硅对水稻茎秆强度的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
密植高产目前已成为水稻科学研究领域的共识,因密植引发的倒伏,严重影响水稻产量的提高和品质的改善,受到大家普遍关注。硅是植物的有益元素,能改变株型与促进光合,增强茎秆抗倒伏能力,提高水稻产量。因此,本试验以两优培九和9311为试材,设3个密度,4个硅处理浓度,探讨外施硅对水稻茎秆强度及相关性状的影响。研究结果如下:
     1、两优培九和9311在高密度下产量最高,分别为9371.10kg/hm2和9279.15kg/hm2,比低密下分别增产36%和29.9%。施硅处理下,两优培九和9311水稻的平均产量分别为8412.45kg/hm2和8335.50kg/hm2,比对照增产27.95%和18.71%,差异显著,即硅对水稻有增产作用。
     2、硅对水稻株高和茎秆基部伸长节节间长度的影响差异不显著。水稻茎秆节间长度大小为基部第二伸长节>第三伸长节>第一伸长节。而茎粗、茎壁厚度随着SiO2施入量的增加而增加,两优培九最大值分别增加了18.13%和36%,9311最大值分别增加了12.37%和20%,即硅能增加水稻茎粗、茎壁厚,且差异达到显著或极显著水平。
     3、水稻茎秆单位节间鲜重、干重、含水量都为基部第一伸长节>第二伸长节>第三伸长节;都随着施硅量增加而增加。施硅处理后,水稻单位节间鲜重、含水量,在齐穗期差异不显著,而齐穗15d和齐穗30 d时差异显著。而这三个时期施硅处理后,单位节间干重都差异显著,且最大值可分别增加19.41%、19.64%和17.9%。
     4、水稻茎秆基部三个伸长节SiO2含量为基部第一伸长节<第二伸长节<第三伸长节。外施硅能增加水稻茎秆中SiO2的沉积量,且随着生育期的进行增幅加大,齐穗期、齐穗15 d、齐穗30 d分别增加了10.28%、13.54%、16.39%。
     5、施硅处理后水稻茎秆基部伸长节节间纤维素含量明显增加,在齐穗期、齐穗15d、齐穗30d分别比对照增加了40.31%、22.87%、36.69%,且SiO2的沉积量与纤维素含量呈正相关关系。施硅处理后,半纤维素含量降低,且在齐穗30 d时,半纤维素含量降低幅度最大为21.4%。且SiO2的沉积量与半纤维素含量呈显著或极显著负相关关系。
     硅能增加木质素含量,但在齐穗时作用效果不明显,在齐穗后15 d和齐穗30 d时,木质素含量在施硅处理后比对照增加了28.28%和23.3%,差异显著。
     硅能增加茎秆灰分含量,齐穗15 d时增加幅度最大为14.17%,且SiO2沉积量与灰分含量呈显著或极显著正相关关系。
     6、水稻茎秆抗折力为基部第一伸长节>第二伸长节>第三伸长节。齐穗15 d,茎秆抗折力最大,随后开始降低。随着施硅量的增加茎秆抗折力增大,两优培九和9311水稻茎秆基部伸长节节间抗折力在90kg/hm2或135kg/hm2SiO2时达到最大值。齐穗期、齐穗15d、齐穗30 d,茎秆抗折力在施硅处理后平均比对照分别增加了19.61%、20.61%、40.89%。其抗折力大小与水稻茎秆中Si02的沉积量呈显著或极显著正相关关系。
Dense high-yield has become the consensus of scientific research in the rice field. The lodging caused by dense which serious impact on rice yield enhancement and quality improvement is a common concern. Silicon is a useful element in plants which can change the plant type and the promotion of photosynthesis, enhance lodging resistance and raise the level of rice yield. Therefore, the two rice varieties, Liangyoupeijiu and 9311,was as the tested material. The experiment set up three density and four silicon concentrations to explore the silicon on rice stem strength and related traits.The results are as follows.
     1.The rice yield of Liangyoupeijiu and 9311 in high-density level was maximum, respectively 9371.10kg/hm2 and 9279.15kg/hm2,were more than the low-density, which increased respectively 36%,29.9%.The average yield of Liangyoupeijiu and 9311 in silicon treatments were respectively 8412.45kg/hm2,8335.50kg/hm2,and the yield increasd 27.95%,18.71%,the rice yield was the significant difference. Namely, silicon has the role on rice with increase yield.
     2. The effect of silicon on rice plant height and elongation internonde lengths both were not significant.The internodes length size of stem was the second elongate section>the third elongate section>the first elongate section. The size of stem diameter, stem wall thickness were increased with SiO2 increased. The largest stem diameter, stem wall thickness of Liangyoupeijiu increased respectively 18.13% and 36%,9311 are increased respectively 12.37% and 20% compared with the control. So silicon could significantly increase the rice stem diameter, stem wall thickness.
     3.Unit fresh weight, dry weight, water content of rice stem sections were all the base of the first elongate section>the second elongate section>the third elongate section.In silicon treatment, unit fresh weight and water content of rice stem sections both are not significant difference at full heading. But the unit fresh weight and water content increased when the silicon concentration increased 15 d and 30 d after the full heading.With silicon increased, unit dry weight of rice stem increased. The maximum value were higher than the control, respectively 19.41%,19.64% and 17.9%,at full heading,full heading 15 d,30 d.
     4. The SiO2 content of rice stem was the first elongate section     5. After silicon treatment, cellulose content is higher than the control, at full heading, full heading 15 d,30 d, respectively increased 40.31%,22.87%,36.69%, which was a positive correlation between cellulose content and SiO2 content.
     At full heading 30 d, hemicellulose content decreased 21.4% in silicon treatment. The SiO2 content and hemicellulose content were significant or very significant negative correlation.
     Silicon could increase the lignin content at the full heading 15 d,30 d, After silicon treated,the content of lignin increased 28.28%and 23.3%.but it was no significant at the full heading stage.
     Silicon can increase ash content. Compared with control, ash content were increased highest 14.17%,at full heading 15 d.The SiO2 content and ash content were significant or very significant negative correlation.
     6.The rice stem breaking-resistant strength was the first elongate section>the second elongate section>the third elongate section. Silicon could increase the breaking-resistant strength of Liangyoupeijiu and 9311,and it reached the maximum in content 135kg/hm2 or 90kg/hm2 of SiO2. At full heading, full heading 15 d,30 d, the stem breaking-resistant strength compared with the control increased 19.61%, 20.61%,40.89%.The breaking-resistant strength and SiO2 content were significant or highly significant positive correlation.
引文
[1]孙晓辉,杨文钰,李首成,马均.作物栽培学(各论)[M].四川科技出版社出版,2002,1-25.
    [2]丁颖.水稻栽培学[M].北京:中国农业出版杜,1961,469-473.
    [3]李文熙.水稻倒伏的原因及危害的对策[J].韩国作物学会,1991,36(5):383-393.
    [4]Stam P P. Seedling traits of maize as indicators of root lodging [J].Agronomie,1992,12(2):157-162.
    [5]阎志利,张景奎.倒伏对水稻产量影响的分析研究[J].盐碱地利用,1990,(3):7-9.
    [6]Kona M. Physiological aspects of lodging[J].Food and Agruiculture Policy Research Center, Tokyo,
    1995,2:971-982.
    [7]Donald.C.M. The biological yield and harvest index of cereals as agronomic and plant breeding criteria[J].Agronmy.1976,28:361-405.
    [8]刘喜珍.水稻叶龄增长动态的模拟与叶龄预测[J].北京农业科学,2001,(6):11-13.
    [9]吴耀民,卓亚男.水稻倒伏及栽培技术对策[J].垦殖与稻作,1999,(3):12-14.
    [10]管延安,李健和,任莲菊.禾谷类作物倒伏性的研究[J].山东农业大学报,1998,(5):51-54.
    [11]Skubisz G. The effect of sowing density on the lodg-ing and mechanical properties of rape stalks [J]. Agrophysics,1996,10:303-307.
    [12]Duan C R, Wang B C,Wang P Q, Wang D H, Cai SX. Relationship between the minute structure andthe lodging resistance of rice stems[J]. Colloids andSurfaces B:Biointerfaces,2004,35:155-158.
    [13]星川清亲,王善本.水稻倒伏的研究[J].丽水农业科技,1992,(1):8-10.
    [14]李荣田,姜廷波,秋太权等.水稻倒伏对产量影响及倒伏和株高关系的研究[J].黑龙江农业科学,1996,(1):13-17.
    [15]马均,马文波,田彦华等.重穗型水稻植株抗倒伏能力的研究[J].作物学报,2004,30(2):143-148.
    [16]李荣田,姜廷波,秋太权等.水稻倒伏对产量影响及倒伏和株高关系的研究[J].黑龙江农业科学,1996,(1):13-17.
    [17]孙旭初.水稻茎秆抗倒性的研究[J].中国农业科学,1987,20(4):32-37.
    [18]Yoshida S.Physiological aspect of grain yield[J].Ann Rev Plant Physiology,1972,23:437-464.
    [19]杨守仁.水稻理想株型育种的理论和方法初论[J].中国农业科学,1984,17(3):6-12.
    [20]北条良夫,星川清亲.作物的形态与机能[M].郑丕尧,周殿玺译.北京:中国农业出版社,1983,411-427.
    [21]张秋英,欧阳由男,戴伟民等.水稻基部伸长节间性状与倒伏相关性分析及QTL定位[J].作物学报,2005,31(6):712-717.
    [22]Kashiwagi T, Ishimaru K. Identification and functional analysis of a lo-cus for improvement of lodging resistance in rice[J].Plant Physiology,2004,134:676-683.
    [23]邹德堂,秋太权,赵宏伟等.水稻倒伏指数与其它性状的相关和通径分析[J].东北农业大学学 报,1997,28(2):112-118.
    [24]IchiiM, Hada K. Application of ratoon to a test of agronomic charactersin rice breeding Ⅱ.The relationship between ratoon ability and lodgingresistance[J].Jpn J Breed,1983,33(3):251-258.
    [25]Yagi T. Studies on breeding for culm stiffness in rice Ⅰ.Varietal dif-ferences in culm stiffness and its related traits[J],Jpn J Breed,1983,33(4):411-422.
    [26]华泽田,郝宪彬,沈枫等.东北地区超级杂交粳稻倒伏性状的研究[J].沈阳农业大学学报,2003,34(3):161-164.
    [27]张忠旭,陈温福,杨振玉等.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响[J].沈阳农业大学学报,1999,30(2):81-85.
    [28]陈温福.水稻理想株型的研究[J].沈阳农业大学学报,1989,20(4):417-420.
    [29]徐正进.水稻高产研究的现状与展望[J].沈阳农业大学学报,1991,22(增刊):115-123.
    [30]徐正进,陈温福,张龙步等.水稻直立穗性状评价与利用研究进展[J].沈阳农业大学学报,1995,26(4):335-341.
    [31]徐正进,张树林,周淑清等.水稻穗型与抗倒伏性关系的初步分析[J].植物生理学通讯,2004,40(5):561-563.
    [32]都兴林,方秀琴,刘忱等.水稻直立穗型与抗倒伏性关系的理论分析与模拟测定[J].吉林农业科学,2004,29(2):3-4.
    [33]Kaur G, Kler D S,Singh S J, et al.Relationship of height lodging score and silica content with grain yield of wheat (Triticum aestivumL.) un-der different planting techniques at higher nitrogen nutrition[J]. Envir-on Eco,2001,19(2):412-417.
    [34]Hossain K A, Horiuchi T, Miya gawa S.Effects of powdered rice chaff application on lodging resistance, Si and N contents and yield compo-nents of rice (Oryza sativaL.) under shaded conditions[J]. ActaAgron Hungarica,1998,46(3):273-281.
    [35]张纪林,康立新,季永华等.(强)热带风暴条件下农田林网对防止水稻倒伏及减产的效应[J].应用生态学报,1996,7(1):15-18.
    [36]杨长明,杨林章,颜廷梅等.不同养分和水分管理模式对水稻抗倒伏能力的影响[J].应用生态学报,2004,15(4):646-650.
    [37]魏朝富,杨剑虹,高明等.紫色水稻土硅有效性的研究[J].植物营养与肥料学报,1997,3(3):229-236.
    [38]梁康迳.水稻茎秆抗倒性的遗传及基因型×环境互作效应研究[J].福建农业大学学报,2000,15(3):27-31.
    [39]董明辉,张洪程,戴其根等.不同粳稻品种倒伏指数及其相关农艺性状的分析[J].吉林农业大学学报,2003,25(2):120-123.
    [40]郭玉华,朱四光,张龙步等.不同栽培条件对水稻茎秆材料学特性的影响[J].沈阳农业大学学报,2003,34(1):4-7.
    [41]郭玉华,朱四光,张龙步.不同栽培条件对水稻茎秆生化成分的影响[J].沈阳农业大学学报, 2003,34(2):89-91.
    [42]Ookawa T, Ishihara K. Varietal difference of the cell wall componentsaffecting the bending stress of the culm in relating to the lodging resistance in paddy rice[J].Jpn J Crop Sci,1993,62(3):378-384.
    [43]肖应辉,罗丽华,闫晓燕等.水稻品种倒伏指数QTL分析[J].作物学报,2005,31(3):348-354.
    [44]王勇,李朝恒.小麦品种抗倒性的研究进展[J].山东农业大学学报,1996,27(4):503-508.
    [45]Albrecht K A. Selection reversal in strains of corn previously long-term selected for chemical composition[J]. Crop Sci,1986,26(5):1051-1055.
    [46]杨惠杰,杨仁崔,李义珍等.水稻茎秆性状与抗倒性的关系[J].福建农业学报,2000,15(2):1-7.
    [47]张忠旭.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响[J].沈阳农业大学学报,1999,30(2):81-85.
    [48]崛内久满,古贺义昭.水稻抗倒伏性与育种[J].农业技术,1989,44(9):41-45.
    [49]八木忠之.水稻茎秆强度与有关性状的品种差异[J].育种学杂志,1983,33(4):411-422.
    [50]王勇,李晴棋,李朝恒等.小麦品种茎秆的质量及解剖学研究[J].作物学报1998,24(4):452-458.
    [51]凌启鸿,张洪程.稻作新理论[M].科学出版社,1994,103-116.
    [52]郭玉华.水稻超高产若干问题的研究.沈阳农业大学博士学位论文.1999,65-71.
    [53]Jones H P, Handreck K A. Silica in soil plants and animals[J].Advances in Agronomy,1967,19: 107-149.
    [54]Lewin J, Reimann B E F. Silicon and Plant growth[J].Annual Review of plant Physiology,1969, 20:289-304.
    [55]SavantN.K.,HK.GasPar, E.H.Lawrenee,HS.George.Silicon nutrition and sugareane production[J]. Plant Nutr.,1999,22(12):1853-1903.
    [56]Epstein E. Silicon [J].Annual Review Plant Physiology and Plant Molecular Biology,1999,50: 641-651.
    [57]饶立华,覃莲祥,朱玉贤等.硅对杂交稻形态结构和生理的效应[J].植物生理通讯,1986,(3):20-24.
    [58]Epstein E. The anomaly of silicon in plant biology[J].Proc Natl Acad Sci, USA,1994,91:11-17.
    [59]黄彬,韩永圣,秦政.硅素的肥料效应及补硅途径[J].江苏农业科学,1997,47-49.
    [60]文春波,高红莉,蔡德龙等.水稻施用硅肥研究综述[J].地域研究与开发,2003,22(3):79-83.
    [61]武艳菊,宋祥伟,刘振学.硅肥的研究现状及展望[J].磷肥与氮肥,2006,21(3):55-59.
    [62]蔡德龙.硅肥及施用技术[M].北京:台海出版社,2001:48-65.
    [63]王宏伟.硅肥的作用及合理使用方法[J].土肥耕作,2006,15.
    [64]孙东伟.水稻施用硅肥肥效试验总结[J].垦殖与稻作,2004(2):44-45.
    [65]EPstein E, Datnoff LE, Snyder GH et al.Silicon in agriculture[J].The Netherlands:Elsevier Science, 2001,1-15.
    [66]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000,211-236.
    [67]胡定金,王富华.水稻硅素营养[J].湖北农业科学,1995,5:5-8.
    [68]马同生.我国水稻土中硅素丰缺原因[J].土壤通报,1997,28(4):169-171.
    [69]臧惠林,张效朴.我国南方水稻土供硅能力的研究[J].土壤学报,1982,19(2):131-139.
    [70]贺立源,王忠良.土壤机械组成和PH与有效硅的关系研究[J].土壤,1998,30(5):243-246.
    [71]徐文富.作物的硅素营养和硅化物的应用[J].苏联科学与技术,1992,5:45-49.
    [72]李发林.硅肥的功效及施用技术[J].云南农业,1997,9:16.
    [73]叶春.土壤可溶性硅与水稻生理及产量的关系[J].农业科技译丛,1992,1:24-27.
    [74]邵建华.硅肥的应用研究进展[J].四川化工与腐蚀控制,2000,3(6):44-47.
    [75]蔡德龙主编.中国硅营养研究与硅肥应用[M].郑州:黄河水利出版社,2000,3-14.
    [76]钱发军,蔡德龙,邓挺.河南省灌溉水硅含量及分布[J].地域研究与开发,1995,14(11):66-69.
    [77]刑雪荣,张蕾.植物的硅素营养研究综述[J].植物学通报,1998,15(2):33-40.
    [78]刘鸣达,张玉龙.水稻土壤硅素肥力的研究现状与展望[J].土壤通报,2001,32(4):187-192.
    [79]Inanaga S,Okasaka A. Calcium and silicon bingding compounds in cell walls of rice shoots[J].Soil Science and Plant Nutrition,1995,41:103-110.
    [80]Yoshida.s. Fundamentals of rice crop science[J].International Rice Research Institute, Los Banos Laguna Philippine,1981.
    [81]梁永超,张永春,马同生.植物的硅素营养[J].土壤学进展,1993,21(3):7-14.
    [82]杨建堂,高尔明,霍晓婷等.沿黄稻区水稻硅素吸收、分配特点研究[J].河南农业大学学报,2000,34(1):37-42.
    [83]Marsehner H.. Mineral nutrition of higher Plant[J].San Diego:academic Press Inc,1995,417-427.
    [84]何电源.土壤和植物中的硅[J].土壤学进展,1980,(5-6):1-11.
    [85]Ma J F, Goto S, Tamai K, Ichii M. Role of root hairs and lateral roots in silicon uptake by rice[J]. Plant Physiol,2001,127:1773-1780.
    [86]Ma J F, Tamai K, Ichii M, Wu GF. A rice mutant defective in Silicon uptake[J].Plant Physiol,2002, 130:2111-2117.
    [87]Ma,J.F. Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants[J]. Cytol.,2008,264:225-253.
    [88]Ma,J.F.,Shen R.F.,Nagao S.et al.Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots[J]. Plant Cell Physiol.2004,45:583-589.
    [89]Ma,J.F.,Nagao S.,Huang C.F.,et al.Solation and characterization of a rice mutant hypersensitive to Al[J]. Plant Cell Physiol.2005,46:1054-1061.
    [90]Ma,J.F.,Tamai,K.,Yamaji N, et al. A silicon transporter in rice[J].Nature.2006,440:688-691.
    [91]Ma JF,Yamaji N, Mitani N, et al.An efflux transporter of silicon in rice[J].Nature 2007,448:209.
    [92]Ma,J.F.,Ryan P.R.,Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids[J].Trends Plant Sci.2001,6:273-278.
    [93]Hossain M T, Mori R, Soga K, et al. Growth promotion and an increse in cell wall extensibility by silicon in rice and some other Poaceae seedlings[J].Journal of Plant Research,2002,115:23-27.
    [94]马同生.我国水稻土硅素养分与硅肥施用研究现况[J].土壤学进展,1990,18(4):1-5.
    [95]高尔明,赵全志.水稻施用硅肥增产的生理效应研究[J].耕作与栽培,1998,5(20):22-28.
    [96]冯元琦.硅肥应成为我国农业发展中的新肥料[J].化肥工业,2000,27(4):9-11.
    [97]张跃芳,张超英.硅在水稻花药培养中的作用研究[J].绵阳高等专科学校学报,1999,16(2):11-13.
    [98]马国瑞,石伟勇.农作物营养失调症原色图谱(第三版)[M].北京:中国农业出版社,2002,103-107.
    [99]Ma JF, Takahashi E. Silicon as a benefical element for crop plants. In:DatonoffL, Korndorfer QSnyder G(eds)Silicon in Agriculture[M].New York:Elsevier Science Publishing,2001,17-39.
    [100]张翠珍,邵长泉,孟凯等.水稻施用硅肥效果及适宜用量的研究[J].山东农业科学,1997,(3):44-45.
    [101]戴伟民,张克勤,段彬伍等.测定水稻硅含量的一种简易方法[J].中国水稻科学,2005,19:460-462.
    [102]Van Soest P.J.,Robertson J.B.Systems of analysis evaluating fibrous feeds[M].Cornell University-Ithaca, NY.1979.
    [103]马国辉,邓启云,万宜珍等.超级杂交稻抗倒生理与形态机能研究[J].湖南农业大学学报,2000,26(5):329-331.
    [104]宋合林,刘兵,崔占文等.不同生育时期施用硅肥对水稻产量的影响[J].现代化农业,2009,9:18.
    [105]朱殿武.施用硅肥对水稻产量的影响[J].农技服务,2009,26(8):51.
    [106]段传人,王伯初,王凭青.水稻茎秆的结构及其性能的相关性[J].重庆大学学报(自然科学版),2003,26(11):38-40.
    [107]刘树堂,韩效国,董先旺.硅对冬小麦抗逆性影响的研究[J].莱阳农学院学报,1997,14(1):21-25.
    [108]王荔军,郭中满,李铁津等.生物矿化纳米结构材料与植物硅营养[J].化学进展,1999,11(2):119-128.
    [109]房江育,王贺,陈阳等.过氧化物酶催化酚类聚合反应诱导纳米硅球的形成[J].自然科学进展,2003,13(6):647-650.
    [110]马雪泷,房江育.硅对马铃薯试管苗根系生长及其细胞壁组成的影响[J].黄山学院学报,2004,6(6):85-86.
    [111]房江育,马雪泷.硅对马铃薯试管苗生长及其细胞壁形成的影响[J].作物学报,2006,32(1):152-154.