糖尿病患者下肢动脉硬化闭塞症64层CT血管成像分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     探讨64层CT血管成像在诊断糖尿病下肢动脉硬化闭塞症中的影像学价值。
     材料与方法
     对33例糖尿病下肢血管病变患者的40条下肢分别行64层螺旋CT血管成像(64-CTA)及数字减影血管造影(DSA)。每条下肢动脉分为12个节段,分别为肾下腹主动脉、髂总动脉、髂外动脉、髂内动脉、股浅动脉、股深动脉、胭动脉、胫前动脉、胫后动脉、腓动脉、足背动脉和足底内动脉,共计218个节段。以DSA为标准,对12个节段动脉进行对比分析。
     结果
     CTA与DSA对照,在膝以上动脉中(肾下腹主动脉、髂总动脉、髂外动脉、髂内动脉、股浅动脉、股深动脉和胭动脉),共有163个血管节段行DSA和CTA的比较,CTA诊断的敏感性、特异性、阳性预测值、阴性预测值及诊断符合率分别为100%、75.9%、79.4%、100%和86.4%。在膝以下动脉中(胫前动脉、胫后动脉、腓动脉、足背动脉和足底内动脉),共有55个血管节段行DSA和CTA的比较,CTA诊断的敏感性、特异性、阳性预测值、阴性预测值及诊断符合率分别为91.7%、75.9%、91.7%、80%及89.1%。
     结论
     64层CTA对糖尿病下肢动脉硬化闭塞症有较高的诊断价值,在一定程度上可以代替DSA作为糖尿病下肢动脉硬化闭塞症的常规检查方法。
     目的
     采用64层CT血管成像(CTA)探讨糖尿病患者下肢动脉硬化闭塞症的病变特点。
     材料与方法
     62例临床诊断下肢动脉硬化闭塞症的患者按照有无糖尿病合并症分为糖尿病组(DM)及非糖尿病组(NDM),分别为33例和29例,使用64层螺旋CT行下肢动脉CTA检查,采用动脉造影的12分段积分法将下肢动脉分为12个节段,分析各个血管节段的斑块分布情况(斑块检出率)及斑块性质,分别对各个节段的管腔狭窄程度进行对比分析。
     结果
     在膝以上大动脉(包括胭动脉及其以上血管)病变中,两组血管的斑块检出率未见统计学差异(P>0.05),且均以混合斑块为主;动脉病变狭窄程度积分DM组为L:6.51±3.47,R:6.96±3.08;NDM组为L:4.86±2.06,R:5.34±2.02。两组未见统计学差异(P>0.05)。膝以下小动脉(包括胫前动脉发出点及其以下血管)病变中,DM组的斑块检出率明显高于NDM组(P<0.05),且主要以硬斑为主,后者则以少量软斑为主;病变狭窄程度积分,DM组为L:7.96±3.10,R:8.30±2.48;NDM组为L:3.27±1.66,R:3.34±1.42,两组有统计学差异(P<0.05)。
     结论
     糖尿病患者并发下肢动脉硬化性闭塞症较单纯高血压患者严重,以膝下终末血管受累较为明显,且以弥漫性硬斑为主。
     目的
     探讨64层螺旋CT自动毫安技术及低千伏技术对降低下肢动脉血管成像辐射剂量的可行性。
     材料与方法
     82例糖尿病下肢动脉闭塞症患者,随机分为三组,分别采用不同的扫描技术。第一组(group 1, n=26)采用120KV的常规电压,固定毫安技术;第二组(group 2, n=26)采用120KV的自动毫安技术(650mA);第三组(group 3, n=30)采用80KV的自动毫安技术(650-30mA),噪声指数NI=10。扫描范围肾下腹主动脉至足尖,分别选择骨盆平面、胭窝层面平面、小腿中下段平面及足底平面作为观察平面,对三种扫描技术的图像质量、图像噪声和辐射剂量进行统计学分析。
     结果
     自肾下腹主动脉至足底容积的扫描长度为105.57-123.43cm,三组平均扫描长度分别为118.52±6.91cm,113.39±5.55cm,106.39±7.59cm,差异无统计学意义(P>0.05)。三组的辐射剂量CTDIvol分别为14.48±3.60,5.56±2.16,2.99±0.73mGy;平均DLP分别为1703.54±347.7,679.6±267.3及360.95±91.47 mGycm,三组间差异有明显统计学意义(t1,2=11.62,t2,34.58,P值均<0.05),第二、三组较第一组辐射剂量分别平均降低约60.10%和78.81%。第一组的四个选取平面图像噪声分别为11.89±2.73、6.63±1.24、7.50±1.74及5.95±1.84;第二组的图像噪声分别为14.73±2.30、12.24±2.62、11.92±2.40及11.38±3.24,第三组的图像噪声分别为20.57±2.86、15.06±3.28、14.77±3.63及12.40±2.35。第二组图像噪声均高于第一组,组间差异有统计学意义(t1,2值分别为3.69、8.57、6.72及6.49,P)值均<0.05,)。第三组与第二组比较,在骨盆层面、胭窝层面和小腿层面图像噪声均较第二组高(t2,3=8.10,3.43,3.30,P值<0.05)。足底层面的两组图像噪声差异无统计学意义(t2,3=1.33,P值>0.05)。三组图像质量的评分分别为2.57±0.50、2.26±0.48、2.56±0.56,差异无统计学意义(t1,2=0.57,t2,3=0.67,P值>0.05)。
     结论
     在其他扫描参数不变及保证图像质量的情况下,采用120kV和80kV的自动毫安技术均能更有效的降低病人辐射剂量,以80kV效果更明显。
Objective
     The aim of this study was to determine the concordance between CT angiography (CTA) and digital subtraction angiography (DSA) in diabetic patients with lower extremity arterial occlusive disease (LAOD).
     Material and Methods
     Thirty-three patients underwent both CTA and DSA. The artery of lower extremity was divided into 12 anatomic segments, then to analysis the stenosis of the artery, and to evaluate the sensitivity and specificity of CTA with DSA.
     Results
     In total,218 segments were assessed by both CTA and DSA. In the artery above the knee including infrarenal aorta, common iliac artery, external iliac artery, internal iliac artery, superficial artery, deep femoral artery and popliteal artery, the sensitivity and specificity of CTA were 100% and 75.9% respectively. For the artery below the kneel, including anterior artery, posterior artery, peroneal artery, plantar artery and dorsal artery of foot, the sensitivity and specificity of CTA were 91.7%and 75.9% respectively.
     Conclusions
     64-slice CTA provides a more valuable way for the detection of diabetic patients with peripheral arterial occlusive disease.
     Objective
     To evaluate the lower extremity arterial occlusive disease of diabetic patients with 64-slice CT
     Material and Methods
     62 patients diagnosed lower extremity arterial occlusive disease were divided into two groups(DM group and HP group) according to whether having diabetes, including 33 diabetic patients and 29 hypertensive patients, and all these patients underwent 64-slice CT angiography. The artery of lower extremity was divided into 12 anatomic segments which were scored on the basis of vessel lumen stenosis, then to analysis the distribution and the quality of the plaque in every segment of the artery, and to compare the severity of the artery between two groups.
     Results
     In the artery above the knee(from the infrarenal aorta to and including the popliteal artery), there is no significant difference about vessel stenosis between DM(5.39±5.07) and HP group(5.37±4.51), (P>0.05), and the differences of the detection of plaques were not apparent as well as the quality of plaques(P>0.05). However, In the artery below the knee (from the start of anterior tibial artery to dorsal artery of foot), patients with DM(4.00±3.75) tended to have a higher score than that with HP(1.96±2.48), (P<0.05), and the detection ratio of plaques in DM group which were mainly with calcified plaques was much higher than that in HP group which were mainly with soft plaques (P<0.05).
     Conclusions
     The lower limb atherosclerosis in DM group is much severe than in HP group, especially in distal segments of the artery below the knee, where the hard plaques in DM group takes the largest proportion.
     Objective
     Minimizing radiation dose for lower extremity arterial scanning is necessary due to the long scan range. The purpose of this study was to determine whether comparable results to the standard 120kVp protocol could be obtained with reduced radiation dose for lower extremity arterial imaging by 64-slice CT at a tube voltage of 80 kVp.
     Material and Methods
     Eighty-two consecutive diabetic outpatients with lower extremity occlusive disease were randomly divided into three groups. They were scanned with a 64-slices CT scanner by using different scanning techniques. The first group (group 1, n=26) used standard 120kVp and fixed tube current of 180mAs (group 1), and the second (group 2, n=26) and third groups (group 3, n=30) used 120kVp and 80kVp with automatic tube current modulation, respectively. We selected the observing levels at pelvic, knee, calf and foot levels for noise measurement and image quality assessment with a 3-point scale. Paired analyses were performed on radiation dose, image quality, and image noise using t-test.
     Results
     The scan lengths for all three groups were statistically the same (P>0.05). The CTDIvol and DLP values for the three groups were (14.48±3.60,5.56±2.16 and 2.99±0.73mGy) and (1703.54±347.7,679.6±267.3 and 360.95±91.47mGycm). Radiation dose was reduced by 60% and 79% for group2 and group3, respectively compared to group 1, and was statistically significant (tCTDIvo1=10.63, tDLP= 11.62, P<0.05 for group1 and group2), and( tCTDIvo1=4.57, tDLP=4.58,P<0.05 for group 1 and group 3). At the foot level, there was no significant difference for image noise between group 2 and group 3 (P>0.05), but at the other three levels, group 3 had higher image noise than group 2 (P<0.05). Group 2 also had higher noise than group 1 (P<0.05). However, there was no significant difference in image quality scores (2.57±0.50,2.26±0.48 and 2.56±0.56) between the three groups (t1,2=0.57, t2,3= 0.67, P>0.05).
     Conclusion
     Using automatic tube current modulation for lower extremity arterial scanning can reduce radiation dose. Radiation dose can further be reduced with equivalent image quality by using 80 kVp.
引文
[1]Fowkes FG, Housley E, Riemersma RA, et al. Smoking, lipids, glucose intolerance, and blood pressure as risk factors for peripheral atherosclerosis compared with ischemic heart disease in the Edingburgh Artery Study[J]. Am J Epidemiol,1992,135:331~340
    [2]Ronan J, Nigel C, Villiam F, et al. Diabetes-and Nondiabetes-Related Lower Extremity Amputation Incidence Before and After the Introduction of Better Organized Diabetes Foot Care:Continuous longitudinal monitoring using a standard method[J]. Diabetes Care, 2008,31:459-463
    [3]畅坚,许樟荣,王志强等.糖尿病与非糖尿病患者外周动脉病变血管造影对比研究[J].中国糖尿病杂志,2004,12(5):324-327
    [4]Hiatt WR, Hoag S, Hamman RF. Effect of diagnostic criteria on the prevalence of peripheral arterial disease[J]. The San LuisValley Diabetes Study. Circulation.1995, 91(5):1472~1479
    [5]Fowkes FG. The measurement of atherosclerotic peripheral arterial disease in epidemiological surveys[J]. Int J Epidemiol,1988,17(2):248~254
    [6]Criqui MH, Denenberg JO, Bird CE, et al. The correlation between symptoms and non-invasive test results in patients referred for peripheral arterial disease testing[J]. Vasc Med,1996,1(1):65~71
    [7]Matthieu L, Hicham K, Pascal D, et al. Assessment of Critical Limb Ischemia in Patients with Diabetes:Comparison of MR Angiography and Digital Subtraction Angiography[J]. AJR,2005,185:1641~1650
    [8]辛朝晖,赵淑芝,王金来等.糖尿病与非糖尿病患者外周动脉病变超声检查对比研究[J].医学影像学杂志,2005,15(5):406-408
    [9]Waugh JR, Sacharias N. Arteriographic complications in the DSA era[J]. Radiology,1992, 182:243-246
    [10]Holland-Letz T, Endres H, Biedermann S, et al. Reproducibility and reliability of the ankle brachial index as assessed by vascular experts, family physicians and nurses[J]. Vasc Med, 2007,12(2):105~112
    [11]Thomas A, Ellen F, Robin H, et al.16-MDCT Angiography of Aortoiliac and Lower Extremity Arteries:Comparison with Digital Subtraction Angiography [J]. AJR,2007, 189:702-711
    [12]Jurgen K, Bernhard B, Thomas S, et al. Aortoiliac and Lower Extremity Arteries Assessed with 16-Detector Row CT Angiography:Prospective Comparison with Digital Subtraction Angiography[J]. Radiology,2005,236:1083 ~ 1093
    [13]Rudiger S, Dominik F, Friedrich L, et al. Effect of MDCT Angiographic Findings on the Management of Intermittent Claudication1[J]. AJR,2007,189:1215~1222
    [14]胡芸,金朝林,王翔.64层螺旋CT在糖尿病下肢动脉硬化闭塞症中的诊断价值[J].实用放射学杂志,2007,23(11):1452-1454
    [15]Rubin GD, Schmidt AJ, Logan LJ, et al. Multi-detector row CT angiography of lower extremity arterial inflow and runoff:initial experience[J]. Radiology,2001,221:146~158
    [16]Ofer A, Nitecki SS, Linn S, et al. Multidetector CT angiography of peripheral vascular disease:a prospective comparison with intraarterial digital subtraction angiography[J]. AJR Am J Roentgenol,2003,180:719~724
    [17]Willmann JK, Wildermuth S, Pfammatter T, et al. Aortoiliac and renal arteries:prospective intraindividual comparison of contrast-enhanced three-dimensional MR angiography and multi-detector row CT angiography[J]. Radiology,2003,226:798~811
    [18]Martin ML, Tay KH, Flak B, et al. Multidetector CT angiography of the aortoiliac system and lower extremities:a prospective comparison with digital subtraction angiography[J]. AJR Am J Roentgenol,2003,180:1085~1091
    [1]Ota H, Takase K, Igarashi K, et al. MDCT compared with digital subtraction angiography for assessment of lower extremity arterial occlusive disease:importance of reviewing cross-sectional images[J]. AJR Am J Roentgenol,2004,182:201~209
    [19]Thomas A, Ellen F, Robin H, et al.16-MDCT Angiography of Aortoiliac and Lower Extremity Arteries:Comparison with Digital Subtraction Angiography[J]. AJR,2007,189: 702-711
    [20]Jurgen K, Bernhard B, Thomas S, et al. Aortoiliac and Lower Extremity Arteries Assessed with 16-Detector Row CT Angiography:Prospective Comparison with Digital Subtraction Angiography[J]. Radiology,2005,236:1083~1093
    [21]Riidiger S, Dominik F, Friedrich L, et al. Effect of MDCT Angiographic Findings on the Management of Intermittent Claudication1[J]. AJR,2007,189:1215~1222
    [22]Fleischmann D, Rubin GD. Quantification of intravenously administered contrast medium transit through the peripheral arteries:implications for CT angiography[J]. Radiology,2005, 236:1076~1082
    [23]Van der Feen C, Neijens FS, Kanters SD, et al. Angiographic distribution of lower extremity atherosclerosis in patients with and without diabetes[J]. Diabet Med,2002,19: 366-370
    [24]Ann O'Hare, Kirsten J, et al. Lower-Extremity Peripheral Arterial Disease among Patients with End-Stage Renal Disease[J]. JASN,2001,12:2838~2847
    [25]David J, Ole H, Harold I, et al. Association Between Renal Failure and Foot Ulcer or Lower-Extremity Amputation in Patients With Diabetes[J]. Diabetes Care,2008,31: 1331~1336
    [26]Porter CJ, Stavroulopoulos A, Roe SD, et al. Detection of coronary and peripheral artery calcification in patients with chronic kidney disease stages 3 and 4, with and without diabetes Nephrol[J]. Dial Transplant,2007,22:3208-3213
    [27]Raul J, Marshal B, Paul M, et al. Tibial Artery Calcification as a Marker of Amputation Risk in Patients With Peripheral Arterial Disease[J]. JACC,2008,51:1967~1974
    [28]McCollough CH, Bruesewitz MR, Kofler JM Jr. CT dose reduction and dose management tools:overview of available options[J]. Radiographics.2006,26(2):503~512
    [29]Mulkens TH, Bellinck P, Baeyaert M, et al. Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations:clinical evaluation[J]. Radiology,2005,237(1):213~223
    [1]刘颖慧,李红,葛慧等.2型糖尿病下肢血管病变发生率及危险因素分析[J].中国实用内科杂志,2005,25(9):825-826
    [2]Van der Feen C, Neijens FS, Kanters SD, et al. Angiographic distribution of lower extremity atherosclerosis in patients with and without diabetes[J]. Diabet Med,2002,19: 366-370
    [3]畅坚,许樟荣,王志强等.糖尿病与非糖尿病患者外周动脉病变血管造影对比研究[J].中国糖尿病杂志,2004,12(5):324-327
    [4]Edward B. Peripheral arterial disease in diabetic and nondiabetic patients[J]. Diabetes Care,2001,24:1433~1437
    [5]Kreitner KF, Kalden P, Neufang A, et al. Diabetes and peripheral arterial occlusive disease:prospective comparison of contrast enhanced three dimensional MR angiography with conventional digital subtraction angiography[J]. Am J Roentgenol, 2000,174:171-179
    [6]Yu HI, Sheu WH, Lai CJ, et al. Chen YT:Endothelial dysfunction in type 2 diabetes mellitus subjects with peripheral artery disease[J]. Int J Cardiol,2001,78:19~25
    [7]Ross R. Atherosclerosis—an inflammatory disease[J]. N Engl J Med,1999,340:115~ 126
    [8]Lilly MP, Reichman W, Sarazen AA Jr. Anatomic and clinical factors associated with complications of transfemoral arteriography. Ann Vasc Surg[J],1990,4:264~269
    [9]Waugh JR, Sacharias N. Arteriographic complications in the DSA era[J]. Radiology, 1992,182:243~246
    [10]Cossman DV, Ellison JE, Wagner WH, et al. Comparison of contrast arteriography to arterial mapping with color-flow duplex imaging in the lower extremities [J]. J Vasc Surg, 1989,10:522~528
    [11]Polak JF, Karmel MI, Mannick JA, et al.Whittemore AD. Determination of the extent of lower-extremity peripheral arterial disease with colorassisted duplex sonography: comparison with angiography [J]. AJR Am J Roentgenol,1990,155:1085~1089
    [12]Aly S, Sommerville K, Adiseshiah M, et al. Comparison of duplex imaging and arteriography in the evaluation of lower limb arteries[J]. Br J Surg,1998,85:1099~1102
    [13]Ubbink DT, Fidler M, Legemate DA. Interobserver variability in aortoiliac and femoropopliteal duplex scanning[J]. J Vasc Surg,2001,33:540~545
    [14]Hiatt WR, Hoag S, Hamman RF. Effect of diagnostic criteria on the prevalence of peripheral arterial disease[J]. The San LuisValley Diabetes Study. Circulation.1995, 91(5):1472~1479
    [15]Fowkes FG. The measurement of atherosclerotic peripheral arterial disease in epidemiological surveys[J]. Int J Epidemiol,1988,17(2):248~254
    [16]Criqui MH, Denenberg JO, Bird CE, et al. The correlation between symptoms and non-invasive test results in patients referred for peripheral arterial disease testing[J]. Vasc Med,1996,1(1):65~71
    [17]Meaney JF, Ridgway JP, Chakraverty S, et al. Stepping-table gadolinium-enhanced digital subtraction MR angiography of the aorta and lower extremity arteries:preliminary experience[J]. Radiology,1999,211:59~67
    [18]Ruehm SG, Hany TF, Pfammatter T, et al.Pelvic and lower extremity arterial imaging: diagnostic performance of three-dimensional contrast-enhanced MR angiography[J]. AJR Am J Roentgenol,2000,174:1127~1135
    [19]Swan JS, Carroll TJ, Kennell TW, et al. Time-resolved three-dimensional contrast enhanced MR angiography of the peripheral vessels[J]. Radiology,2002,225:43~52
    [20]Bezooijen R, van den Bosch HC, Tielbeek AV, et al. Peripheral arterial disease: sensitivity-encoded multiposition MR angiography compared with intraarterial angiography and conventional multiposition MR angiography[J]. Radiology 2004;231: 263~271
    [21]Richter CS, Biamino G, Ragg C, et al. CT angiography of the pelvic arteries[J]. Eur J Radiol,1994,19:25~31
    [22]Lawrence JA, Kim D, Kent KC, et al. Lower extremity spiral CT angiography versus catheter angiography [J]. Radiology,1995,194:903~908
    [23]Raptopoulos V, Rosen MP, Kent KC, et al. Sequential helical CT angiography of aortoiliac disease[J]. AJR Am J Roentgenol,1996,166:1347~1354
    [24]Rieker O, Duber C, Neufang A, et al. CT angiography versus intraarterial digital subtraction angiography for assessment of aortoiliac occlusive disease[J]. AJR Am J Roentgenol,1997,169:1133-1138
    [25]Rieker O, Duber C, Schmiedt W, et al. Prospective comparison of CT angiography of the legs with intraarterial digital subtraction angiography[J]. AJR Am J Roentgenol,1996, 166:269~276
    [26]Kramer SC, Gorich J, Aschoff AJ,et al. Diagnostic value of spiral-CT angiography in comparison with digital subtraction angiography before and after peripheral vascular intervention[J]. Angiology,1998,49:599~606
    [27]Holland-Letz T, Endres H, Biedermann S, et al. Reproducibility and reliability of the ankle brachial index as assessed by vascular experts, family physicians and nurses [J]. Vasc Med,2007,12(2):105~112
    [28]Thomas A, Ellen F, Robin H, et al.16-MDCT Angiography of Aortoiliac and Lower Extremity Arteries:Comparison with Digital Subtraction Angiography [J]. AJR,2007, 189:702~711
    [29]Jurgen K, Bernhard B, Thomas S, et al. Aortoiliac and Lower Extremity Arteries Assessed with 16-Detector Row CT Angiography:Prospective Comparison with Digital Subtraction Angiography[J]. Radiology,2005,236:1083~1093
    [30]Rudiger S, Dominik F, Friedrich L, et al. Effect of MDCT Angiographic Findings on the Management of Intermittent Claudication1[J]. AJR,2007,189:1215~1222
    [31]胡芸,金朝林,王翔.64层螺旋CT在糖尿病下肢动脉硬化闭塞症中的诊断价值[J].实用放射学杂志,2007,23(11):1452-1454
    [32]Rubin GD, Schmidt AJ, Logan LJ, et al. Multi-detector row CT angiography of lower extremity arterial inflow and runoff:initial experience[J]. Radiology,2001,221:146~ 158
    [33]Ofer A, Nitecki SS, Linn S, et al. Multidetector CT angiography of peripheral vascular disease:a prospective comparison with intraarterial digital subtraction angiography[J]. AJR Am J Roentgenol,2003,180:719~724
    [34]Willmann JK, Wildermuth S, Pfammatter T, et al. Aortoiliac and renal arteries: prospective intraindividual comparison of contrast-enhanced three-dimensional MR angiography and multi-detector row CT angiography. Radiology,2003,226:798~811
    [35]Martin ML, Tay KH, Flak B, et al. Multidetector CT angiography of the aortoiliac system and lower extremities:a prospective comparison with digital subtraction angiography [J]. AJR Am J Roentgenol,2003,180:1085~1091
    [36]Ota H, Takase K, Igarashi K, et al. MDCT compared with digital subtraction angiography for assessment of lower extremity arterial occlusive disease:importance of reviewing cross-sectional images[J]. AJR Am J Roentgenol,2004,182:201~209
    [37]么刚,孙建男,刘影等.16排螺旋CT下肢低剂量造影剂血管成像可行性研究[J].CT理论与应用研究.2005,14(4):24-28
    [38]Fleischmann D, Rubin GD. Quantification of intravenously administered contrast medium transit through the peripheral arteries:implications for CT angiography [J]. Radiology,2005,236:1076-1082
    [39]Fleischmann D, Straka M, Sramek M, et al. Angio-Vis:computer graphics for clinical visualization of peripheral arterial occlusive disease[J]. Eur Radiol,2005,15:574~575
    [40]Faqlia E, Favales F, Quarantiello A, et al. Angiographic evaluation of peripheral arterial occlusive disease and its role as a prognostic determinant for major amputation in diabetic subjects with foot ulcers[J]. Diabetes Care,1998,21:625~630