硫化氢对心肌细胞收缩的作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化氢(H_2S)过去一直被认为是毒性气体,它的第一个生理作用的证据是1989年获得的。很多种哺乳动物细胞自身能产生H_2S,在正常大鼠的血液中H_2S浓度达到46μmol/L。体内的H_2S主要通过含硫氨基酸的代谢产生,胱硫醚-β-合酶(cystathionineβ-synthase,CBS)和胱硫醚-γ-裂解酶(cystathionineγ-lyase,CSE)是两个能分解L-半胱氨酸产生硫化氢的酶,前者主要存在于脑和神经系统,后者分布于心血管系统中。神经系统中研究发现,生理浓度的H_2S能够增加NMDA受体的敏感性,诱导海马的长时程增强。在心血管系统中,现已证明,硫化氢与高血压、肺动脉高压等关系密切。在肺动脉、主动脉、尾动脉、肠系膜动脉,以及门静脉等血管的管壁组织有H_2S合成酶的表达,可以产生内源性H_2S发挥舒张血管平滑肌的作用。H_2S是重要内源性血管活化因子,并且是第一个被认识的血管平滑肌细胞ATP敏感性钾离子通道(K_(ATP)通道)开放剂,H_2S的降血压作用可能是通过兴奋K_(ATP)通道,使细胞膜出现超极化而使平滑肌舒张,最近发现H_2S还能通过作用于有丝分裂活化蛋白激酶途径抑制平滑肌细胞增殖。在离体心脏灌流实验中,H_2S可以抑制心脏的收缩,减慢心率。外源性给予H_2S可在各种心血管疾病中发挥保护作用,例如,H_2S可以减低缺血再灌注后心律失常的发生率,H_2S预处理可以减小心肌梗死面积;还可以减弱高血压大鼠冠状动脉中层增厚和活性氧的产生。H_2S能够自体产生,并且具有多种生理调节功能,这使H_2S成为继NO和CO后的第三个气体信号分子。近年来,其在心血管系统中的调节作用成为研究热点。
     心肌细胞的收缩和心脏的泵血功能是息息相关的,既然H_2S可以舒张血管平滑肌,在离体的心脏灌流实验中也有负性作用,这种负性作用是因为H_2S作用于血管呢,还是直接作用于心肌细胞呢?我们的实验就是从大鼠乳头肌收缩、单个心肌细胞收缩试验开始进一步证实了硫化氢对心肌细胞收缩的直接抑制作用;并探讨了H_2S的作用机制。心肌细胞内游离钙变化直接影响细胞收缩,我们用激光共聚焦的方法观察到在给予硫氢化钠(H_2S的供体)以后,由电刺激诱发的心肌细胞收缩时的细胞内游离钙减少了,这就说明硫化氢抑制心肌细胞收缩是通过减少细胞内游离钙引起的;细胞内游离钙主要是胞外钙离子内流激发肌浆网内钙释放出大量钙离子,两个来源的钙离子共同组成。咖啡因可以诱发肌浆网内钙的释放,我们的实验也发现H_2S并没有影响咖啡因诱导的肌浆网内钙释放。然后我们利用膜片钳的方法记录心肌细胞动作电位,L型钙通道电流发现H_2S明显缩短了动作电位复极的平台期,抑制了心肌细胞L型钙通道电流。我们还在自发性高血压大鼠(SHR)中观察了H_2S作用,并比较了硫化氢对正常大鼠和SHR大鼠发挥抑制作用的差别。为了研究H_2S抑制心肌细胞L型钙通道电流的信号转导机制,我们测定了心肌细胞cAMP和cGMP在硫化氢预处理后的表达水平,没有发现H_2S预处理组心肌细胞内cAMP和cGMP水平的改变;同时我们也记录了心肌细胞K_(ATP)通道电流,发现较低浓度的H_2S也不能显著开放ATP敏感的钾通道。
     总之,我们发现硫化氢可以抑制大鼠心脏乳头肌的收缩,减弱单个心肌细胞的收缩幅度、速度,这种抑制作用可能是通过抑制心肌细胞膜上的L型钙离子通道,使胞外钙离子内流减少,细胞内游离钙浓度降低来发挥抑制心肌细胞收缩的作用的。它的信号转导途径可能和cAMP、cGMP的介导没有关系。较低浓度的H_2S就能抑制心肌细胞收缩可能和其K_(ATP)通道开放剂的作用无关。硫化氢可能是一个新的L型钙通道抑制剂,对它的研究将为进一步探索高血压等心血管疾病的发病机制和治疗开创新的领域。
Hydrogen sulfide (H_2S) is well known as a toxic gas with the characteristic smell of rotten eggs. But it is becoming increasingly clear that mammalian cells also produce H_2S. The H_2S concentration in rat serum is about 46μmol/L. Endogenous H_2S is synthesized naturally in the body from L-cysteine mainly by the activity of two enzymes, cystathionineβ-synthase (CBS) and cystathionineγ-lyase (CSE). CBS seems to be main H_2S -forming enzyme in the brain and nervous system, whereas CSE is the main H_2S -synthesizing enzyme in the cardiovascular system. It is reported that physiological concentrations of H_2S specifically potentiate the activity of the N-methyl-D-aspartate (NMDA) receptor, facilitate the induction of hippocampal long-term potentiation. In cardiovascular system, exogenous administration of H_2S has been reported to be cardioprotective in various disease models. For example, administration of NaHS significantly decreases the duration and severity of ischemia/reperfusion-induced arrhythmias and increased the viability of cardiomyocytes in isolated perfused rat hearts. NaHS treatment reduces infarct size in a rat model of coronary artery ligation. Chronic treatment with NaHS for 3 months decreases medial thickening of intramyocardial coronary arterioles, interstitial fibrosis and reactive oxygen species (ROS) production in spontaneously hypertensive rats (SHR). H_2S was important in hypertension , and the first ATP senstive K~+ channel opener, the decreasing blood pressure effect of H_2S maybe through the magnism. Recently H_2S was found that it can inhibit the contraction of heart in vitro.However, the mechanisms that mediate the observed cardiac effects of H_2S remain unknown.The endogenous metabolism and physiological functions of H_2S made this gas well known in the novel family of gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO).
     Calcium homeostasis plays a pivotal role in myocardial physiology and diseases. The influx of Ca~(2+) through the L-type Ca~(2+) channels is a trigger for the ryanodine-dependent calcium release from the sarcoplasmic reticulum, which plays an essential role in the excitation-contraction coupling in cardiomyocytes. To date, there is no information about the potential role of H_2S in regulating calcium channels in the heart. We hypothesize that H_2S may regulate cardiac function and interact with the pathophysiological pathways by regulating calcium channels in cardiomyocytes. Therefore, the present study aimed to investigate the role of H_2S in regulating L-type calcium current (I_(Ca,L)), intracellular calcium transient ([Ca~(2+)]i) and contraction in rat cardiomyocytes. Our results said that H_2S can decrese the [Ca~(2+)]i and inhibit the contraction of cardiomyocytes.Since H_2S has been shown to be an opener for the Katp channels in vascular smooth muscle cells(VSMCs), the potential role of H_2S on the the K_(ATP) channels in cardiomyocytes was also examined and found lower concention can not open the K_(ATP). Additionally, cAMP and cGMP, the well recognized intracellular secondary messengers which regulate I_(Ca,L) in cardiomyocytes, were also measured. H_2S has no effect on the level of cAMP and cGMP; To assess whether H_2S exerts differential effects in regulating I_(Ca,L) and contraction in normal and hypertrophied cardiac myocytes, we examined the effects of H_2S in cardiomyocytes isolated from both Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR).
     In summary, NaHS inhibited the contraction of single cardiomyocytes and isolated papillary muscles. Electric field-induced [Ca~(2+)]i transient were reduced by NaHS. In contrast, caffeine induced an increase in [Ca~(2+)]i and was not altered by NaHS. Bath application of NaHS significantly reduced the time required for the depolarization of the action potential. Inhibition of the peak I_(Ca,L) by NaHS was determined to be concentration dependent. NaHS had no effect on the Katp current or the levels of cAMP and cGMP in the current study. H_2S is a novel inhibitor of L-type calcium channels in cardiomyocytes. Moreover, H_2S-induced inhibition of [Ca~(2+)]i appears to be a secondary effect due to its initial action towards I_(Ca,L). The inhibitory effect of H_2S on I_(Ca,L) requires further investigation to develop novel therapeutic approaches to treat cardiac diseases.
引文
1. Warenycia MW, Goodwin LR, Benishin CG, Reiffenstein RJ, Francom DM, Taylor JD, et al. Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem Pharmacol 1989;38:973-981.
    2. Goodwin LR, Francom D, Dieken FP, Taylor JD, Warenycia MW, Reiffenstein RJ, et al. Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports. J Anal Toxicol 1989;13:105-109.
    3. Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 1996; 16:1066-1071.
    4. Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H_2S as a novel endogenous gaseous Katp channel opener. Embo J 2001;20:6008-6016.
    5. Wang R. Two's company, three's a crowd: can H_2S be the third endogenous gaseous transmitter? Faseb J 2002;16:1792-1798.
    6. Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 1997;237:527-531.
    7. Kamoun P. Endogenous production of hydrogen sulfide in mammals. Amino Acids 2004;26:243-254.
    8. Geng B, Yang J, Qi Y, Zhao J, Pang Y, Du J, et al. H_2S generated by heart in rat and its effects on cardiac function. Biochem Biophys Res Commun 2004;313:362-368.
    9. Yan H, Du J, Tang C. The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochem Biophys Res Commun 2004;313:22-27.
    10. Shi YX, Chen Y, Zhu YZ, Huang GY, Moore PK, Huang SH, et al Chronic sodium hydrosulfide treatment decreases medial thickening of intramyocardial coronary arterioles, interstitial fibrosis and ROS production in SHR. Am J Physiol Heart Circ Physiol. 2007; 293: H2093 - H2100.
    11. XU Meng, WU Yu-Ming, LI Qian, WANG Fu-Wei, HE Rui-Rong Electrophysiological effects of hydrogen sulfide on guinea pig papillary muscles in vitro Acta Physiologica Sinica, April 25, 2007, 59: 215-220
    12. Chunyu Z, Junbao D, Dingfang B, Hui Y, Xiuying T, Chaoshu T. The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertension in rats. Biochem Biophys Res Commun 2003;302:810-816.
    13. Xiaohui L, Junbao D, Lin S, Jian L, Xiuying T, Jianguang et al. Down-regulation of endogenous hydrogen sulfide pathway in pulmonary hypertension and pulmonary vascular structural remodeling induced by high pulmonary blood flow in rats. Circ J 2005;69:1418-1424.
    14. Cai WJ, Wang MJ, Moore PK, Jin HM, Yao T, Zhu YC. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res. 2007; 76: 29 - 40.
    15. Geng B, Chang L, Pan C, Qi Y, Zhao J, Pang Y, et al. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun 2004;318:756-763.
    16. Sivarajah A, McDonald MC, Thiemermann C. The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat. Shock 2006;26:154-161.
    17. Pan TT, Feng ZN, Lee SW, Moore PK, Bian JS. Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. J Mol Cell Cardiol 2006;40:119-130.
    18. Gross GJ, Peart JN. KATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol 2003;285:H921-930.
    19. Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol 2001;33:1897-1918.
    20. Zhong G, Chen F, Cheng Y, Tang C, Du J. The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase. J Hypertens 2003 ;21:1879-1885.
    21. Miguel angel, Garcia bereguilh, Alejandro khalil, Samhan arias, et al Hydrogen Sulfide Raises Cytosolic Calcium in Neurons Through Activation of L-Type Ca~(2+)Channels Volume 10, Number 1, 2008
    22. Huxley HE The mechanism of muscle contraction. Science. 1969; 164: 1355 -1366.
    23. Christ T L-type Ca~(2+) current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation. 2004; 110:2651 -2657.
    24. .Wagner JA, Sax FL, Weisman HF Calcium-antagonist receptors in the atrial tissue of patients with hypertrophic cardiomyopathy. N Engl J Med. 1989; 320: 755-761.
    25. Wagner JA, Reynolds IJ, Weisman WF Calcium antagonist receptors in cardiomyopathic hamster: selective increases in heart, muscle, and brain. Science. 1986; 232:515-518
    26. Boixel C, Gonzalez W, Louedec L, Hatem SN. Mechanisms of L-type Ca~(2+) current downregulation in rat atrial myocytes during heart failure. Circ. Res. 2001; 89:607-613.
    27. Katz A. Calcium channel diversity in the cardiovascular system. J Am Cell Cardiol. 1996; 28: 522-529.
    28. Maurizio S, Amedeo L, Rodolfo T, Lucia V, Francesco A. Effect of calcium antagonists on glomerular arterioles in spontaneously hypertensive rats. Hypertension. 2000; 35: 775 - 779.
    29. London GM, Pannier B, Guerin AP, Marchais SJ, Safar ME, Cuche JL. Cardiac hypertrophy, aortic compliance, peripheral resistance, and wave reflection in end-stage renal disease. Comparative effects of ACE inhibition and calcium channel blockade. Circulation. 1994; 90: 2786 - 2796.
    30. Vos MA, Gorgels AP, Leunissen JD, and Wellens HJ. Flunarizine allows differentiation between mechanisms of arrhythmias in the intact heart. Circulation. 1990; 81: 343-349.
    31. Pirzada A,Majid M et al. Acute Hemodynamic effects of nifedipine in patients with ischemic heart disease. Circulation 1982; 65; 1114-1118.
    32. Zhang ZH, Boutjdir M. Nel-Sherif Ketanserin inhibits depolarization-activated outward potassium current in rat ventricular myocytes. Circ.Res. 1994; 75; 711 -721.
    33. Hui Gong, Yan-Xia Wang, Yi-Zhun Zhu, Wen-Wei Wang,Ming-Jie Wang, Tai Yao, and Yi-Chun Zhu Cellular distribution of GPR14 and the positive inotropic role of urotensin II in the myocardium in adult rat Journal of Applied Physiology 97:2228-2235, 2004.
    34. S.D. Bird , P.A. Doevendans , M.A. van Rooijena, A. Brutel de la Riviered, R.J. Hassink , R. Passier , C.L. Mummery The human adult cardiomyocyte phenotype Cardiovascular Research 58 (2003) 423-434
    35. Rossner KL,Freese KJ.Noradrenaline modulation of calcium channels in single smooth muscle cells from rabbit ear artery.J Physiol, 1988,404:767-784.
    36. H Otani, H Otani and DK Das Alpha 1-adrenoceptor-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscles. Circ. Res. 1988;62;8-17
    37. K Li, DJ Stewart and JL Rouleau Myocardial contractile actions of endothelin-1 in rat and rabbit papillary muscles. Role of endocardial endothelium Circ. Res. 1991;69;301-312
    38. Tatsuya Ihara, Uichi Ikeda, Yasuo Tate, Shojiro Ishibashi, Kazuyuki ShimadaPositive inotropic effects of adrenomedullin on rat papillary muscleEuropean Journal of Pharmacology 390 2000.167-172
    39. Brodde OE, Michel MC, Zerkowski HR. Signal transduction mechanism scontrolling cardiac contractility and their alterations in chronic heart failure Cardiovasc Res , 1995 ,30 (4) :570 - 584.
    40. Kao JP, Harootunian AT, Tsien RY. Photochemically generated cytosoliccalcium pulses and their detection by fluo23. J Biol Chem, 1989 ,264(14) :817 - 819.
    41. Riccardo zucchi Simonetta ronca-testonil The Sarcoplasmic Reticulum Ca~(2+) Channel/Ryanodine Receptor: Modulation by Endogenous Effectors, Drugs and Disease Statesa Pharmacological Reviews Vol. 49, No. 1
    42. Weimin Zhao, Jing Zhang, Yanjie Lu and Rui Wangl The vasorelaxant effect of H2S as a novel endogenous gaseous K_(atp) channel opener. The EMBO Journal Vol.20 No.216008±6016
    43. PM McDonough, K Yasui, R Betto, G Salviati, CC Glembotski, PT Palade and RASabbadini Control of cardiac Ca~(2+) levels. Inhibitory actions of sphingosine on Ca2+transients and L-type Ca2+ channel conductance Circ. Res. 1994;75;981-989
    44. Hui S, Gavin Y. Oudit, Rafael J, Ramirez, Danny C, Peter H. The phosphoinositide 3-kinase inhibitor LY294002 enhances cardiac myocyte contractility via a direct inhibition of I_(k,slow) currents. Cardiovasc Res. 2004; 62: 509 - 520
    45. Bodo Cremers, Markus Flesch , Evi Kostenis , Christoph Maack , Anke Niedernberg ,Alexander Stoff, Michael Sudkamp , OlafWendler , Michael Boh Modulation of myocardial contractility by lysophosphatidic acid (LPA) Journal of Molecular and Cellular Cardiology 35 (2003) 71-80
    46. Michael Ritter, Zhi Su, Kenneth W. Spitzer, Hideyuki Ishida and William H. Barry Caffeine-induced Ca~(2+) sparks in mouse ventricular myocytes Am J Physiol Heart Circ Physiol 278:666-669, 2000.
    47. Guatimosim S, Amaya MJ, Guerra MT, Aguiar CJ, Goes AM, Gomez-Viquez NL, Rodrigues MA, Gomes DA, Martins-Cruz J, Lederer WJ, Leite MF Nuclear Ca(2+) regulates cardiomyocyte function. Cell Calcium. 2008 Jan 15
    48. Clinton JD Gerald WZ et al Molecular Pharmacology of High Voltage-active Calcium Channels Journal of Bioenergetics and Biomembranes 2003; 35 (6): 491-505
    49. Susan MC William AS Control of Ion Conduction in L-type Ca2+ Channels by the Concerted Action of S5-6 Regions Biophysical Journal 2003; 84:1709-1719
    50. Timothy JK Johannes WH Regulation of Cardic L-type Calciun Channels by Protein Kinase A and Protein Kinase C Circulation Research 2000 ; 87:1095-1102
    51. Georget M Mateo P Vandecasteele G Lipskaia L Cyclic AMP Compartmentation due to Increase cAMP Phosphodiesterase Activity in Transgenic Mice Cardic-directed Expression of the human Adenylyl Cyclase Type8 FASEB-J 2003; 17(11):1380-91
    52. FowlerMR, Orchard CH, Harrison SM. Cellular distribution of calcium current is unaltered during compensated hypertrophy in the spontaneously hypertensive rat Pflugers Arch, 2007, 453 (4) :463
    53. Davey P, Bryant S, Hart G. Rate2dependent electrical, contractile and restitution p roperties of isolated left ventricular myocytes in guinea pig hypertrophy ActaPhysiol Scand, 2001, 171 (1): 17
    54. Saraiva RM, Chedid NG, Quintero HCC, et al. Impaired beta2 adrenergic response and decreased L-type calcium current of hypertrophied left ventricular myocytes in postinfarction heart failure Braz J Med Biol Res, 2003, 36 (5) : 635
    55. Sah R, Ramirez RJ, Backx PH. Modulation of Ca~(2+) release in cardiac myocytes by changes in repolarization rate: role of phase2 action potential repolarization in excitation contraction coup ling Circ Res, 2002, 90 (2): 165
    56. DeMelloWC, Monterrubio J. Intracellular and extracellular angiotensin II enhance the L-type calcium current in the failing heart Hypertension, 2004, 44 (3): 360
    57. Verkerk AO, VeldkampMW, Bouman LN, et al. Calcium activated Cl current contributes to delayed after depolarizations in single Purkinje and ventricular myocytes. Circulation, 2000, 101(22): 2 639
    58. WallisW, CooklinM, Sheridan DJ, et al. The action of isop rena21ine on the electrophysiological p roperties of hypertrophied left ventricularmyocytes Arch Physiol Biochem, 2001, 109 (2): 117
    59. Yoshihiro I Charles J et al The Adenylyl Cyclase as Integrators of Transmembrane Signal Transduction Circulation Research 1997;80: 297-304
    60. Wellner K Bender K Meyer T Pott L Coupling to Gs and Gq of Histamine H2 Receptors Heterologously Expressed in Adult Rat Atrial Myocytes Biochim Biophys Acta2003;1642(1):67-77
    61. Gerald W Jeffery D Manipulating cardiac contractility in heart failure Circulation 2004; 109:150-158
    62. Dowell SA Call E Matter WF Phosphoinositide 3-kinase regulates excitation-contraction coupling in neonatal cardiomyocytes Am J Physiol Heart Circ Physiol 2004; 286(2):H796-805
    63. Susan FS et al PI3King the Ltype calcium channel activation mechanism Circulation Research 2001; 89(8): 641-644
    64. Ferdi G Marta R Single-channel Gating and Regulation of human L-type calcium channels in cardiomyocytes of transgenic mice biochemical and biophysical research Communications 2004;3: 878-884
    65. Weiss S Doan T Bernstein KE Modulation of cardiac Ca~(2+) channel by Gq-activating neurotransmitters reconstituted in xenopus oocytes J Biol Chem 2004; 279(13):12503-10
    66. Dolphin AC. et al G protein modulation of voltage-gated calcium channels Pharmacol Rev. 2003; 12: 607-27
    67. Rui PX Pavel A Ying YZ Coupling of (32-adrenoceptor to Gi Proteins and its Physiological Relevance in Murine Cardiac Myocyte Circulation Research 1999;84:43-52
    68. .Noma A. ATP-regulated K~+ channels in cardiac muscle. Nature. 1983, 305(5930): 147-8.
    69. Inagaki N, Gonoi T, Clement JP. Reeonstitution of I_(katp): An inward rectifier subunit plus the sulfonylurea receptor . Science , 1995, 270(5239): 1166—70
    70. Yokoshiki H,Sunagawa M,Seki T, et al .ATP-sensitive K~+ channels in pancreatic,cardiac and vascular smooth muscle cells. Am J Physiol, 1998,274: C25-37.
    71. Isomoto SC, Kondo M, Yamada S, et al.A novel sulfonylurea receptor forms with BIR(Kir6.2)a smooth muscle type ATP - sensitive K~+channel.J BiolChem, 1996, 271(40): 24321 -24324.
    72. .Baukrowitz T,Fakler B.Katp channels gated by intracellular nucleotides and phospholipids.Eur J Biochem, 2000, 267: 5842 -5848.
    73. Cui Y, Pan C, Qi Y, Tang C, Geng B. Hydrogen sulfide down-regulation of L-arginine/nitric oxide synthase/NO pathway in aortic tissues of rat. Chin Pharmacol Bull 2005;21:1335-1339.
    74. Mozzarelli, A. Functional properties of the active core ofhuman cystathionine beta-synthase crystals. J. Biol. Chem. 276,16-19
    75. Bruno, S., Schiaretti, F., Burkhard, P., Kraus, J. P., Janosik, M.,Mozzarelli, A. Functional properties of the active core ofhuman cystathionine beta-synthase crystals. J. Biol. Chem. 276,16-19
    76. Zhong G, Chen F, Cheng Y, Tang C, Du J. The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase. J Hypertens 2003;21:1879-1885.
    77. Zhang Q, Du J, Shi L, Zhang C, Yan H, Tang C. Interaction between endogenous nitric oxide and hydrogen sulf ide in pathogenesis of hypoxic pulmonary hypertension. J Peking Univ (Health Sci) 2004;36:52-56.
    78. Roberto M. Saraiva,B and Joshua M. HareNitric oxide signaling in the cardiovascular system: implications for heart failure Curr Opin Cardiol 21:221-228.
    79. Sergey I. Zakharov, Sean Pieramici, Ganesh K. Kumar, Nanduri R. Prabhakar, Robert D. HarveyNitric Oxide Synthase Activity in Guinea Pig Ventricular Myocytes Is Not Involved in Muscarinic Inhibition of cAMP-Regulated Ion Channels Circulation Research. 1996;78:925-935.
    1. Clinton JD Gerald WZ et al Molecular Pharmacology of High Voltage-active Calcium Channels Journal of Bioenergetics and Biomembranes 2003; 35 (6): 491-505
    2. Susan MC William AS Control of Ion Conduction in L-type Ca2+ Channels by the Concerted Action of S5-6 Regions Biophysical Journal 2003; 84 (3) : 1709-1719
    3. Timothy JK Johannes WH Regulation of Cardic L-type Calciun Channels by Protein Kinase A and Protein Kinase C Circulation Research 2000 ; 87: 1095-1102
    4. Georget M Mateo P Vandecasteele G Lipskaia L Cyclic AMP Compartmentation due to Increase cAMP Phosphodiesterase Activity in Transgenic Mice Cardic-directed Expression of the human Adenylyl Cyclase Type8 FASEB-J 2003 ; 17(11):1380-91
    5 Yoshihiro I Charles J et al The Adenylyl Cyclase as Integrators of Transmembrane Signal Transduction Circulation Research 1997;80: 297-304
    6. Wellner K Bender K Meyer T Pott L Coupling to Gs and Gq of Histamine H2 Receptors Heterologously Expressed in Adult Rat Atrial Myocytes Biochim Biophys Acta 2003; 1642(1):67-77
    7. Rui PX Pavel A Ying YZ Coupling of p2-adrenoceptor to Gi Proteins and its Physiological Relevance in Murine Cardiac Myocyte Circulation Research 1999;84:43-52
    8. Ferdi G Marta R Single-channel Gating and Regulation of human L-type calcium channels in cardiomyocytes of transgenic mice biochemical and biophysical research Communications 2004;3: 878-884
    9. Weiss S Doan T Bernstein KE Modulation of cardiac Ca2+ channel by Gq-activating neurotransmitters reconstituted in xenopus oocytes J Biol Chem 2004; 279(13):12503-10
    10. Gerald W Jeffery D Manipulating cardiac contractility in heart failure Circulation 2004;109:150-158
    11. Dowell SA Call E Matter WF Phosphoinositide 3-kinase regulates excitation-contraction coupling in neonatal cardiomyocytes Am J Physiol Heart Circ Physiol 2004; 286(2):H796-805
    12. Susan FS et al PI3King the Ltype calcium channel activation mechanism Circulation Research 2001; 89(8): 641-644
    
    
    13.Dolphin AC. et al G protein modulation of voltage-gated calcium channels Pharmacol Rev. 2003; 12: 607-27
    
    14.Brain SF Shawn MC Jonathan S Regulation of voltage-gated calcium channel activity by the Rem and Red PANS 2003; 100(24): 14469-74
    
    15.Jurevicius VA Role of cyclic nucleotide phosphodiesterase isoforms in cAMP compartmentation following beta2-adrenergic stimulation of Ica,Lin trog ventricular myocytes J Physiol 2003; 8:239-52
    
    16.Chahine M Sculptoreanu A Varma DR Odulation of L-type Ca2+ channels in neonatal rat heart by a novel Ca2+ channel agonist. Can-J-Physiol-Pharmacol. 2003; 81(2): 135-41