在平坦衰落信道和高斯白噪声信道下的性能略差些。
     最后,本文介绍了航空数据链中的软件无线电的硬件平台的搭建。
With the very rapid advancement of wireless communications, a new challenge to this industry is the integration of multiple systems and applications on a single device. Software Radio, firstly introduced by Jeo Mitola in 1992, addresses the goal of developing transceivers that will operate with several standards and in several frequency bands on a common hardware platform. Such a platform would allow flexible and programmable transceiver operations. This type of software radio is expected to be a key technology in several application scenarios of wireless communications, including cellular telephony, military communications, aeronautic data link and etc.
    
    The practical structure of the hardware platform of software radio is designed to cope with the linear modulation schemes, such as MPSK, OQPSK, QAM and MSK. In this thesis, we introduce a linear software radio architecture that can be extended to handle GMSK, which is a nonllnear modulation scheme. The synchronization algorithm and the design of the matched filter of this architecture suitable for GMSK signals are also studied.
    
    Synchronization is very important in digital receivers. A new non data-aided (NDA) and all-digital algorithm is proposed for join estimation of timing and carrier phase in GMSK modulation. It is based on maximum-likelihood arguments and has a feed forward structure. The proposed algorithm is also suitable for linear software radio. Performance in AWGN channel is assessed by computer simulation. and is compared with the modified Cramer-Rao bound and other existing algorithms. Simulation results have shown that the performance of the proposed algorithm is close to MCRB and other algorithms. Moreover, the proposed algorithm can work at an over sampling rate as low as 2, implying wider bandwidth and higher transmission rate, or lower hardware resource and power consumption.
    
    Cyclostationarity (CS) method is very useful in signal processing for communications. Frequency offset and symbol timing recovery in flat-fading channels based on cyclostationarity was introduced by Gini and Giannakis, and this method has many advantages. In this thesis, we will show that under some additional assumptions, the CS method can be extended to frequency-selective fading channels. Simulations have proved the feasibility of this extension, with only a small degraded performance.
    
    Finally, the implementation of the hardware platform of software radio for aeronautic data link is introduced.
引文
[1] Mengtao Yuan, Minjiang Zhao, Shiju Li, Peiliang Qiu, "A Joint OMSK Phase and Timing Synchronization Algorithm Suitable for Software Radio", Proc. SPIE APOC 2001, Nov. 2001, pp. 541-547.
    [2] Minjiang Zhao, Mengtao Yuan, Peiliang Qiu, "A Noncohemt OMSK Receiver for Software Radio", Vehicular Technology Conference, VTC 2002, spring, IEEE, (to appear)
    [3] Mengtao Yuan, Minjiang Zhao, Shiju Li, Peiliang Qiu, "Blind Frequency Offset Recovery hi Fading Channels", Vehicular Technology Conference, VTC 2002, spring, IEEE, (to appear)
    [4] H. Meyr, M. Moeneclaey, S. A. Fechtel, Digital Communication Receivers-Synchronization, Channel Estimation, And Signal Processing, New York: JOHN WILEY & SONS. INC, 1997.
    [5] J. G. Proakis, Digital Communications, 3rd ed. New York: McGraw Hill, 1995.
    [6] Mitola J., "The Software Radio Architecture", IEEE Communication Magazine, May, 1995.
    [7] Ostolos, A., Kountouris, A., Moy, C., Rambaud, L., Le Corre, P., "A software radio approach for the transceiver transition from 2G to 2. 5 G to 3G", Signal Processing and its Appications, Sixth International, Symposium on. 2001 , Vol. 2 , 2001. pp. 485-488
    [8] Cheng Luo, Xin Su, Sujian Zhao, Ming Zhao, "Software radio platform based on general PC and network", Vehicular Technology Conference, 2001. VTC 2001 Spring. IEEE VTS 53rd, Vol. 3 , 2001. pp. 1912-1916
    [9] Huang, X.H., K.-L.; Lai, A.K.Y., Cheng, K.K.M., "A unified software radio architecture", Wireless Communications, 2001. (SPAWC '01) . 2001 IEEE Third Workshop on Signal Processing Advances in , 2001. pp. 330-333
    [10] Buracchini, E, "The software radio concept", IEEE Communications Magazine , Vol. 38, Issue: 9 , Sept. 2000. pp. 138-143
    [11] Hentschel, T.; Fettweis, G., "Sample rate conversion for software radio", IEEE Communications Magazine, Vol. 38, Issue: 8 , Aug. 2000, pp. 142-150
    [12] Lacky R J, Upmal D W. Speakeasy, "The Military Software Radio", IEEE Communication Magazine, May 1995.
    [13] Wolmarans, E.M., Truter, A.J., "Software radio: implementation aspects", EUROCOMM 2000. Information Systems for Enhanced Public Safety and Security. IEEE/AFCEA , 2000. pp. 38-42
    [14] Zhou Xiaodong, Li Junyi, Gou Yanxin," Software radio technology hi spread spectrum communication", Communication Technology Proceedings, 2000. WCC-ICCT2000. International Conference on, Vol. 2 , 2000. pp. 1117-1120
    [15] Kwang-Cheng Chen, Prasad, R., Poor, H.V., "Software Radio", IEEE Personal Communications , Vol. 6, Issue: 4 , Aug. 1999, pp. 12-12
    [16] P. A. Laurent, "Exact and Approximate Construction of Digital Phase
    
    Modulations by Superposition of Amplitude Modulated Pulses (AMP)", IEEE Trans. Commun., vol. 34, pp. 150-160, Feb. 1986.
    [17] Y. C. Wu and T.S. Ng, "New implementation of a OMSK demodulator in linear software radio receiver," in Proc. IEEE PIMRC2000, Sep. 2000, pp. 1049-1053.
    [18] Wiesler, A., Machauer, R., Jondral, F., "Comparison of OMSK and linear approximated OMSK for use in software radio", Pro. 1998 IEEE 5th International Symposium on, Vol. 2 , 1998. pp. 557-560
    [19] O. Andrisano, M. Chiani, "The first Nyquist criterion applied to coherent receiver design for generalized MSK signals", IEEE Trans. Commun., vol.42, pp. 559-457, Apr. 1994.
    [20] Y. L. Huang, K. D. Fan, and C. C. Huang, "A fully digital noncoherent and coherent OMSK receiver architecture with joint symbol timing error and frequency offset estimation," IEEE Trans. Veh. Technol., vol. 49, pp. 863-874, May 2000.
    [21] R. Mehlan, Y. E. Chen, and H. Meyr, "A fully digital feedforward MSK demodulatior with join frequency offset and symbol timing estimation for burst mode mobile radio", IEEE Trans. Veh. Technol., vol. 42, pp. 434-443, Nov. 1993.
    [22] M. Morelli, U. Mengali, "Joint frequncy and timing synchronization algorithms for MSK-type signals," IEEE Trans. Commun., vol. 47, pp. 938-946, June. 1999.
    [23] M. Morelli and G. M. Vitetta, "Joint phase and timing synchronization algorithms for MSK-type signals," in Proc. Mini-Conf. Communication Theory 1999, June 1999, pp. 146-150.
    [24] P. Spasojuvic, Costas N. Georghiades, "Blind self-noise-free frequency detectors for a subclass of MSK-type signals," IEEE Trans. Commun., vol.48, pp. 704-715, Apr. 2000.
    [25] Y. C. Wu, and T. S. Ng, "Symbol timing recovery for GMSK modulation based on squaring algorithm," IEEE Commun.letters, vol. 5, pp221-223, May. 2001.
    [26] A. N. D'Andrea, U. Mengali and R. Reggiannini. "The modified Cramer-Rao bound and its application to synchronization problems," IEEE Trans. Commun.. vol. 42, pp. 1391-1399, Feb/Mar/Apr. 1994.
    [27] F.M. Gardner, "Interpolation in digital modems-Part I: Fundamentals," IEEE Trans. Commun., vol. 41, pp. 502-508, Mar. 1993.
    [28] Erup, L., Gardner, F.M., Harris, R.A., "Interpolation in digital modems-Part II. Implementation and performance", IEEE Trans. Commun., vol.41, pp. 998-1008, Jun. 1993
    [29] F.M. Gardner, "A BPSK/QPSK tuning-error detector for sampled receivers," IEEE Trans. Commun., vol. COM-34, PP. 423-429, May 1986.
    [30] A. A. D'Amico, A. N. D'Andrea, and U. Mengali, "Feedforward joint phase and tuning estimation with OQPSK modulation," IEEE Trans. Veh. TechnoL.,vol. 48, pp. 824-832, May. 1999.
    [31] F. Gini, G. B. Giannakis, "Frequency offset and symbol timing recovery in flat-fading channels: a cyclostationary approach", IEEE Trans. Commun., vol. 46, pp. 400-411, Mar 1998.
    [32] M. Ghogho, A. Swami, T. Durrani, "On blind carrier recovery in time-selective
    
    fading channels", Signals, Systems, and Computers, 1999. Conference Record of the Thirty-Third Asilomar Conference on , Vol.1 , 1999 , pp. 243-247
    [33] K. E. Scott, E. B. Olasz, "Simultaneous clock phase and frequency offset estimation", IEEE Trans. Commun., vol. 43, pp. 2263-2270, July, 1995.
    [34] M. Ghogho, A. Swami, T. Durrani, "Blind synchronization and Doppler spread estimation for MSK signals in time-selective fading channels", ???, 2000.
    [35] M. Morelli, U. Mengali, "Further results in carrier frequency estimation for transmissions over flat fading channels", IEEE Commun. Letters, vol. 2, Dec. 1998.
    [36] E. R. Jeong, S. K. Jo, Y. D. Kim, Y. H. Lee, "Least squares approach to data-aided frequency estimation in frequency-selective fading channels", ???, 2001.
    [37] H. Viswanathan, R. Krishnamoorthy, "A frequency offset estimation technique for frequency-selective fading channels", IEEE Commun letters., vol. 5, pp. 166-168, Apr, 2001.
    [38] E. R. Jeong, G. Choi, Y. H. Lee, "Data-aided frequency estimation for PSK signaling in frequency-selective fading", IEEE journal on selected areas in communications, vol. 19, pp. 1408-1419, July, 2001.
    [39] A. R. S. Bahai, M. Sarraf, "Frequency offset estimation in frequency selective fading channels", ???, 1997
    [40] W. R. Bennett, "Statistics of regenerative digital transmission," Bell System Tech. J., vol. 37, pp. 1501-1542, 1958.
    [41] M. Luise, R. Reggiannini, "Carrier frequency recovery in all-digital modems for burst-mode transmissions", IEEE Trans. Commun, vol. 43, pp. 1169-1178, Feb. /Mar. /Apr. 1995.
    [42] A. V. Dandawate, G. B. Giannakis, "Nonparametric polyspectral estimators for Mi-order (almost) cyclostationary processes", IEEE Trans. Inform. Theory, vol. 40, pp.67-84, Jan. 1994.
    [43] G. Karam, I. Jeanclaude and H. Sari, "A reduced-complexity frequency detector derived from the maximum-liklihood principle," IEEE Trans. Commun., vol. 43, NO. 10, October 1995.
    [44] P. Fines and A.H. Aghvami, "A comparison study of low bit rate DE-QPSK, TCM 8-ary PSK and 16-ary DE-QAM fully digital demodulators operating over a land mobile satellite link," IEE Proceedings-1, vol. 139, No. 3, June 1992.
    [45] A. Napolitano, C. M. Spooner, "Cyclic spectral analysis of continuous-phase modulated signals", IEEE Trans. Signal Processing, vol. 49, pp. 30-44, Jan. 2001.
    [46] A. N. D'Andrea, M. Luise, "Optimization of symbol timing recovery for QAM data demodulators", IEEE Trans. Commun., vol. 44, pp. 399-406, Mar. 1996.
    [47] Intersil Data Sheets:HSP50124, Intersil Inc.
    [48] Sanchez-Perez, R., Casajus-Quiros, F.J., Pasupathy, S., "Branch-dependent metric for Viterbi based receivers for GMSK in frequency selective fading channel", PIMRC 2000. The 11th IEEE International Symposium on , Vol. 2 , pp. 1150-1154,2000.
    [49] Fonseka, J.P., "Noncoherent detection with Viterbi decoding for GMSK signals",
    
    Communications, IEE Proceedings, Vol. 143 Issue: 6, pp. 373-379, Dec. 1996
    [50] Benelli, G., Garzelli, A., Salvi, F., "Simplified Viterbi processors for the GSM Pan-European cellular communication system", Vehicular Technology, IEEE Transactions on, pp.870-878, Vol. 43, Nov. 1994.
    [51] Kawas Kaleh, G., "Viterbi differential detection for binary partial response continuous phase modulation with index 0.5", Vehicular Technology Conference, 1990 IEEE 40th, 1990, pp.738-741
    [52] Makrakis, D., Feher, K., "An improved Viterbi decoder for the differential detection of continuous phase modulation schemes", WESCANEX 88: 'Digital Communications Conference Proceedings', 1988, pp.78-87
    [53] Kuang Tsai, Lui, G. L., "Coherent Viterbi and threshold demodulators for pulse-driven GMSK signals", MILCOM 1999. IEEE, pp.291-295 vol. 1, 1999
    [54] 赵民建,“可变符号速率MQAM调制器及射频上变频器的研究”,浙江大学硕土学位论文,2001年1月.
    [55] 赵民建,袁梦涛,李式巨,仇佩亮,“全数字多星座图、可变符号率QAM调制器”,电路与系统学报,2001年3月
    [56] 杨小牛,楼才义,徐建良,软件无线电原理与应用,电子工业出版社,2001.
    [57] 郑大春,项海格,“一种全数字化载波频偏估计器算法”,电子学报,第27卷,第1期,No.1,Vol.27,1999
    [58] T.S.Rappaport,无线通信原理与应用,电子工业出版社,1999.
    [59] 朱建军,姚庆栋,“突发模式PSK信号的联合载波位时钟恢复算法”,电路与系统学报,vol.5,No.4,December,2000.
    [60] 程佩青,数字信号处理,清华大学出版社,1995
    [61] 陈桂明等,应用MATLAB 建模与仿真,科学出版社,2001