小麦抗旱相关基因TaSnRK2.3的克隆和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是影响小麦(Triticum aestivum L.)产量的主要因素之一。利用分子生物技术,发掘利用优异的抗旱基因资源提高小麦的抗旱性,是保障小麦生产可持续发展的最有效途径。蛋白质可逆磷酸化是细胞信号传递过程中几乎所有信号传递途径的中心环节,蛋白激酶在渗透胁迫等非生物胁迫下的信号转导过程中起关键作用。前人研究表明蔗糖非发酵相关蛋白激酶家族2(SnRK2)受渗透胁迫诱导表达,小麦TaSnRK2.3基因是SnRK2基因家族成员之一。
     本研究以强抗旱小麦品种旱选10号为试验材料,首次从中分离到小麦TaSnRK2.3基因,对其进化关系、表达特性及功能进行了分析。主要结果如下:
     1.克隆得到TaSnRK2.3全长cDNA,开放阅读框为1029bp,共编码342个氨基酸。等电点为5.55,分子量为38KD,存在丝氨酸/苏氨酸蛋白激酶催化域。与水稻OsSAPK3亲缘关系最近,与水稻、玉米、拟南芥中的SnRK2.3基因同源性依次为84.7%,73.1%,63.2%。
     2.TaSnRK2.3在小麦拔节期叶片中表达量最高,在抽穗期幼穗中表达量最低,表达量次序依次为:拔节期叶>幼苗根>幼苗叶>抽穗期幼穗。TaSnRK2.3响应外源ABA和低温、高盐、高渗胁迫诱导,对这4种不同处理的敏感性次序依次为:高渗>高盐>ABA>低温;TaSnRK2.3在高盐和干旱胁迫下迅速大量表达且表达峰值均为对照的25倍以上,而在外源ABA诱导下表达高峰出现在24小时后且峰值仅为对照的5倍,由此推测TaSnRK2.3属于植物信号传导过程中非依赖ABA的基因一类。亚细胞定位发现TaSnRK2.3在细胞核、细胞质和细胞膜上均有分布。
     3.过量表达TaSnRK2.3的拟南芥植株在幼苗期主根长度和侧根数目明显高于野生型和空载体植株。在高盐、高渗和外源ABA胁迫的培养基上,转基因植株种子萌发受到抑制的程度明显低于对照。生理指标检测表明,转基因植株在成株期间的叶绿素含量、叶绿素荧光(光系统Ⅱ最大光化学效率)、保水能力及水分利用能力均高于对照。逆境胁迫条件下,转基因植株的脯氨酸含量、细胞膜稳定性等抗性指标和表型数据表明,转基因植株对高盐和干旱胁迫的忍受力明显优于对照植株。对转基因拟南芥的不同株系进行目标基因表达量检测,其表达量越高,转基因植株耐盐耐旱能力越强。
     综上所述,本研究初步证明了小麦TaSnRK2.3基因参与了渗透和干旱胁迫的应答反应过程,过量表达该基因能提高拟南芥的耐盐和耐旱性。
Drought is one of the main factors to affect wheat yield (Triticum aestivum L).It adopts molecular biotechnology to utilize genetic resources of high-quality wheat and improve wheat drought resistance, which is the most effective shortcut to improve wheat drought-resistance and steady yield potenttial. Protein reversible phosphorylation is the key link of cell single transduction in almost all signaling pathways.Protein kinase (PK) plays an important role in signal transduction under abiotic stresses, such as osmosis, etc.The previous studies indicated that the expression of sucrose non-fermentation associated PK family (SnRK2) was induced by osmotic stress,and the wheat gene TaSnRK2.3 is one of the members in SnRK2 gene family.
     In this study, Hanxuan 10, a prominent drought resistance wheat variety, was used to isolate TaSnRK2.3 and characterize gene expression patterns under diverse stress conditions.The main results are following.
     1.The TaSnRK2.3 full-length CDNA was obtained by cloning, with open reading frame (ORF) is 1029bp,encoding a protein with-342 amino acids.The isoelectric point is 5.55,and molecular weight is 38KD.There exists the active site of serine/threonine protein kinase (PK).It has the closest genetic relationship with rice OsSAPK3,and the gene homology of SnRK2.3 in rice, corn and Arabidopsis thaliana is 84.7%,73,1%, 63.2% respectively.
     2.The TaSnRK2.3 have the highest expression level in leaf blade at jointing stage, and the lowest expression level in young ears at heading stage.The expression level is as follow:Spindle leaf at jointing stage> root of seedling> leaf of seedling> young ear at heading stage.The TaSnRK2.3 have different expression patterns under induction of response to exogenous gene ABA, low temperature, high salt and high-osmotic stress. In these four different processing modes,the sensitivity is as follow:High-osmosis> high-salt> ABA> low temperature.The expression levels of TaSnRK2.3 peaked for-PEG and NaCl quickly,and 24h fei ABA,and (?)e conespon(?)ing maxima were 25,25 and 5 times the check, suggesting that TaSnRK2.3 might participate in non ABA-dependent signal transduction pathways.The TaSnRK2.3 distribute on cell nuclei, cell plasma and cell membrane.
     3.During young seedling, the number of taproots and adventitious roots of transgenic TaSnRK2.3 in Arabidopsis thaliana plants is obviously more than in wild-type plants. In stress media, the seed germination of transgenic plants is obviously less inhibited than check plants.the chlorophyll content, maximal quantum yield of PS II photochemistry, water retention ability and osmotic potential of the transgenic plants have obviously stronger resistance than check plants.In adult period, the related resilience physiological such as free proline and cell membrane stability, and biochemical indexes and phenotypic data indicates the plants of transgenic target genes have obviously stronger resistance on high salt and drought stress than wild-type plants and empty-vector plants.Through detecting expression level of target genes in different transgenic strains, the higher expression level, the stronger capacity of salt and drought resistance in transgenic plants.
     The studies in this paper indicate that wheat genes TaSnRK2.3 participated response to osmosis and drought stress, and over expression of the genes can improve the salt and drought resistance for plants.
引文
[1]Turner NC.Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems. J.Exp. Bot,2004,55:2413-2425.
    [2]刘友良.植物水分逆境生理.北京:农业出版社.1992,102-143.
    [3]山仑,黄占斌,张岁歧.节水农业.北京:清华大学出版社.2000,12-13.
    [4]张正斌.作物抗旱节水的生理遗传育种基础.北京:科学出版社.2003,1-20.
    [5]唐先兵,吴贤婷,刘沛.植物耐旱与基因工程.植物杂志,2001,2:34.
    [6]景蕊莲.作物抗旱研究的现状与思考[J].干旱地区农业研究,1999,17(2):79-85.
    [7]Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance.Environ.Exp.Bot.,2006,59:206-216.
    [8]李艳,王青,李凤兰等.植物诱导抗早研究进展.作物杂志,2007,4:16-19.
    [9]Levitt J. Response of plants to environmental stresses.water, radiation, salt and other stresses.New York:Academic Press,1980,325-358.
    [10]Roustai M, Tahir M, Amiri A. The role of coleoptile length and crown node depth in cold and drought tolerance of wheat. In:A E Slinkard (ed.).Proceedings of the 9th International Wheat Genetics Symposium. Vol.4 Saskatchewan, Canada University Extension Press,1998,77-79.
    [11]Boyer JS.Advances in drought tolerance in plants. Advances Agron.,1996,56:187-218.
    [12]Ekanayake I. J., Toole J. C.,Carrity D. P. Inheritance of root characters and their relations to drought resistance in rice.Crop Sci.,1985,25:927-933.
    [13]周桂莲.小麦抗旱性鉴定的形态指标及其分析评价.陕西农业科学,1996:33-34.
    [14]韩建民.抗旱性不同的水稻品种对渗透胁迫的反应及其与渗透调节的关系[J].河北农业大学学报,1990,13(1):17-21.
    [15]刘祖祺,张石城.植物抗性生理学[M].中国农业出版社,1994.
    [16]Shackel KA, Foster KW, Hall AE.Genotypic differences in leaf osmotic potential among grain sorghum cultivars grown under irrigation and drought [J].Crop Sci,1982,22:1121-1125.
    [17]Cneil S D, Nuccio M L, Hanson A D, et al. Targets for Metabolic Engineering of Stress Resistance[J].Plant Physiology,1999,120:945-949.
    [18]Athinasabapathi B,Burnet M, Russell B L, et al. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants:prosthetic group characterization and cDNA cloning [J].Proc Natl Acad sci USA,1997,94:3454-3458.
    [19]Araka B,Oziasakins P, Stushnoff C, et al. Salinity and drought tolerance of mannitol-accumulating transgenic tobacco [J].Plant Cell Environ,1997,20:609-616.
    [20]裴英杰,郑家玲,庚红,等.用于玉米品种抗旱性鉴定的生理生化指标[J].华北农学报,1992,7(1):31-35.
    [21]霍仕平,晏庆九,宋光英,等.玉米抗旱鉴定的形态和生理生化指标研究进展[J].干旱区农业研究,1995,13(3):67-73.
    [22]魏良明,贾了然,胡学安,等.玉米抗旱性生理生化研究进展[J].干旱地区农业研究,1997, 15(4):66-71
    [23]Clarke J M,Romagosa I, Jana S,et al.Relationship of excised leaf water loss rate and yield of durum in diverse environment[J].Canadian Journal of Plant Science,1989,69:1075-1081.
    [24]Clarke J M,Richards R. A., Condon A G.Effect of drought stress on residual transpiration and its relationship with water use ofwheat [J].Canadian Journal of Plant Science,1991,71:695-702.
    [25]马瑞昆,刘淑贞,贾秀领.冬小麦幼苗生理特性做为抗旱性鉴定指标的初探[J].华北农学报,1990,5(增刊):24-29.
    [26]陈荣敏,卢少源,张荣芝.冬小麦抗旱性鉴定指标随生育期的变化规律及用于鉴定的最佳时期[J].华北农学报,1999,14(t-刊):45-49.
    [27]郑桂珍,关军锋,李广敏.渗透胁迫下小麦幼苗CaM含量变化及其与含水量的关系研究[J].中国生态农业学报,2006,14(2):76-78.
    [28]白志英,李存东,孙红春.干旱胁迫对小麦染色体代换系旗叶相对含水量和离体失水速率的影响.华北农学报,2008,23(1):62-65.
    [29]徐世昌.玉米旱害机制及抗旱应变措施的研究.沈阳农业大学博士生论文,1993.
    [30]王宝山.生物自由基与生物膜伤害.植物生理学通讯,1988,(2):12-16.
    [31]陈少裕.膜脂过氧化与植物逆境的伤害.植物学通报,1989,6(4):211-217.
    [32]徐世昌.土壤干旱后玉米叶细胞膜脂过氧化和膜磷脂脱酯化反应以及膜超微结构的变化.作物学报,1994,20(5):564-569
    [33]赵丽英,邓西平,山仓-不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究.中国农业生态学报,2007,15(1):63-66
    [34]徐建伟,席万鹏,方憬军等.水分胁迫对葡萄叶绿素荧光参数的影响.西北农业学报,2007,16:175-179.
    [35]张永强,毛学森,孙宏勇等.干旱胁迫对冬小麦叶绿素荧光的影响.中国生态农业学报,2002,10:13-15.
    [36]杨晓青,张岁岐,梁宗(?),山颖.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响.西北植物学报.2004,,24.812-816.
    [37]Borrell A. K.,Hammer G. L.,Nitrogen dynamics and the physiological basis of stay-green in sorghum. Crop Sci.,2000,40:1295-1307.
    [38]Lawson T, Oxborough K, Morison J L, et al. The responses of guard and mesophyll cell photosynthesis to CO2.O2 light, and water stress in a range of species are similar. Journal of Experimental Botany,2003,54(388):1743-1752.
    [39]赵弢,高志奎,徐广辉等.非调制式荧光仪测定叶绿素荧光参数的研究.生物物理学报,2006,22(1):34-38.
    [40]汪月霞,孙国荣,王建波,等.NaCl胁迫下星星草幼苗MDA含量与膜透性及叶绿素荧光参数之间的关系.生态学报,2006,26(1):122-129.
    [41]孙艳,徐伟君,范爱丽.高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响.应用生态学报,2006,17(3):399-402.
    [42]EI.Hafid R, Smith D H, Karrou M,et al. Physiological responses of spring durum wheat cultivars to early season drought in a mediterranean environment. Ann. Bot,1998,81:363-370.
    [43]张林刚,邓西平.小麦抗旱性生理生化研究进展干旱地区农业研究.1998,18:87-92.
    [44]穆平.水、旱稻DH和RIL群体抗旱性状相关分析及其QTL表达规律比较[博士学位论文],北京:中国农业大学.2004,5.
    [45]张殿忠.干物质积累和脯氨酸积累的水势闽值与小麦抗早性的关系.干旱地区农业研究,1990,(2):66-71.
    [46]Ali M., Jenesen C. R.,Mogensen V. O. T. Early signals in field grown wheat in response to shallow soil drying.Austral. J.Plant Physiol,1998,25:871-882.
    [47]杨洪强,接玉玲.以脱落酸为信使的植物逆境信号传递.山东农业大学学报(自然科学版)2001,32:549-554.
    [48]Chen M, Wang Q Y, Cheng X G et al. GmDREB2, a soybean DRE-binding transgenic plants.Biochemical and Biophysical Research Communications,2007.
    [49]Yu Q J,Du L, Hu Y L et al.Sense and antisense expression of plasma membrane aquaporin BnPIP1 from Brassica napusin tobacco and its effects on plant drought resistance.Plant Sci.,169:647-656.
    [50]Cardinale F, Jonak C, Ligterink W,et al. Differential activation of four specific MAPK pathways by distinct elicitors[J]. Journal of Biology Chemistry,2000,275:36734-36740.
    [51]Link V L, Hofmann M G, Sinha A K, et al. Biochemical evidence for the activation of distinct subsets of mitogen-activated protein kinases by voltage and defense-related stimuli [J].Plant Physiology, 2002,128:271-281.
    [52]MAPK Group:Mitogen-activated protein kinase cascades in plants:a new nomenclature [J]. Trends of Plant Science,2002,7:301-308.
    [53]Chang C.Ethylene signaling:the MAPK module has finally landed [J].Trends of Plant Science, 2003,8:365-368.
    [54]Ludwig A A, Romeis T, Jones J D.CDPK-mediated signalling pathways:specificity and cross-talk [J].Journal of Experimental Botany,2004,55:181-188.
    [55]Chehab E W, Patharkar O R, Hegeman A D, et al.Autophosphorylation and subcellular localization dynamics of a salt-and water deficit-induced calcium-dependent protein kinase from ice plant[J].Plant Physiology,2004,135:1430-1446.
    [56]Sanchez-Barrena M J, Martinez-Ripoll M, Zhu J K, et al. SOS3 (salt overly sensitive 3)from Arabidopsis thaliana:expression, purification, crystallization and preliminary X-ray analysis [J].Acta Crystallogr D Biol Crystallogr,2004,60:1272-1274.
    [57]Sanchez-Barrena M J, Matinez-Ripoll M, Zhu J K, et al. The Structure of the Arabidopsis thaliana SOS3:molecular mechanism of sensing calcium for salt stress response [J].Journal of Molecular Biology,2005,345:1253-1264.
    [58]Gong D,Guo Y, Schumaker K S.et al. The SOS3 Family of Calcium Sensors and SOS2 Family of Protein Kinases in Arabidopsis [J].Plant Physiology,2004,134:919-926.
    [59]Cheng N H.,Pittman K.,Zhu J K. et al. The protein kinase SOS2 activates the Arabidopsis H+/ Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance [J].Journal of Biology Chemistry, 2004,279:2922-2926.
    [60]Hirt H, Shinozaki K. Molecular responses of higher plants to dehydration. In:Plant responses to abiotic stress (Eds).pp:9-37.
    [61]Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J]. The Proceedings of the National Academy of Sciences Online (USA),2000,97:11632-11637.
    [62]Buskp K, Pagesm. Regulation of abscisic acid-induced transcription[J].Plant Molecμlar Biology, 1998,37:425-435.
    [63]刘强,赵南明.DREB转录因子在提高植物抗逆性中的作用[J].科学通报,2000,45(1):11-16.
    [64]Yu Shun-Wu, Tang Ke-Xuan:MAP kinase cascades responding to environmental stress in plant[J]. Acta Botanica Sinica,2004,46(2):127-136.
    [65]Bianchi G, Gamba A, Murelli C, et al. Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J,1991,1:355-359.
    [66]Ingram J, Chandler J,Gallagher L, et al. Analysis of cDNA clones encoding sucrose-phosphate synthase in relation to sugar interconversions associated with dehydration in the resurrection plant Craterostigma plantagineum Hochst. Plant Physiol,1997,115:113-121.
    [67]Kleines M, Elster R C, Rodrigo M, et al. Isolation and expression analysis of two stress-responsive sucrose synthase genes from the Craterostigma plantagineum (Hochst.). Planta,1999,209:13-24.
    [68]Pelah D, Wang W, Altman A, et al.Differential accumulation of water-stress related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiol Plantarum,1997,99:153-159.
    [69]Dejardin A,Sokolov L N. Sugar O. smoticum levels modulate differetial abscisic acidindepende expession of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem J,1999,344(2): 503-509.
    [70]Geigenberger P, Reimholz R, Deiting U,et al. Decreased expression of sucrose phosphate synthase strongly inhibits the water stress-induced synthesis of sucrose in growing potato tubers. Plant J,1999,19: 119-129.
    [71]Ting I P. Crassulacea acid metabolism [J].Annu Rev Plant Physiol,1985,36:595-622.
    [72]Mudgett M B,Clarke S.Hormonal and.environmental responsiveness of a developmentally regulated protein repair lisoaspartyl methyltransferase in wheat. J Biol Chem,1994,269:25605-25612.
    [73]Gronwald J W, Plaisance K L.Isolation and Characterization of Glutathione S-Transferase Isozymes from Sorghum [J].Plant Physiol,1998,117:877-892.
    [74]Ingram J,Bartels D.The molecular basis of dehydration tolerance in plants [J].Plant Mol. Biol., 1996,47:377-403.
    [75]Seki M, Narusaka M, Ishida J,et al.Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray[J].The Plant Journal, 2002,31:279-292.
    [76]Bray E A. Molecular responses to water deficit. Plant Physiol,1993,103:1035-1040.
    [77]Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol,1997,115(2):327-334.
    [78]Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to drought and cold stress.Curr Opin Biotecheol,1996,2(2):161-167.
    [79]Verslues P E, Bray E A. LWR1 and LWR2 are required for osmoregulation and osmotic adjustment in Arabidopsis [J].Plant Physiology,2004,136(1):2831-2842.
    [80]Kosmas S A, Argyrokastritis A, Loukas M G, et al. Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.)[J].Planta,2006, 223:329-339.
    [81]Abebe T, Guenzi A C,Martin B, et al. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiology,2003,131(4):1748-1755.
    [82]Xu C Y, Jing R L, Mao X G, et al. A wheat (Triticum aestivum) protein phosphatese 2A catalytic subunit gene provides enhanced drought tolerance in tobacco [J].Annals of botany,2007,99:439-450.
    [83]郭志爱,臧庆伟,景蕊莲,等.小麦小G蛋白Rab2基因TaRab2的克隆及其表达分析[J].作物学报,2007,33(2):201-207.
    [84]王彩香,景蕊莲,毛新国,等.小麦TaABC1L的克隆及表达特性分析[J].作物学报,2007,33(6):878-884.
    [85]Cheong Y H, Kim K N, Pandey G K, et al. CBL1,a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis[J].The Plant Cell,2003,15(8):1833-1845.
    [86]Cui X H, Hao F S,Chen H, et al.Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance [J].Journal Plant Resistent,2008,121:207-214.
    [87]Peng Y H, Lin W L, Cai W M, et al. Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants[J].Planta, 2007,226:729-740.
    [88]Tong S M, Ni Z F, Peng H R, et al. Ectopic overexpression of wheat TaSrg6 gene confers water stress tolerance in Arabidopsis [J].Plant Science,2007,172(6):1079-1086.
    [89]Gancedo J M. Yeast carbon catabolite rep ression [J].Microbiol Mol Biol Rev,1998,62:334-361.
    [90]Kudo N, BarrA J, Barr R L, et al.High rates of fatty acid oxioxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5-AMP-activated p rotein kinase inhibition of acetyl-CoA carboxylase [J].J Biol Chem,1995,270: 17513-17520.
    [91]Hrabak E M, Chan C W, GribskovM,Harper J F, Choi J H, SussmanM R et al.TheArabidop sis CDPK-SnRK superfamily of protein kinases [J].Plant Physiology,2003,132:666-680.
    [92]Alderson, A.,Sabelli, P A.,Dickinson, J R.,et al. Complementation of snfl,a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA [J].Proc Natl Acad Sci USA.1991,88:8602-8605.
    [93]Muranaka T, Banno H andMachida Y. Characterization of tobacco protein kinase NPK5,a homolog of Saccharomyces cerevisiae SNF1 that constitutively activates exp ression of the glucose-repressible SUC2 gene for a secreted invertase of S [J].cerevisiae Mol Cell Biol.1994,14:2958-2965.
    [94]Jiang R, CarlsonM.Glucose regulates p rotein interactions within the yeast SNF1 protein kinase complex [J].Genes Dev,1996,10;3105-3115.
    [95]Halford, N G.,Hardie, D G. SNF12related p rotein kinases:global regulators of carbon metabolism in p lants [J].PlantMol Biol.1998,37:735-748.
    [96]Shi J,Kim KN,RitzO, et al. Novel p rotein kinases associated with calcineurin B-like calcium sensors in Arabidop sis [J].Plant Cell,1999,11:2393-2405.
    [97]Albrecht V, Ritz O, Linder S,et al. The NAF domain defines a novel p rotein2p rotein interaction module conserved in Ca2+ regulated kinases [J].EMBO J,2001,20:1051-1063.
    [98]Purcell P C, Smith AM and Halford N G. Antisense expression of a sucrosenon-fermenting-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves.Plant J.,1998,14:195-202.
    [99]GoetzM, GodtD E, Guivarc'h A, et al. Induction of male sterility in plants by metabolic engineering of the carbohydrate supply [J].Proc Natl Acad Sci USA.2001,98:6522-6527.
    [100]Kolukisaoglu U, Weinl S,Blazevic D. et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and Rice CBL-CIPK signaling networks [J].Plant Physiology,2004,134: 43-58.
    [101]Kim K N,Lee J S,Han H,et al. Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins,sugars and salts [J].PlantMolecular Biology,2003,52:1191-1202.
    [102]Gong D, Guo Y, Jagendorf A,et al. Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance [J].Plant Physiology,2002,130:256-264.
    [103]Angelo C D,Weinl S,Batistic Oliver,et al. Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis [J].The Plant Journal,2006,48:857-872.
    [104]Fuglsang A T, Guo Y,Cuin TA, et al. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATP ase by preventing interaction with 14-3-3 protein [J].Plant Cell,2007,19: 1617-1634.
    [105]Guo Y, Xiong L, Song C P,et al.A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis [J].Developmental Cell,2002,3:233-244.
    [106]Xiang Y, Huang Y and Xiong L. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement [J].Plant Physiol.2007,144:1416-1428.
    [107]Gong, D.,Gong, Z.,Guo, Y.,Chen, X.and Zhu, J.K. Biochemical and functional characterization of PKS11,a novel Arabidopsis protein kinase. J Biol Chem,2002b,277:40-50.
    [108]Gong, D.,Gong, Z.,Guo, Y. and Zhu, J.K. Expression, activation, and biochemical properties of a novel Arabidopsis protein kinase. Plant Physiol,2002c,129:225-234.
    [109]Kelner, A.,Pekala, I.,Kaczanowski, S.,Muszynska, G.,Hardie, D.G. and Dobrowolska, G. Biochemical characterization of the tobacco 42-kD protein kinase activated by osmotic stress. Plant Physiol,2004,136:3255-3265.
    [110]Kim, B.G,Waadt, R.,Cheong, Y. H.,Pandey, G. K.,Dominguez-Solis, J.R., Schultke, S.,Lee, S. C., Kudla, J. and Luan, S.The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J,2007,52:473-484.
    [111]Sano, H. and Youssefian, S.Light and nutritional regulation of transcripts encoding a wheat protein kinase homolog is mediated by cytokinins. Proc Natl Acad Sci USA,1994,91:2582-2586.
    [112]Ikeda, Y, Koizumi,N.,Kusano, T. and Sano, H. Sucrose and cytokinin modulation of WPK4, a gene encoding a SNF1-related protein kinase from wheat. Plant Physiol,1999,121:813-820.
    [113]Boudsocq, M.,Barbier-Brygoo, H.and Lauriere, C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem,2004,279:41758-41766.
    [114]Boudsocq, M., Droillard, M. J.,Barbier-Brygoo, H. and Lauriere, C. Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol,2007,63:491-503.
    [115]Kobayashi, Y.,Yamamoto, S.,Minami, H.,Kagaya, Y. and Hattori, T. Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell,2004,16:1163-1177.
    [116]Li,J., Wang, X. Q.,Watson, M. B,and Assmann, S.M.Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science,2000,287:300-303.
    [117]Mustilli, A. C.,Merlot, S.,Vavasseur, A.,Fenzi, F. and Giraudat, J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell,2002,14:3089-3099.
    [118]Yoshida, R., Hobo, T.,Ichimura, K.,Mizoguchi, T.,Takahashi, F.,Aronso,J., Ecker, J.R. and Shinozaki, K. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis.Plant Cell Physiol,2002,43:1473-1483.
    [119]Umezawa, T., Yoshida, R.,Maruyama, K.,Yamaguchi-Shinozaki, K. and Shinozaki, K. SRK2C,a SNF1-related protein kinase 2,improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA,2004,101:17306-17311.
    [120]Diedhiou, C. J., Popova, O.V.,Dietz, K. J.and Golldack,D.The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice.BMC Plant Biol,2008,8:49.
    [121]Yoon, H.W.,Kim, M.C.Shin, P.G.,Kim, J.S.,Kim, C.Y.,Lee, S.Y.,Hwang,I.,Bahk, J.D., Hong, J.C.,Han, C.et al.Differential expression of two functional serine/threonine protein kinases from soybean that have an unusual acidic domain at the carboxy terminus.Mol Gen Genet,1997,255: 359-371.
    [122]Monks,D.E.,Aghoram, K.,Courtney, P. D.,DeWald, D.B.and E, D.Hyper osmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2 [J]. Plant Cell,2001,13:1205-1219.
    [123]Gomez-Cadenas, A.,Verhey, S.D.,Holappa, L. D.,Shen, Q.,Ho, T. H. and Walker-Simmons, M. K. An abscisic acid-induced protein kinase, PKABA1,mediates abscisic acid-suppressed gene expression in barley aleurone layers [J].Proc Natl Acad Sci USA,1999,96:1767-72.
    [124]Mao X G,Zhang H Y, Tian S J, Chang X P and Jing R L. TaSnRK2.4, a SNF1-type serine-threonine protein kinase of wheat (Triticum aestivum L.) confers enhanced multi-stress tolerance in Arabidopsis [J].Journal of Experimental Botany,2010,61:683-696.
    [125]张洪映.小麦抗旱相关基因TaPK7的克隆、亚细胞定位、功能验证与单核苷酸多态性研究[硕士学位论文],陕西:西北农林科技大学.2008,5.
    [126]Bates L S.Rapid determination of free proline for water stress studies. Plant Soil,1973, 39:205-207.
    [127]Hanks K, Quinn A M, Hunter T. The protein kinase family:conserved features and deduced phylogeny of the catalytic domains[J].Science,1988,241:42-52.
    [128]边鸣镝,李文亮,周连霞.高等植物SnRK蛋白激酶家族研究进展.辽宁农业科学,2008(4):32-35.
    [129]Hiroaki F, Paul E. V, Zhu J K. Identification of Two Protein Kinases Required for Abscisic Acid: Regulation of Seed Germination, Root Growth, and Gene Expression in Arabidopsis [J].Plant Cell, 2007,19:485-494.
    [130]Min-Ju C, Jung-Sook L, Myung-Hee N, et al. A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling [J].Plant Mol Biol,2007,63:151-169.
    [131]Martin M L, Busconi L. Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation [J].Plant J,2000,24:429-435.
    [132]Rutschmann F, Stalder U, Piotrowski M.et al. LeCPKl,a Calcium-dependent protein kinase from tomato:plasma membrane targeting and biochemical characterization [J].Plant Physiol,2002,129: 156-168.
    [133]Podel S, Gribskov M. Predicting N-terminal myristoylation sites in plant proteins [J].BMC Genomics,2004,5:37-51.