玉米AGPase基因的时空表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米是重要的粮饲作物,也是农作物中最主要的淀粉来源。许多学者对小麦、水稻等作物籽粒的淀粉合成和积累已做了研究,然而关于玉米淀粉生物合成机理的研究却很少。参与淀粉合成的酶类主要有:腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)、淀粉合成酶(starch synthases,SS)、淀粉分支酶(SBE)和淀粉去分支酶(DBE)。腺苷二磷酸葡萄糖(Adenosine diphosphate glucose, ADPG)是植物体内淀粉合成的直接前体,而它则由AGPase以ATP和1-磷酸葡萄糖为底物代谢合成。已分离到的低淀粉突变体伴随有AGPase活力的下降,可以看出它在淀粉的生物合成中有着重要作用,是高等植物淀粉生物合成的限速酶。AGPase由四个亚基组成,高等植物中AGPase是由大小亚基组成的异源四聚体蛋白。AGPase两种大小亚基都由不同的基因编码。在玉米中编码AGPase的基因有3个大亚基和3个小亚基。因此,研究AGPase基因的时空表达规律有助于我们了解其与淀粉生物合成的关系,从而达到通过调节其含量和活性来提高淀粉含量以及改造淀粉品质的目的。
     本试验通过RT-PCR检测了玉米6个AGPase基因在玉米不同组织和不同时段的时空表达规律。试验结果表明:
     1.玉米6个AGPase基因的表达具有组织特异性和发育阶段特异性。
     2.授粉后10-16天,随着细胞质型AGPase基因表达水平的升高,AGPase酶活性也在同时显著增强。当AGPase酶积累到一定浓度,淀粉积累速率也开始显著增长。
     3. AGPase基因对日夜周期变化的不同反应与其所在组织有关。日夜周期变化对6个AGPase基因表达量影响较小的组织有老叶、幼叶和叶鞘。与此相反,日夜周期变化对AGPase基因表达量影响较大的组织是成熟叶片,在成熟叶片中,agpl1、agpl2、agpl3、agps1和agps2基因在夜间的表达量远远大于在白天的表达量。
     4.不同的AGPase基因对糖和植物激素的反应存在显著差异。在本研究中,我们通过序列对比发现agps1和agps2存在很高的同源性,二者对激素的反应也很相似。另一方面,这两个基因也存在组织特异性表达的特性,对糖处理有不同的反应。这说明它们存在功能上的差异,糖也许是其差异的影响因素之一。
     5.葡萄糖对玉米AGPase基因表达水平的影响大于蔗糖、PEG6000和甘露醇的影响。各基因中,糖处理对agps2基因表达的影响相对较小,各糖或激素处理均能降低agps2基因的表达。而在籽粒灌浆过程中,其内源性蔗糖含量在授粉后13d左右达到最大值,而后降低,而AGPase基因相对表达量最高值并不是出现在授粉后第13d。这样看来似乎AGPase基因表达水平受内源性蔗糖的影响规律与受外源性蔗糖的影响规律不符。但ABA和蔗糖共同处理对AGPase基因表达的影响远远大于单独蔗糖处理的影响,因此最恰当的解释是,淀粉新陈代谢的复杂性决定了它由许多重要因素共同影响。
Maize is one of the most important feed crops and is the major source of starch. Starch is the most significant carbon reserve in higher plant. Many researches about the biosynthesis and accumulation of starch of wheat, rice grain have been done, however, further research to address the starch synthesis net-work is necessary. The production of starch in higher plant is orchestrated by four major types of enzymes, named ADP-glucose pyrophosphorylase (AGPase), starch synthase (SSs), starch branching enzymes (SBEs) and starch-debranching enzymes (DBEs). The regulatory and rate-limiting step of starch biosynthesis is the synthesis of the ADP-glucose, catalysised by ADP-glucose pyrophosphorylase, which could affect the final starch content directly in higher plant for that low AGPase activity was observed in AGPase genes deficient mutant. This enzyme in higher plant is a heterotetrameric (α2β2), consisting of two "regulatory" subunits (AGPL) and two slightly smaller "catalytic" subunits (AGPS). In higher plant, each subunit of AGPase is encoded by distinct genes. In maize, six gene encoding AGPase can be found in the database, three of which encode for large subunit, AGPL1, AGPL2 and AGPL3; and the others of which encode for small subunit, AGPS1, AGPS2 and AGPS3. Therefore, study on the expression patterns of maize AGPase genes can help us better understand the relationship between AGPase genes and starch biosynthesis, and also can improve starch content quality.
     The expression patterns of six maize AGPase genes in different organ and different developmental stage of maize were studied by using Quantitative Real-time RT-PCR in this work. The results showed that:
     1).The expression profillings of AGPase genes in maize were tissue-specific and developmental stage-specific.
     2).As the expression level of cytoplasmic AGPase gene increased in 10d to 16d after pollination, AGPase activity was also significantly enhanced. When the AGPase enzyme accumulated to a certain level, starch accumulation rate also began to grow significantly and had the same change trends.
     3).The different influence of day and night cycles on the exppression of AGPase genes may relate to the different tissues. The influence of day and night cycles on the exppression of AGPase genes in old leaf, young leaf and sheath were less than the influence of day and night cycles on the exppression of AGPase genes in developed leaf. In developed leaf, the expression level of agpl1, agpl2, agpl3, agps1 and agps2 gene in the night was far more than in the day.
     4).Our data showed significant difference in response to sugar or hormone among differenct AGPase isoforms. In this work, we presented that both agps1 and agps2 are nearly identical and similarly induced by hormone. On the other hand, tissue-specific expression profilling and different response to sugar of the two genes were observed. These facts support the functional divergence between the two genes and that sugar may be one of the impact factors.
     5).Glucose had greater effect on the expression of maize AGPase gene than sucrose, PEG6000 and manitol. However, minor changes were observed for trancripts of agps2 was observed. The amount of endogenous surcose in developing grain reached max at approximately 13 days after pollination and then decreased, but the expression level of AGPase genes did not appear 13 days after pollination. It seemed that the data of the endogenous sucrose, expression level of AGPase genes and exdogenous sucrose did not consist with each other. The most suitable explanation for this discrepancy was that many signal factors effect the complicated starch metabolism together for that more obvious changs of transcript for AGPase genes in ABA and sucrose treatment than sucrose alone treatment were observed.
引文
[1]Tong Y.Market potentials in starch production and utilization Southeast Asian (Asean) and far Asian countries. Starch/starke,2004,56:432-447
    [2]Ellis RP,Cochrane MP,Dale MFB,et al.Starch production and industrial use.Science food agriculture,1998,11:289-311
    [3]Hasjim J,Srichuwong S,Scott MP.Kernel composition,starch structure and enzyme digestibility of opaque-2 maize and quality protein maize.Journal of Agricultural and Food Chemistry,2009,57(5): 2049-2055
    [4]Singh N, Sandhu K S, Kaur M. Characterization of starches separated from Indian chickpea (Cicer arietinum) cultivars. Food Engineering,2004,63(4):441-449
    [5]Smith A M, Denyer K, Martin C. The synthesis of the starch granule. Annual Review of Plant Physiology and Plant Molecular Biology,1997,48:67-87
    [6]符文英,向远鸿,唐启源,等.食用优质稻米胚乳显微结构研究.湖南农业大学学报,1997,23(5):411-418
    [7]高振宇,黄大年.植物中合成蔗糖和淀粉的关键酶Ⅰ.腺苷二磷酸-葡萄糖焦磷酸化酶.生命的化学,1998,18(3):26-29
    [8]顾蕴洁,王忠,吴月萍.小麦胚乳细胞的分离及其淀粉体的计数.植物生理通讯.1994,30(3):210-213
    [9]顾蕴洁,熊飞,王忠,等.水稻和小麦胚乳发育的比较.南京师范大学学报(自然科学版),2001,24(3):65-74
    [10]郭文善,周振兴,彭永欣,等.小麦籽粒胚乳细胞增殖动态及其与粒重的关系.江苏农学院学报,1997,18(3):15-20
    [11]何照范.粮油籽粒品质及其分析技术.北京:中国农业出版社.1985:290-294
    [12]胡适宜.小麦颖果发育过程中淀粉的积累动态.植物学报,1964,12(2):139-147
    [13]Tester R F,Karkalas J,Qi X.Starch-composition,fine structure and architecture.Cereal Science,2004,39:151-165
    [14]Morrison W R,Milligan T P,Azudin M N.A relationship between the amylose and lipids contents of starches from diploid cereals. Cereal Science,1984,2:257-260
    [15]Craig S A S, Maningat C C, Seib P A, et al.Starch paste clarity.Cereal Chemistry,1989,66:173-182
    [16]Schoch T J.Non-carbohydrate substance in the cereal starches.American Chemical Society,1942a,64:2954-2956
    [17]Schoch T J.Fractionation of starch by selective precipitation with butanol. American Chemical Society,1942b,64:2957-2961
    [18]Davies T, Miller D C, Proctor A A,et al.Inclusion complexes of free fatty acids with amylose. Starch,1980,32:149-154
    [19]French D.Organization of starch granules. Starch Chemistry and Technology,1984:183-247
    [20]Mua J.P, Jackson D S.Fine structure of corn amylose and amylopectin fractions with various molecular weights. Agricultural and Food Chemistry,1997,45:3840-3847
    [21]Buleon A, Colonna Planchot V, Ball S.Starch granules:structure and biosynthesis.Biological Macromolecules,1998,23:85-112
    [22]Biliaderis CG, Marcel Dekker.Structures and phase transitions of starch polymers. Polysaccharide Association Structures in Foods,1998:57-168
    [23]Hizukuri S, Takeda Y, Yasuda M, et al.Multi branched nature of amylose and the action of debranching enzymes. Carbohydrate Research,1981,94:205-213
    [24]Hizukuri S. Towards an understanding of the fine structure of starch molecules.Denpun Kagaku,1993,40:133-147
    [25]Morrison W R, Karkalas J. Methods in plant biochemistry.Academic Press,1990:323-352
    [26]Takeda Y, Hizukuri S, Takeda C, et al.Structures of branched molecules of amyloses of various origins and molar fractions of branched and unbranched molecules. Carbohydrate Research,1987, 165:139-145
    [27]Wang L Z,White P J.Structure and properties of amylose,amylopectin and intermediate material of oat starches.Cereal Chemistry,1994,71:263-268
    [28]Yashushi Y B, Takenouchi T,Taked Y. Molecular structure and some physicochemical properties of waxy and low-amylose barley starches. Carbohydrate Polymers,2002,47:159-167
    [29]YoshimotoY, Tashiro J, Takenouchi T, et al. Molecular structure and same physicochemical properties of high-amylose barley starch.Cereal Chemistry,2000,77:279-285
    [30]Tester RF, Karkalas J,Qi X. Starch-composition,fine structure and architecture.Cereal Science,2004,39(2):151-165
    [31]Tako M, Hizukuri S.Retrogradation mechanism of rice starch.Cereal Chemistry,2000, 77(4):473-477
    [32]Hizukuri S. Recent advances in molecular structures of starch. Denpun Kagaku,1988,35:185-198
    [33]Hizukuri S. Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules.Carbohydrate Research,1985,141:295-305
    [34]Hizukuri S. Polymodal distribution of the chain lengths of amylopectin and its significance. Carbohydrate Research,1986,147:342-347
    [35]Takeda Y, Shibahara S, Hanashiro I. Examination of the structure of amylopectin molecules by fluorescent labeling. Carbohydrate Research,2003,338:471-475
    [36]Jane J, Chen Y Y, Lee L F,et al. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry,1999,76:629-637
    [37]Jane J, Kasemsuwan T, Leas S,et al. Anthology of starch granule morphology by scanning electron microscopy. Starch/Stfirke,1994,46:121-129
    [38]Morell M K, Rahman S, Abrahams S L,et al. The biochemistry and molecular biology of starch synthesis in cereals. Australian Journal of Plant Physiology,1995,22:647-660
    [39]Tang H, Watanabe K, Mitsunaga T.Structure and functionality of large medium and small granule starches in normal and waxy barley endosperms. Carbohydrate Polymers,2002,49:217-224
    [40]Hoover R, Smith C, Zhou Y, et al. Physicochemical properties of Canadian oat starches. Carbohydrte Polymers,2003,52:253-261
    [41]杨晓蓉,李欲,凌家煌.不同类别大米糊化特性和直链淀粉含量的差异研究.中国粮油学报,2001,16(6):37-42
    [42]舒庆尧,吴殿星,夏英武,等.稻米淀粉RVA谱特征与食用品质的关系.中国农业科学,1998,31(3):1-4
    [43]包劲松,何平,夏英武,等.稻米淀粉RVA谱特征主要受wx基因控制.科学通报,1999,44(18):1973-1976
    [44]Svegmark K,Hermansson A M.Microstructure and rheological properties of composites of potato starch granules and amylose:a comparison of observed and predicted structure.Food Structure,1993,12:181-193
    [45]Ji Y,Wong K,Hasjim J,et al. Structure and function of starch from advanced generations of new corn lines.Carbohydrate Polymers,2003,5:305-319
    [46]Kaur L, Singh N, Sodhi N S. Some properties of potatoes and their starches II Morphological, thermal and rheological properties of starches. Food Chemistry,2002,79:183-192
    [47]Singh J,Singh N.Studies on the morphological,thermal and rheological properties of starch separated from some Indian potato cultivars.Food Chemistry,2001,75:67-77
    [48]Zhou M,Robards K,Glennie-Holmes M,et al. Structure and pasting properties of oat starch.Cereal Chemistry,1998,75:273-281
    [49]deWilligen AHA.Examination and analysis of starch and starch products.Applied Science Publishers Ltd.1976a:61-90
    [50]deWilligen A H A.Starch production technology. Applied Science Publishers Ltd.1976b:135-154
    [51]Hoover R.Composition,molecular structure and physicochemical properties of tuber and root starches:a review.Carbohydrate Polymers,2001,45:253-267
    [52]王艳芳,李红,张立军,等.春玉米籽粒灌浆期IAA对淀粉积累的作用及其机制的研究.化学与生物工程,2006,23(3):35-37
    [53]曹士亮,许崇香,金益,等.黑龙江省中早熟玉米淀粉积累的动态分析.黑龙江农业科学,2005,(4):4-7
    [54]盛婧,郭文善,朱新开,等.不同类型专用小麦籽粒淀粉及其组分积累动态.扬州大学学报(农业与生命科学版),2006,27(2):31-35
    [55]刘开昌,胡昌浩,董树亭,等.高油、高淀粉玉米子粒主要品质成分积累及其生理生化特性.作物学报,2002,28(4):492-498
    [56]刘鹏,胡昌浩,董树亭,等.甜质型和普通型玉米籽粒发育过程中糖组分比较研究.中国农业科学,2003,36(7):764-769
    [57]何秀英,吴东辉,伍时照,等.水稻直链淀粉形成积累动态的研究.华南农业大学学报(自然科学 版),2003,24(3):9-12
    [58]张智猛,戴良香,胡昌浩,等.氮素对玉米淀粉积累及其相关酶活性的影响.作物学报,2005,31(7):956-962
    [59]Nelson O,Pan D.Starch synthesis in maize endosperm.Annual Review of Plant Physiology and Plant Molecular Biology,1995,46:475-496
    [60]Preiss J, Ball K, Smith-white B,et al.Biology and molecular biology of starch synthesis and its regulation.Oxford Surveys of Plant Molecular Cell Biology,1994,7:59-114
    [61]闫素辉.小麦胚乳淀粉合成、粒度分布特征及对花后高温的响应.[学位论文].山东,山东农业大学,2009
    [62]李永庚,于振文,姜东,等.冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究.作物学报,2001,27(5):658-664
    [63]高松洁,郭天财,王文静,等.不同穗型冬小麦品种灌浆期籽粒中与淀粉合成有关的酶活性变化.中国农业科学,2003,36(11):1373-1377
    [64]刘鹏,胡昌浩,董树亭,等.舔质型与普通型玉米籽粒发育过程中糖代谢相关酶活性的比较.中国农业科学,2005,38(1):52-58
    [65]Keeling P L.Starch biosynthesis in developing wheat grain.Plant Physiol,1988,(87):311-319
    [66]姜东,于振文,李永庚,等.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响.中国农业科学,2002,35(2):157-162
    [67]Tsai CY.The function of the waxy locus in starch synthesis in maize endosperm.Biochem Genet,1974,11:83-96
    [68]盛婧,郭文善.小麦淀粉合成酶活性及其与淀粉积累的关系.扬州大学学报,2003,24(4):49-53
    [69]Denyer K,Waite D,Motawia S.Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively.Biochem,1999,340:183-191
    [70]Smith A M.Making starch.Curr Opin Plant Biol,1999,2:223-229
    [71]Nakamura Y.Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants:rice endosperm as a model tissue.Plant Cell Physiol,2003,43:718-725
    [72]Yamamori M,Fujita S,Hayakawa K.Genetic elimination of a starch granule protein, SGP-1 of wheat generates an altered starch with apparent high amylose.Theor Appl Genet,2000,101:21-29
    [73]Li Z,Mouile QKosar-Hashemi B.The structure and espression of wheat starch synthase IIIgene,Motif in the expressed gene define the lineage of the starch synthaseⅢgene family.Plant Physiol,2000,123:612-624
    [74]Rahman S,Regina A,Li Z.Comparison of starch-branching enzyme genes reveals evolutionary relationships among isoforms,Characterization of a gene for starch-branching enzyme II a from the wheat genome donor Aegilops tauschii. Plant physiol,2001,125:1314-1324
    [75]彭佶松,郑志仁.淀粉的生物合成及其关键酶.植物生理学通讯,1997,33(4):297-303
    [76]梁建生,曹显祖,徐生,等.水稻籽粒库强与其淀粉积累间关系的研究.作物学 报,1994,20(6):686-691
    [77]Smith A M,Denyer K,Martin C.What controls the amount and structure of starch in store organ.Plant Physiol,1995,107:673-677
    [78]王月福,于振文,李尚霞,等.小麦籽粒灌浆过程中关键淀粉合成酶的活性及其效应.作物学报,2003,29(1):75-81
    [79]钟连进,程方民,等.水稻籽粒灌浆过程直链淀粉的积累及其相关酶的品种类型间差异.作物学报,2003,29(3):452-456
    [80]Mu-Forster C,Huang R,Harriman RW.Physical associalion of starch biosynthetic enzymes with starch granules of maize endosperm(granuleassociated forms of tarch synthase I and starch branching synthase II).Plant Physiology,1996,111(3):821-829
    [81]Kouichi M,Koji K,Yuji A, et al. Starch branching enzymes from immature rice seeds.Biochem,1992,112:643-651
    [82]Gao M. Evolutionary conservation and expression patterns of maize starch branching enzyme I and ⅡB genes suggests isoform specialization. Plant Molecular Biology,1996,30:1223-1232
    [83]李太贵,沈波,陈能,等.Q酶在水稻籽粒垩白形成中作用的研究.作物学报,1997,23(3):338-344
    [84]Kubo.The starch-debranching enzyme isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm.Plant Physiology,1999,121:399-409
    [85]李天,大杉立.灌浆结实期弱光对水稻籽粒淀粉积累及相关酶活性的影响.中国水稻科学,2005,19(6):545-550
    [86]Nakamura Y,KoboA,Shimamune T,et al. Correlation between activities of starch debranching enzyme and apolyglucan structure in endosperms of sugary-1 mutants of rice.Plant,1997,12:143-153
    [87]张海燕,董树亭,高荣岐,等.植物淀粉研究进展.中国粮油学报,2006,21(6):41-46
    [88]Bai X F, Cai Y P, Nie F. Relationship between abscisic acid and grain filling of rice and wheat.Plant Physiol Commun,1989,3:40-41
    [89]Zeng ZR, King RW. Regulation of grain number in wheat:changes in endogenous levels of abscisic acid.Plant Physiol,1986,13:347-352
    [90]Yang J C. Activities of key enzymes in sucrose-to-starch conversion in wheat grain subjected to water deficit during grain filling. Plant Physiol,2004,135:1621-1629
    [91]孙庆泉,胡吕浩.不同常量玉米籽粒胚乳细胞增殖与籽粒充实期的生理活性.作物学报,2005,5:612-618
    [92]Neuhaus H E, Stitt M. Control analysis of photosynthate partitioning,Impact of reduced activity of ADP-glucose pyrophosphorylase or plastid phosphoglucomutase on the fluxes to starch and sucrose in Arabidopsis thaliana(L.) Heynh.Planta,1990,182:445-454
    [93]Smidansky E D, Clancy M, Meyer F D, et al. Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc Natl Acad Sci USA,2002,99(3):1724-1729
    [94]Yano M,Ison Y,Satoh H, et al. Gene analysis of sugary and shruken mutants of rice,Oryza sativa L.Jpn.J.Breed,1984,34:43-49
    [95]Russell-DA, DeBoer-DL, Stark-DM, et al. Plastid targeting of E.coli beta-glucuronidase and ADP-glucose pyrophosphorylase in maize (Zea mays L.) cells. Plant Cell,1993,13(1):24-27
    [96]Casey J,Slattery I,Halil Kavakli, et al.Engineering starch for increased quantity and quality. Trends in plant sci,2000,5(7):291-298
    [97]Iglesias AA,CharngYY,Ball S,et al.Characterization of the Kinetic,regulatory,and structural properties of ADP-glucose pyrophosphorylase from Chlamydomonas reinhardtii. Biolchem,1993,268:1081-1086
    [98]Plaxton W C,Preiss J. Purifiction and properities of nonproteolytic degraded ADP-glueose pyrophosphorylase from maize endosperm. Plant Physiol,1987,83:105-112
    [99]Hannah L C.3-phosphorylase acid activation of maize endosperm ADP-glucose pyrophorylase following proteolytic cleavage of the sh2 or bt2 subunits. American Society of Plant Physiol,1995(14):72-79
    [100]Denyer K,Dunlap F,Thorbjornsen T, et al. The major form of ADP-glucose pyrophosp horylase in maize endosperm is extra-plastidial. Plant Physilogy,1996,112:779-785
    [101]Giroux-MJ,okagaki-RJ,Hannah-LC,et al. Ds revertant alleles from sh2-ml show a high frequeney of precise excision. Maize Geneties Cooperation Newsletter,1993,67:44
    [102]Mary K, Beatty AR, Cao H, et al. Purification molecular genetic characterization of ZP-U1, a pullulanase-type starch debranching enzyme from maize. Plant Physiolgy,1999,119:255-266.
    [103]李国峰,宋平,曹显祖,等.籼粳杂交稻籽粒库活性与其充实关系的研究.西北植物学报,2000,20(2):179-186
    [104]王国忠,刘秀丽.不同类型水稻品种的籽粒灌浆生理.江苏农学院学报,1997,18(4):19-22
    [105]苏丽英,吴勇,於新建,等.水稻叶片蔗糖磷酸合成酶的一些特性.植物生理学报,1989,15(2):117-123
    [106]夏叔芳,徐健,苏丽英,等.水稻叶片的蔗糖合成酶.植物生理学报,1989,15(3):239-243
    [107]程方民,钟连进,孙宗修,等.灌浆结实期温度对早籼水稻籽粒淀粉合成代谢的影响.中国农业科学,2003,36(5):492-501
    [108]谭彩霞,郭静,陈静,等.小麦籽粒淀粉合成酶基因表达与酶活性特征的研究.麦类作物学报,2009,29(1):24-30
    [109]包劲松,夏英武.水稻淀粉合成的分子生物学研究进展.植物学通报,1999,16(4):352-358
    [110]Okita TA,Nakata PA,Aderson JM,et al. The subuint struction of potato tuber ADP-glucose pyrophosphorylase.Plant physiolgy,1990,93:785
    [111]Dickinson DB,Preiss J.ADP-glucose pyrophosphorylase from maize endosperm.Archives Biochemistry and Biophysics,1969,130:119-128
    [112]Reeves C D, Krishan H B, Okita T W.Gene expression in development wheat endosperm. Plant Phsiology,1986,82:34-40
    [113]Stark D,et al. Regulation of the amount of starch in plant tissues by ADP Glucose Pyrophosphorylase.Science,1992,258:287-292
    [114]Muller-Rober B,Sonnewald U,Willmitzer L.Inhibition of AGPase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber-storage protein genes.EMBO,1992,11:1229-1238
    [115]赵俊晔,于振文,孙慧敏,等.不同小麦品种籽粒淀粉组分及相关酶活性的差异.作物学报,2004,30(6):525-530
    [116]刘霞,姜春明,郑泽荣.藁城8901和山农1391淀粉合成酶活性和淀粉组分积累特征的比较.中国农业科学,2005,38(5):897-903
    [117]Anderson JM,Hnilo,Larson R.The encoded primary sequence of rice seed ADP-glucose pyrophosphorylase. Biol Chem,1989,264(21):12238-12242
    [118]姜东,于振文,李永庚,等.施氮水平对鲁麦22籽粒淀粉合成的影响.作物学报,2003,29(3):462-467.
    [119]Armour JAL,Barton DE,Cockburn DJ,et al. The detection of large deletions or duplications ingenomic DNA.Hum M,2002,20:325-335
    [120]Namazie A, Alavi S, Aghamohammadi N,et al. Fluorescence in situ hybridization for detecting TP16 gene deletions in squamous cell carcinoma of the head and neck. Caneer Genet Cytogenet,2003,141:49-55
    [121]Petrij F,Dauwerse HG,Blough RI,et al. Diagnostic analysis of the Rubinstein-Taybi Syndrome: five cosmids shoule be used for microdeletion detection and low number of protein truncating mutations. Med Genet,2000,37:168-176
    [122]Ocstlander F, Karhu R, Kononen J,et al. Molecular cytogenetic analysis of oral squamous cell carcinomas by comparative genomic hybridization. Cancer Genet cytogenes,2006,167:109-116
    [123]Dhami P, Coffey AJ, Abbs S, et al. Exon array CGH:detection of copy number changes at the resolution of individual exons in the human genome. Am J Hum Genes,2005,76:750-762
    [124]Becker Andre M. Molecular cloning, a laboratory manual. Nucleic Acids Res,1989,17:9437
    [125]雷学忠,陈守春.定量PCR技术研究进展.四川医学,2000,21(11)
    [126]Erlich HA.Molecular cloning and diseases association of hepat it is viruses. Seiences,1991,252:1643
    [127]Shindo M. Testing for hepat it is C virus sequences in PBM cells of patients with chronic hepat it is C.Ann InternMed,1991,115:700
    [128]Casilli F, Di Rocco ZG, Gad S, et al. Rapid detection of novel BRCA rearrangements in high-risk breast-ovarian cancer families using multiplex PCR of short fluorescent fragments. Hummutat,2002,20:218-226
    [129]Rowland JS,Barton DE,Taylor GR,et al. A comparison of methods for gene dosage analysis in HMSN type1. Med Genet,2001,38:90-95
    [130]Yu SW,Liu HY,Luo LJ.Analysis of relative gene expression using different real-time quantitative PCR.ActaAgron Sin,2007,33(7):1214-1218
    [131]高新征,言普,沈文涛,等.番木瓜ξ-胡萝卜素脱氢酶基因时空表达的荧光定量PCR分析.热带 作物学报,2009,30(4):510-514
    [132]李红亮,高其康.中华蜜蜂信息素结合蛋白ASP1 cDNA的克隆及时空表达.昆虫学报,2008,51(7):689-693
    [133]琚铭,王海棠.棉纤维发育相关基因时空表达与纤维品质的关联分析.作物学报,2009,35(7):1217-1228
    [134]龚春华,李军Tenascin基因在斑马鱼胚胎发育中时空表达规律.实用儿科临床杂志,2008,23(13):1024-1026
    [135]林莎,高帆.麻疯树Jc-Tctp1基因的同源性分析及时空表达模式鉴定.中国生物化学与分子生物学报,2008,24(8):727-734
    [136]陈国珍,田杰.小鼠心脏发育中组蛋白乙酰化酶GCN5和PCAF的时空表达特征.中国组织化学与细胞化学杂志,2009,18(3):273-278
    [137]Dubois M, Gilles KA, Hamilton JK,et al. Colorimetric method for determination of sugars and related substances. Analytical Chem,1956,28(3):350-356
    [138]Kleczkowski LA, Villand P, Preiss J, et al. Kinetic mechanism and regulation of ADP-glucose pyrophosphorylase from barley (Hordeum vulgare) leaves. The Journal of Biological Chemistry,1993a,268:6228-6233
    [139]Tetlow IJ, Davies EJ, Vardy KA,et al. Subcellular localization of ADPglucose pyrophosphorylase in developing wheat endosperm and analysis of the properties of a plastidial isoform.Journal of Experimental Botany,2003,54(383):715-725
    [140]张军杰.玉米自交系淀粉合成及其关键酶活性变化与玉米sbe的克隆与表达.[学位论文].四川雅安,四川农业大学,2007
    [141]Crevillen P, Ventriglia T, Pinto F,et al. Differential pattern of expression and sugar regulation of Arabidopsis thaliana ADP-glucose pyrophosphorylase-encoding genes. The Journal of Biological Chemistry,2005,280:8143-8149
    [142]Sokolov LN, Dejardin A, Kleczkowski LA. Sugars and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsis thaliana (thale cress). The Biochemical Journal,1998,336:681-687
    [143]Omoto D, Ito H, Obana Y, et al. Isolation and characterization of two cDNAs for large and small subunits of ADP-glucose pyrophosphorylase from Kidney Bean. Appl Glycosci,2003,50:475-479
    [144]Akihiro T,Mizuno K,Fujimura T. Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA.Plant and Cell Physiology,2005,46(6):937-946
    [145]Muller-Rober B, Kobmann J, Hannah LC, et al. One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol Gen Genet,1990,224:136-146
    [146]Harn CH, Bae JM, Lee SS, et al. Presence of multiple cDNAs encoding an isoform of ADP-Glucose pyrophosphorylase large subunit from sweet potato and characterization of expression levels.Plant and Cell Physiology,2000,41(11):1235-1242
    [147]Chen BY, Janes HW, Gianfagna T. PCR cloning and characterization of multiple ADP-glucose pyrophosphorylase cDNAs from tomato. Plant Sci,1998,136(1):59-67